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Stochastic Process 

 Definition: a stochastic process is a collection of 

random variables {𝑋(𝑡)} indexed by time 𝑡 ∈ 𝑇

 Each 𝑋(𝑡) ∈ 𝑋 is a random variable that satisfy 

some probability law 

 𝑋 is usually called the state space of the process

 A realization of a stochastic process (sample path) 

is a specific sequence 𝑋 𝑡0 = 𝑥0, 𝑋 𝑡1 = 𝑥1,…



Stochastic Process 

 Example: toss a coin an infinite number of times, i.e.,  

𝑡 = 1, 2, 3, …

 𝑋 = {Head, Tail}

 Sample path:

t X(t)

1 Head

2 Head

3 Tail

4 Head



A Simple Classification

 A stochastic process can have:

 The process can be either continuous time, 𝑇 =
0,∞ , or discrete time (𝑇 = ℕ)

A continuous state space, 

i.e., 𝑋 is a continuous set. 

E.g., 𝑋 ⊆ ℝ

A discrete state space, i.e., 

𝑋 is a discrete set 

{𝑥1, 𝑥2, … , 𝑥𝑛}

With a finite number of 

state, i.e., 𝑛 < ∞

With an infinite number of 

state, i.e., 𝑛 = ∞



Examples

 Example 1: the process represents the number of 

people queued at the post office

 𝑋 = {1,… ,∞} discrete state space

 𝑇 = ℝ+ ∪ 0 continuous time

 Example 2: height of a person on his/her birthday

 𝑋 = ℝ continuous state space

 𝑇 = {1, 2, … } discrete time



Stochastic Process Dynamics

 The process dynamics can be defined using the 

transition probabilities

 They specify the stochastic evolution of the process 

through its states

 For a discrete time process, transition probabilities 

can be defined as follows 

𝑃(𝑋𝑘+1 = 𝑥𝑘+1|𝑋𝑘 = 𝑥𝑘, 𝑋𝑘−1 = 𝑥𝑘−1, … , 𝑋0 = 𝑥0)



Stochastic Process Dynamics

 Example: we have a bag with 20 balls. 

 10 are red and 10 are blue

 At time any 𝑡 = 1,2,… , 𝑛, we draw a ball from 

the bag, without replacements

 Question: what is 𝑃(𝑋1 = 𝑟)?

 Question: what is 𝑃(𝑋2 = 𝑟 | 𝑋1= 𝑟)?

 Question: what is 𝑃 𝑋3 = 𝑏 𝑋2 = 𝑟 , 𝑋1= 𝑟)?



Markov Property

 The term Markov property refers to the memoryless
property of a stochastic process:

 For a discrete time process, the Markov property is 
defined as:

𝑃 𝑋𝑘+1 = 𝑥𝑘+1 𝑋𝑘 = 𝑥𝑘, 𝑋𝑘−1 = 𝑥𝑘−1, … , 𝑋0 = 𝑥0
=

𝑷 𝑿𝒌+𝟏 = 𝒙𝒌+𝟏 𝑿𝒌 = 𝒙𝒌)

 Definition: a stochastic process that satisfies the 
Markov property is called Markov process

 If the state space is discrete, we refers to these 
processes as Markov Chains



Time-homogeneous Markov chains

 A Markov chain is time-homogeneous if transition 
probabilities are time-independent

𝑃 𝑋𝑘+1 = 𝑥𝑘+1 𝑋𝑘 = 𝑥𝑘) is the same for all 𝑘

 If the state space is discrete and finite, transition 
probabilities are usually represented using a matrix…

𝑃 =

𝑝1,1 ⋯ 𝑝𝑛,1
⋮ ⋱ ⋮

𝑝𝑛,1 ⋯ 𝑝𝑛,𝑛

 …and the Markov chain can be easily represented 
using a graph!



Example: Student Markov Chain



Transitory Analysis of a Markov Chain

 We can define the state probability as

𝜋𝑗 𝑘 = 𝑃(𝑋𝑘 = 𝑗)

 Definition: it is the probability of finding the process 

in state 𝑗 at time 𝑘

 Simple theory allows us to compute “next step” 

probabilities as

𝜋𝑗 𝑘 + 1 = 

𝑖∈𝑋

𝑃 𝑋𝑘+1 = 𝑗 𝑋𝑘 = 𝑖) ∙ 𝜋𝑖 𝑘



Transitory Analysis of a Markov Chain

 If we consider all states, we can use the vector

𝜋 𝑘 = [𝜋0 𝑘 , 𝜋1 𝑘 , 𝜋2 𝑘 ,… ]

 In matrix notation it becomes

𝜋 𝑘 + 1 = 𝜋(𝑘) ∙ 𝑃

 But, if we know initial probabilities 𝜋 0 , then

𝝅 𝒌 + 𝟏 = 𝝅(𝟎) ∙ 𝑷𝒌



A simple example
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A simple example

