
SOCKET
Valerio Di Valerio

The Problem

!  Communication between computers connected to a
network

Network

Network applications

!  A set of processes distributed over a network that
communicate via messages
! Ex: Browser Web, BitTorrent, ecc…

!  Processes communicate via services offered by the
operating system
! What kind of services?! TCP, UDP and IP protocols…

!  Most famous network application architecture:
client/server

Client/server model

!  Client:
!  Initiates communication
! Requests a service

" Es: Chrome sends a request for a
Web site:

!  Server:
! Waits a request
! Provides the service

" Es: Web server providing an html
page

Network application has two components: client and server

Network

Peer-to-Peer model

See previous lesson!

Two main problems

!  Network addressing: how to unambiguously
identify the process running on a remote host

!  Data transport: how to transfer bits to the
destination

Network

Reply

Request

Addressing and data transport in TCP/IP

!  Addressing based on two components
!  IP address: identifies the remote host (actually the

network interface)
! Port number: identifies the running process

!  Data transport based on two protocols
! TCP: connection oriented, stream oriented, reliable data

transfer
! UDP: message oriented, no connection, no reliable data

transfer

How to interact with TCP/UDP

!  Protocols run “inside” the operating system
! OSs usually implement the protocol stack TCP/IP

!  Our applications run “outside” the operating system
!  Result: our applications need to interact with the OS

to send data to TCP/IP
!  Interaction is possible using a set of interfaces

called Application Programming Interface (API)

Application Programming Interfaces (API)

!  They standardize interaction with the OS specifying:
! Function prototypes
!  Input/output parameters

!  Socket: Internet API
! Originated with the BSD Unix operating system in 1983

and developed in C
! Now available on many OSs
! The Python interface is a straightforward transliteration

of the Unix interface for sockets implemented in C

Socket

!  It is a “door” between application and transport
protocols (TCP o UDP)
! Allows to send/receive data from the network

!  It represents the communication endpoint
! A socket is owned by the application

!  It provides to developers a high level interface to
transport protocols

Socket

 Network

Process

TCP
Socket

Process

TCP
Socket

Controlled by
application
developer

Controlled by
operating system

Socket in Python

!  Socket creation:

	import socket
 s = socket.socket(addr_family, type, protocol) 	

	
!  It is the first function executed both by the client and the

server
! The OS initializes all the resources needed to manage data

transfer
!  It returns the socket…

! or raises an exception if something goes wrong

Socket in Python

!  addr_family: the protocol family
"  socket.AF_INET: IPv4 protocol
"  socket.AF_INET6: IPv6 protocol
"  socket.AF_UNIX: to manage communication between

processes on the same host

!  type: the communication type
"  socket.SOCK_STREAM: stream (connection) oriented
"  socket.SOCK_DGRAM: message oriented
"  socket.SOCK_RAW: provide access to the network layer

!  protocol: a specific protocol
"  If set to 0 (or omitted) the default protocol defined by the

couple addr_family + type will be used
"  Es: socket.AF_INET + socket.SOCK_STREAM = TCP

Connection oriented communication

socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server blocks on
accept() waiting

for a new
connection

Create a connection

Send request data

Send response data

recv() End the
communication

Se
rv

er

C
lie

nt

Bind a socket to an address

!  Thanks to the bind() function the OS will forward
the received packets to the correct process!

!  address is a tuple (host, port) for the AF_INET
address family

"  host is a string representing either a hostname in Internet
domain notation like “www.repubblica.it” or an IPv4 address
like “213.92.16.191”

"  port is an integer

socket.bind(address)

Socket addresses in Python

!  host = “” (i.e., an empty string) specifies all local network
interfaces

!  host = “localhost” specifies the loopback interface
"  A virtual network interface used to manage communication between

processes running on the same machine
"  Bypasses local network interface hardware and lower layers of the

protocol stack
"  Useful for testing and development
"  “localhost” corresponds to the reserved IP address 127.0.0.1

!  Example:

 import socket
 sock = socket.socket(AF_INET, SOCK_STREAM)
 sock.bind(("",9000))
 sock.bind(("localhost",9000))
 sock.bind(("192.168.2.1",9000))

A note on port numbers

!  Managed by Internet Assigned Numbers Authority (IANA)
"  maintains the official assignments of port numbers for specific uses

!  Well-known ports (range 0-1023)
"  Used by system processes that provide widely used network services

