
Mininet & OpenFlow
	

19/05/2017	

Setup 1: Mininet-based Single Switch

2	

	
Controller	
port6633	

	
	c0	

OpenFlow	Switch	
s1	 ovs-ofctl	

(user	space	
process)	

h3	
10.0.0.3	

h2	
10.0.0.2	

h1	
10.0.0.1	

loopback	
(127.0.0.1:6633)	

loopback	
(127.0.0.1:6634)	

s1-eth0	 s1-eth1	 s1-eth2	

h1-eth0	 h2-eth0	 h3-eth0	

sudo	mn	--topo	single,3	--switch	ovsk	--controller	remote	

virtual	hosts	

virtual	
switch	

•  POX	is	an	open	plaIorm	for	the	rapid	development	and	prototyping	of	network	
control	so,ware		

•  Pox	architecture	is	‘‘component	based’’	

•  Ex:	~/pox$./pox.py	samples.pretty_log	forwarding.l2_learning		

•  Some	stock	components:	
•  openflow.of_01	(usually	started	automa.cally)	
•  forwarding.hub	
•  forwarding.l2_learning	
•  forwarding.l2_pairs	
•  forwarding.l2_mulV	
•  openflow.spanning_tree	
•  openflow.discovery	
•  misc.of_tutorial	à	the	component	we	will	customize	in	this	lab	
•  …	

 Pox Controller

• Open	two	terminals	in	the	Mininet	VM	
•  In	the	first	terminal	execute	command	1)	
•  Then,	execute	a	ping	test,	does	it	work?	
•  In	the	other	terminal	execute	command	2)	and	repeat	
the	ping	test.	Something	changed??	

Commands:	

1)  ~$	sudo	mn	--topo	single,3	--controller	remote	
2)  ~/pox$./pox.py	samples.pretty_log	forwarding.l2_learning		

 Pox Controller: an Example

 Packets in POX

• POX	generally	works	with	ethernet	packets		
• Which	oaen	contain	ipv4	packets…		

•  (which	oaen	contain	tcp	packets...)	

•  Some	of	the	packet	types	supported	by	POX:	
•  ethernet,	arp,	ipv4,	icmp,	tcp,	udp,	dhcp,	dns…	

• Most	packets	have	some	sort	of	header	and	some	
sort	of	a	payload	

•  The	payload	is	another	type	of	packet	

 Ethernet packets in POX

• Class	ethernet		
•  defined	in	~/pox/pox/lib/packet/ethernet.py	

• Acributes:	
•  dst	(EthAddr)	
•  src	(EthAddr)	
•  type	(int)		
•  effective_ethertype	(int)	
•  payload	(for	example	an	ipv4	packet…)	

• Constants:	
•  IP_TYPE,	ARP_TYPE,	VLAN_TYPE,	…	

•  Example:	packet.src,	packet.IP_TYPE	

 The Event System

•  Event	Handling	in	POX	fits	into	the	publish/
subscribe	paradigm	

•  Certain	objects	publish	events	and	others	subscribe	to	
specific	events	on	these	objects	

•  In	other	words:	we'd	like	a	parVcular	piece	of	code	
to	be	called	

•  Ex:		chef.addListenerByName("SpamReady",	spam_ready)	

The	object	
that	raises	
the	event	

The	name	of	
the	event	

The	funcVon	
handling	the	

event	

 The Event System

•  Ex:	object	chef	raises	two	events,	SpamReady	and	
SpamFinished	

class	HungryPerson	(object):
		"""	Models	a	person	that	loves	to	eat	spam	"""
	
		def	__init__	(self):
				chef.addListeners(self)
	
		def	_handle_SpamReady	(self,	event):
				print	"I	can't	wait	to	eat!"
	
		def	_handle_SpamFinished	(self,	event):
				print	"Spam	is	finished!		Smelt	delicious!"

 Example: empty controller

•  Let’s	go	to	the	code	and	see	the	events	ConnecVonUp	
and	PacketIn!	

•  ConnecVonUp:	fired	in	response	to	the	establishment	
of	a	new	control	channel	with	a	switch	

•  PacketIn:	Fired	when	the	controller	receives	an	
OpenFlow	Packet-In	message	from	a	switch	

•  Acributes:	
•  port	(int):	number	of	port	the	packet	came	in	on	
•  data	(bytes):	raw	packet	data	
•  parsed	(packet	subclasses):	packet’s	parsed	version	
•  ofp	(ofp_packet_in):	OpenFlow	message	which	caused	this	
event	

	
	

 Packet-In message in POX

•  The	POX	object	type	is	ofp_packet_in		
• Acributes:	

•  in_port	(int):	number	of	port	the	packet	came	in	
on		

•  data	(bytes):	raw	packet	data		
•  buffer_id	(int):	ID	of	the	buffer	in	which	the	
packet	is	stored	at	the	switch	