Transition Probabilities

𝑃 =
0 0.4 0.6
0.1 0.9 0
0.7 0 0.3

𝜋0(𝑘 + 1) = 0.1𝜋1(𝑘) + 0.7𝜋2(𝑘)
𝜋1(𝑘 + 1) = 0.4𝜋0(𝑘) + 0.9𝜋1(𝑘)
𝜋2(𝑘 + 1) = 0.6𝜋0(𝑘) + 0.3𝜋2(𝑘)
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State Classification

State

Transient Recurrent

Recurrent 

Null

Recurrent 

NON null

Periodic Aperiodic



State Classification
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State Classification
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State Classification
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State Classification
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Simple Exercise

3
4

1

0.9

0.1

0

2
0.6

0.4

0.1

0.9

0.95

0.05

0.7

0.15

0.15



Simple Exercise
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Where do you expect to find 

the Markov chain “on the long 

run”?



Analysis of a DTMC

 Let us define the stationary probability of a DTMC as

𝜋𝑗 = lim
𝑘→∞

𝜋𝑗(𝑘)

 It is the probability to find, on the long run, the DTMC in 

a certain state 𝑗

 Question 1: there exists this steady-state probability?

 Question 2: if any, what is the stationary probability 

that the DTCM is in state 𝑗, i.e., how can I compute it?



Some Definitions…

 A state 𝑗 is said to be accessible from a state 𝑖 (written 
𝑖 → 𝑗) if a system started in state 𝑖 has a non-zero 
probability of transitioning into state 𝑗

 A state 𝑖 is said to communicate with state 𝑗 (written 
𝑖 ↔ 𝑗) if both 𝑖 → 𝑗 and 𝑗 → 𝑖

 A set of states 𝐶 is a communicating class if every 
pair of states in 𝐶 communicates with each other, and 
no state in 𝐶 is communicating with any state not in 𝐶

 A Markov chain is said to be irreducible if its state 
space is a single communicating class



…and some useful results

 Result 1: if a DTMC has a finite number of states, then 
at least one state is recurrent

 Result 2: if 𝑖 is recurrent and 𝑖 → 𝑗, then even state 𝑗 is 
recurrent

 Results 3: if 𝑋′ is an irreducible set of states, then states 
are all positive recurrent, recurrent null or transient

 Results 4: if 𝑋′ is a finite irreducible subset of the state 
space 𝑋, then every state in 𝑋′ is positive recurrent



Analysis of a DTMC

 Theorem 1: in a DTMC irreducible and aperiodic 

there exists the limits

𝜋𝑗 = lim
𝑘→∞

𝜋𝑗(𝑘) , ∀𝑗 ∈ 𝑋

and they are independent from the initial distribution 

𝜋0

 Theorem 2: in a DTMC irreducible and aperiodic in 

which all states are transient or recurrent null 

𝜋𝑗 = lim
𝑘→∞

𝜋𝑗(𝑘) = 0, ∀𝑗 ∈ 𝑋



Existence of steady-state distribution

 Consider a time-homogeneous Markov chain is
irreducible and aperiodic. Then, the following results
hold: 

 If the Markov chain is positive recurrent, then there exists a 
unique 𝜋 so that 𝜋𝑗 = lim

𝑘→∞
𝜋𝑗 𝑘 , ∀𝑗, and 𝜋 = 𝜋 ∙ 𝑃

 If there exists a positive vector 𝜋 such 𝜋 = 𝜋 ∙ 𝑃 and 
 𝑗∈𝑋 𝜋𝑗 = 1, then it must be the stationary distribution and 

the Markov chain is positive recurrent

 If there exists a positive vector 𝜋 such that 𝜋 = 𝜋 ∙ 𝑃 and 
 𝑗∈𝑋 𝜋𝑗 = ∞ is infinite, then a stationary distribution does

not exist and lim
𝑘→∞

𝜋𝑗 𝑘 = 0 for all 𝑗



Analysis of a DTMC

 To sum up: In order to compute the steady-state 

probabilities, we have to solve the following linear 

system:

 

𝝅 = 𝝅 ∙ 𝑷

 

𝒋

𝝅𝒋 = 𝟏



A simple example
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A simple example
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This DTMC is:

• Irreducible

• Aperiodic

• It has a finite number of 
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A simple example

Transition Probabilities

𝑃 =
0 0.4 0.6
0.1 0.9 0
0.7 0 0.3

Linear System

𝜋0 = 0.1𝜋1 + 0.7𝜋2
𝜋1 = 0.4𝜋0 + 0.9𝜋1
𝜋2 = 0.6𝜋0 + 0.3𝜋2
𝜋0 + 𝜋1 + 𝜋2 = 1

Solution

 

𝜋0 = 0.17
𝜋1 = 0.68
𝜋2 = 0.15



Time spent in a state

 Can we characterize the time spent in each state by 

the DTMC?

 Let’s focus on state 1 of the previous example

 With p = 0.1 the DTMC will “jump” to state 0, while 

with 1-p = 0.1 will remain in state 1

 Question: do you remind something similar??

0 1 0.9

0.1



Time spent in a state

 The time spent in a state follows a geometric 
distribution!