"  21 -> FTP, 23 -> Telnet, 25 -> SMTP (Mail), 80 -> HTTP (Web)
"  On Unix OS a process needs root privileges to be able to bind on

these ports

!  Registered ports (range 1024-49151)
"  The IANA registers uses of these ports as a convenience to the Internet

community
"  1863 -> MSNP, 3074 -> Xbox LIVE,

"  Registered ports can be used by ordinary users

!  Dynamic ports (range 49152–65535)
"  They cannot be registered with IANA
"  Used for custom or temporary purposes

listen() function

!  Tells the OS to start listening for connections on the
socket

!  backlog argument specifies the maximum number of
queued connections

"  the maximum value is system-dependent

!  On Linux it refers to the established connections (3-way
handshake completed)

"  Security reason: SYN flood attack

!  If backlog is full, new connection requests can be
ignored or refused by the OS

!  3-way handshake completely managed by the OS

socket.listen(backlog)

Example: a simple server (to be cont’d)

 import socket

 HOST = “”
 PORT = 1060

 sock = socket.socket(AF_INET, SOCK_STREAM)
 sock.bind((HOST,PORT))
 sock.listen(5)

Create
socket

Bind to the
specified
address Start listening for

connections on
the socket

connect() function

!  Connects to a remote socket at address.
!  If a TCP socket is used, connect() tells the OS to start the

3-way handshake
!  address is a tuple (host, port) (for the AF_INET

address family)
!  Example:

 import socket
 sock = socket(AF_INET, SOCK_STREAM)
 sock.connect(("www.python.org", 80)) 	

socket.connect(address)

accept() function

!  It allows the server to take the first established
connection from the backlog

!  If backlog is empty, accept() blocks until a connection is
received

!  Return values:
"  address is the address of the client that connected
"  sock is a new socket, the one actually used to transfer data with

the connected client

sock, address = socket.accept()

Passive and active sockets

!  Server uses two different sockets for each client
connection

!  The passive socket, created by socket()
"  Holds the “socket name” (i.e., the address and port number) at

which the server is ready to receive connections
"  No data can ever be received or sent by this kind of port
"  It does not represent any actual network conversation
"  Used to listen to incoming connections (using listen() function)

!  The active socket, returned by accept()
"  It has the same “socket name” of the passive socket
"  It is bound to one particular remote conversation partner
"  It can be used only for talking back and forth with that partner

Passive and active sockets

!  Problem: there can be many active sockets that all
share the same IP address and port number

" Ex: a busy web server, to which a thousand clients have
made HTTP connections, will have a thousand active sockets
all bound to its public IP address at port 80

!  What makes an active socket unique is a four-tuple:
(local_ip, local_port, remote_ip, remote_port)

!  It is this four-tuple through which the operating system
names and manages each active TCP connection

Accept a new
client

connection

Start an infinite
loop to serve all
clients requests

Example: a simple server (cont’d)

 import socket

 HOST = “”
 PORT = 1060

 sock = socket.socket(AF_INET, SOCK_STREAM)
 sock.bind((HOST,PORT))
 sock.listen(5)
 while 1:
 sock_cli, addr = sock.accept()
 …
 # SERVE THE REQUEST

Send data

!  string represents the data to be sent
!  numBytesSent represents the number of bytes sent
!  NB: applications are responsible for checking that

all data have been sent
"  if only some of the data were transmitted, the application

needs to attempt delivery of the remaining data.

!  TCP considers your outgoing and incoming data as
streams, with no beginning or end

"  It feels free to split them up into packets however it wants!

numBytesSent = socket.send(string[, flags])

Send data

!  After a TCP send(), networking stack will face one of
three situations
!  The data can be immediately accepted by the system

"  send() returns immediately, and it will return the length of your
data string

!  The network card is busy and outgoing internal data buffer
for this socket is full
"  send() blocks, pausing your program until the data can be

accepted
!  The outgoing buffer is almost full

"  send() completes immediately and returns the number of bytes
accepted from the beginning of your data string, but leaves the
rest of the data unprocessed

Send data

!  send() is usually called inside a loop like this…
 bytes_sent = 0
 while bytes_sent < len(message):
 message_remaining = message[bytes_sent:]
 bytes_sent += sock.send(message_remaining) 	

!  …or it is replaced by:

!  It continues to send data from string until either all data
have been sent or an error occurs

!  It is more efficient than the above example, because it is
implemented in C

!  Example: sock.sendall(message)

socket.sendall(string[, flags])

Receive data

!  bufsize is an integer that specifies the maximum
amount of data to be received at once

!  data is a string representing the data received
!  NB: similarly to send(), applications are

responsible for checking that all data have been
received!

!  Unfortunately, we do not have a function similar to
sendall()

data = socket.recv(bufsize[, flags])

Receive data

!  The operating system’s implementation of recv() is
similar to that of send():

"  If no data are available, then recv() blocks and your program
pauses until the data arrive

"  If plenty of data are available in the incoming buffer, then
recv() returns #bufsize bytes

"  If the buffer contains a bit of data, but less than #bufsize,
then you are immediately returned the available data, even
if they are not as much as the requested data

!  recv() returns empty string if there are no more data
" This means that the other end of the connection has been

closed (see next slides)

Receive data

!  Problem: how can we understand if we have
received all the data?