•  …	

 Packet-Out message in POX

• The	POX	object	type	is	ofp_packet_out	

a4ribute	 type	 default	 notes	
in_port	 int	 OFPP_NONE	 Switch	port	that	the	packet	arrived	on,	if	

resending	a	packet	
data	 bytes	/	ethernet	/	

ofp_packet_in	
''	 The	data	to	be	sent.	If	you	specify	

an	ofp_packet_in	for	
this,	in_port,	buffer_id,	and	data	will	all	
be	set	correctly	–	this	is	the	easiest	way	to	
resend	a	packet.	

buffer_id	 int/None	 None	 ID	of	the	buffer	in	which	the	packet	is	stored	at	
the	switch.	If	you're	not	resending	a	buffer	by	
ID,	use	None	

acVons	 list	of	
ofp_acVon_XXXX	

[]	 An	acVon	or	a	list	of	acVons	

 OpenFlow acGons in POX
• ofp_action_output:	Forward	packets	out	of	a	
port	

• Ex:	of.ofp_action_output(port	=	4)	

Reference	to	
the	object	that	
manages	the	
OpenFlow	
protocol	

Output	port	
for	the	
packet	

Possible	values	for	‘‘port’’:	
•  OFPP_IN_PORT:	Send	back	out	the	port	the	packet	was	
received	on		

•  OFPP_TABLE:	Perform	acVons	specified	in	flowtable.	Note:	Only	
applies	to	ofp_packet_out	messages	

•  OFPP_NORMAL:	Process	via	normal	L2/L3	legacy	switch	
configuraVon	(if	available	–	switch	dependent)	

•  OFPP_FLOOD:	output	all	openflow	ports	except	the	input	port	
and	those	with	flooding	disabled	

•  OFPP_ALL:	output	all	openflow	ports	except	the	in	port	
•  OFPP_NONE:	Output	to	no	where	
•  …	

 OpenFlow messages in POX

"""	Instructs	the	switch	to	resend	a	packet	that		
it	had	sent	to	us.	"packet_in"	is	the	ofp_packet_in	object		
the	switch	had	sent	to	the	controller	due	to	a	table-miss.	"""		
	
msg	=	of.ofp_packet_out()		
msg.data	=	packet_in		
	
#	Add	an	action	to	send	to	the	specified	port		
action	=	of.ofp_action_output(port	=	out_port)		
msg.actions.append(action)		
	
#	Send	message	to	switch		
self.connection.send(msg)		

 Example: of_tutorial.py	

•  Let’s	go	to	the	code	and	see	the	OpenFlow	tutorial!	

•  You	can	find	the	code	here:		
	

~/pox/pox/misc/of_tutorial.py	
	

•  To	start	the	controller,	type	in	the	~/pox	folder:	

./pox.py	misc.of_tutorial	
samples.pretty_log	

	
	
	

 Exercise 2	

• Modify	the	of_tutorial.py	to	implement	the	
behavior	of	a	learning	switch	using	the	OpenFlow	
message	Packet-Out	

 IP packets in POX

• Class	ipv4		
•  defined	in	~/pox/pox/lib/packet/ipv4.py	

• Acributes:	
•  dstip	(IPAddr)	
•  srcip	(IPAddr)	
•  protocol	(int)		
•  payload	(for	example	a	TCP	packet…)	

• Constants:	
•  TCP_PROTOCOL,	UDP_PROTOCOL,	…	

 TCP packets in POX

• Class	tcp		
•  defined	in	~/pox/pox/lib/packet/tcp.py	

• Acributes:	
•  dstport	(EthAddr)	
•  srcport	(EthAddr)	
•  SYN	(bool)		
•  FIN	(bool)	
•  ACK	(for	example	an	ipv4	packet…)	
•  …	

 Example

#	packet	is	the	ethernet	packet	
if	(packet.type	==	packet.IP_TYPE):	
	
					ipPkt	=	packet.payload										
					if	(str(ipPkt.srcip)	==	"10.0.0.1"):	
											
										if	(ipPkt.protocol	==	ipPkt.TCP_PROTOCOL):	
															
														tcpPkt	=	ipPkt.payload	
															
														…	
					
					else:	
										return	False	
	
else:	
										return	False	

• Develop	a	firewall	that	allows	only		
• ARP	packets	
• TCP	packets	over	IP	packets,	but	only	if:	

• directed	to	host	10.0.0.1	(port	80)	
• host	10.0.0.1	is	the	source	
	

• Hint:	use	the	nc	command	to	test	your	firewall	
•  Server:	nc	–l	80	 	 	#	open	a	socket	
•  Client:	nc	<serv	IP	addr>	80	 	#	connect	to	the	server	

 Exercise 3	