 The geometric distribution is used for modelling the 
number of trials up to and including the first success

 𝑝 = success

 1 – 𝑝 = failure

 P(Success in K trials) = 𝑝 ∙ (1 − 𝑝)𝐾

 Key feature of this distribution: the geometric 
distribution is memoryless!!

𝑃 𝑇 = 𝑚 + 𝑛 𝑇 > 𝑚) = 𝑃(𝑇 = 𝑛)



A more complex example

 A discrete time birth-death process

 The DTMC is irreducible 

and aperiodic

0 1 2 i-1 i
i+

1

1 - p 1 - p 1 - p 1 - p

p p p p

p



Birth-death process

 There exists the steady-state probabilities?

 Intuitively

 if p < ½ the DTMC will probably diverge, so maybe states 
are transient

 if p > ½ the DTMC will probably remain “near” 0, so state 
0 could be positive recurrent, and since the DTMC is 
irreducible, all states would be positive recurrent

 if p = ½ the DTMC will probably neither diverge or 
converge, so maybe states are recurrent null

0 1 2 i-1 i
i+

1

1 - p 1 - p 1 - p 1 - p

p p p p

p



Birth-death process solution

CHECK OUT THE DASHBOARD!



Birth-death process solution



Continuous Time Markov Chain (CTMC)

 Let 𝑠 be the current time instant and 𝝉 an arbitrary 

time interval

 Markov property for continuous time MC

𝑷 𝑿(𝒔 + 𝝉) = 𝒋 𝑿(𝒔) = 𝒊)

 No state memory: next state depends only on the 

current state, and not on all history

 No age memory: the time already spent in the 

current state is irrelevant to determining the 

remaining time and the next state



DTMC versus CTMC

 The core of Discrete Time MC is the probability matrix 

𝑃

 Remember: It defines the probability to “jump” to another 

state in the next slot

 The core of a Continuous Time MC is the rate matrix 𝑄

 It defines the rate at which the process transits from 

one state to another

 E.g., the MC transits from state 0 to state 1 with a rate 

of 5 times per seconds



Homogeneous CTMC

A CTMC is said to be homogeneous if

𝑷 𝑿(𝒔 + 𝝉) = 𝒋 𝑿(𝒔) = 𝒊)

is independent from 𝒔, i.e., only the “time interval” 𝝉
matters



Design a CTMC
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Design a CTMC
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Existence of steady state distribution

 Consider a time-homogeneous Markov chain is 

irreducible and aperiodic. Then, the following results 

hold: 

 If the Markov chain is positive recurrent, then there exists 

a unique 𝜋 so that 𝜋𝑄 = 0 and 𝜋𝑗 = lim
𝑘→∞

𝜋𝑗 𝑘 , ∀𝑗

 If there exists a positive vector 𝜋 such 𝜋𝑄 = 0 and 

 𝑗∈𝑋 𝜋𝑗 = 1, then it must be the stationary distribution 

and the Markov chain is positive recurrent 



Analysis of a CTMC

 To sum up: In order to compute the steady-state 

probabilities, we have to solve the following linear 

system:

𝝅 ∙ 𝑸 = 𝟎

 

𝒋

𝝅𝒋 = 𝟏



 Flow equilibrium 

equations!

Example

0 1
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−6𝜋0 + 3𝜋1 + 4𝜋2 = 0
5𝜋0 − 11𝜋1 + 2𝜋2 = 0
𝜋0 + 8𝜋1 − 6𝜋2 = 0

𝑄 =
−6 5 1
3 −11 8
4 2 −6



Time spent in a state

 If 𝑣(𝑖) is the time spent in state 𝑖, for CTMC it 

follows an exponential distribution:

𝑷 𝒗 𝒋 < 𝒕 = 𝟏 − 𝒆−𝚲 𝒋 𝒕

where 𝚲 𝒋 is the exit rate from state 𝑗

 Memoryless property: the exponential distribution is 

memoryless!



Exercise: model a wireless link using a 

DTMC

Consider a simple model of a wireless link where, due to channel 
conditions, either one packet or no packet can be served in each time 
slot. Let 𝑠[𝑘] denote the number of packets served in time slot 𝑘 and 
suppose that 𝑠[𝑘] are i.i.d. Bernoulli random variables with mean 𝜇. 
Further, suppose that packets arrive to this wireless link according to a 
Bernoulli process with mean 𝜆, i.e., 𝑎[𝑘] is Bernoulli with mean 𝜆 where 
𝑎[𝑘] is the number of arrivals in time slot 𝑘 and 𝑎[𝑘] are i.i.d. across 
time slots. Assume that 𝑎[𝑘] and 𝑠[𝑘] are independent processes. 

We specify the following order in which events occur in each time slot: 

 We assume that any packet arrival occurs first in the time slot, 
followed by any packet departure, i.e., a packet that arrives in a 
time slot can be served in the same time slot

 Packets that are not served in a time slot are queued in a buffer for 
service in a future time slot. 

Compute, if exists, the steady-state distribution.