We read data until the
other end of the

connection has been
closed

Receive data: examples

def recv_all(sock, length):

 data = ''
 while 1:
 read_data = sock.recv(length)
 if read_data == ‘’:
 break
 data += read_data
 return data

If the connection is
closed unexpectedly we

raise an error

Receive data: examples

	
	
def recv_all(sock, length):

 data = ''
 while len(data) < length:
 read_data = sock.recv(length - len(data))
 if read_data == ‘’:
 raise EOFError('socket closed’)
 data += read_data
 return data 	

We keep reading until
we receive #length

bytes

import socket

HOST = “”
PORT = 1060

sock = socket.socket(AF_INET, SOCK_STREAM)
sock.bind((HOST,PORT))

 sock.listen(5)
 while 1:

 sock_cli, addr = sock.accept()
 message = recv_all(sock_cli, 16)
 print 'The incoming sixteen-octet message says', repr(message)

 sock_cli.sendall(’Hello World!')
 sock_cli.close()
 print 'Reply sent, socket closed'

Example: a simple server

Close a connection

!  Close the socket
!  All future operations on the socket object will fail
!  Releases the resource associated with a connection

but does not necessarily close the connection
immediately

" Operating system first sends data that are still in the buffer

socket.close()

Close a connection

!  Shut down one or both halves of the connection
! Shut down communication in one direction but without

destroying the socket itself
!  how can be set to:

!  SHUT_RD, further receives are disallowed
!  SHUT_WR, further sends are disallowed
!  SHUT_RDWR: further sends and receives are

disallowed
" NB: It is different from close()

socket.shutdown(how)

Socket options

!  There are many options that can be set to sockets
!  level specify the protocol level

" SOL_SOCKET: generic socket options
" SOL_TCP: TCP socket options

!  optname is the name of the option
" SO_KEEPALIVE: enables the periodic transmission of messages

on a connected socket
" SO_REUSEADDR: enables local address reuse
" SO_SNDTIMEO: set timeout value for output
" SO_RCVTIMEO: set timeout value for input

!  value is the option value (it is option dependant)

socket.setsockopt(level, optname, value)

Example: TCP ECHO server!

Connectionless communication

socket()

bind()

recvfrom()

sendto()

socket()

connect()

sendto()

recvfrom()

bind the
socket to a
well-known

port

Send request

Receive response

Se
rv

er

C
lie

nt

Send data

!  string represents the data to be sent
!  address represents the address of remote host

! Communication is connectionless!!

!  numBytesSent represents the number of bytes sent
!  NB: communication is not reliable!
!  There are no guarantees that the packet is

successfully delivered to remote host

numBytesSent = socket.sendto(string[, flags],
 address)

Receive data

!  bufsize is the maximum amount of data to be
received

!  string represents the received data
!  address represents the address of remote host

! Communication is connectionless!!

!  NB: receives packets from any remote host

string, address = socket.recvfrom(bufsize[, flags])

Example: a simple server

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

MAX = 65535
PORT = 1060

sock.bind(('127.0.0.1', PORT))

while True:
 msg, address = sock.recvfrom(MAX)
 print 'The client at', address, 'says', repr(msg)

 response = ’The msg was %d bytes long' % len(msg)
 sock.sendto(response, address)

Connecting UDP sockets

!  We can use the connect() function with UDP
sockets!

!  We can avoid to specify every time the server
address when we call sendto()

!  Client is not susceptible to receiving packets from
other senders

!  NB: using connect() on an UDP socket does not
send any data over the network!!

Unblock functions

!  Problem: What if the response sent by the server is lost?
!  We do not want to block the client forever…

!  …but it is not easy to understand why the packet has not arrived:
!  The reply is only taking a long time to come back

!  The reply (or the request!) is lost
!  Server is down

socket.settimeout(value)

!  Solution: use a timeout!
!  if #value seconds elapse since the process is blocked,

the OS raises a socket.timeout exception

Example: settimeout()

sock.connect((HOST, PORT))
delay = 0.1
while True:
 sock.send(’Send this message!’)
 sock.settimeout(delay)
 try:
 data = sock.recv(MAX)
 except socket.timeout:
 delay *= 2 # Exponential backoff
 if delay > 2.0:
 raise RuntimeError(’Maybe the server is down')
 else:
 break # we are done

Example: UDP server!

Want to know more?

!  Book:
! Foundations of Python Network Programming, by

Brandon Rhodes and John Goerzen

!  Python official documentation:
! https://docs.python.org/2/library/socket.html
! https://docs.python.org/2/howto/sockets.html

