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Stochastic Process 

 Definition: a stochastic process is a collection of 

random variables {𝑋(𝑡)} indexed by time 𝑡 ∈ 𝑇

 Each 𝑋(𝑡) ∈ 𝑋 is a random variable that satisfy 

some probability law 

 𝑋 is usually called the state space of the process

 A realization of a stochastic process (sample path) 

is a specific sequence 𝑋 𝑡0 = 𝑥0, 𝑋 𝑡1 = 𝑥1,…



Stochastic Process 

 Example: toss a coin an infinite number of times, i.e.,  

𝑡 = 1, 2, 3, …

 𝑋 = {Head, Tail}

 Sample path:

t X(t)

1 Head

2 Head

3 Tail

4 Head



A Simple Classification

 A stochastic process can have:

 The process can be either continuous time, 𝑇 =
0,∞ , or discrete time (𝑇 = ℕ)

A continuous state space, 

i.e., 𝑋 is a continuous set. 

E.g., 𝑋 ⊆ ℝ

A discrete state space, i.e., 

𝑋 is a discrete set 

{𝑥1, 𝑥2, … , 𝑥𝑛}

With a finite number of 

state, i.e., 𝑛 < ∞

With an infinite number of 

state, i.e., 𝑛 = ∞



Examples

 Example 1: the process represents the number of 

people queued at the post office

 𝑋 = {1,… ,∞} discrete state space

 𝑇 = ℝ+ ∪ 0 continuous time

 Example 2: height of a person on his/her birthday

 𝑋 = ℝ continuous state space

 𝑇 = {1, 2, … } discrete time



Stochastic Process Dynamics

 The process dynamics can be defined using the 

transition probabilities

 They specify the stochastic evolution of the process 

through its states

 For a discrete time process, transition probabilities 

can be defined as follows 

𝑃(𝑋𝑘+1 = 𝑥𝑘+1|𝑋𝑘 = 𝑥𝑘, 𝑋𝑘−1 = 𝑥𝑘−1, … , 𝑋0 = 𝑥0)



Stochastic Process Dynamics

 Example: we have a bag with 20 balls. 

 10 are red and 10 are blue

 At time any 𝑡 = 1,2,… , 𝑛, we draw a ball from 

the bag, without replacements

 Question: what is 𝑃(𝑋1 = 𝑟)?

 Question: what is 𝑃(𝑋2 = 𝑟 | 𝑋1= 𝑟)?

 Question: what is 𝑃 𝑋3 = 𝑏 𝑋2 = 𝑟 , 𝑋1= 𝑟)?



Markov Property

 The term Markov property refers to the memoryless
property of a stochastic process:

 For a discrete time process, the Markov property is 
defined as:

𝑃 𝑋𝑘+1 = 𝑥𝑘+1 𝑋𝑘 = 𝑥𝑘, 𝑋𝑘−1 = 𝑥𝑘−1, … , 𝑋0 = 𝑥0
=

𝑷 𝑿𝒌+𝟏 = 𝒙𝒌+𝟏 𝑿𝒌 = 𝒙𝒌)

 Definition: a stochastic process that satisfies the 
Markov property is called Markov process

 If the state space is discrete, we refers to these 
processes as Markov Chains



Time-homogeneous Markov chains

 A Markov chain is time-homogeneous if transition 
probabilities are time-independent

𝑃 𝑋𝑘+1 = 𝑥𝑘+1 𝑋𝑘 = 𝑥𝑘) is the same for all 𝑘

 If the state space is discrete and finite, transition 
probabilities are usually represented using a matrix…

𝑃 =

𝑝1,1 ⋯ 𝑝𝑛,1
⋮ ⋱ ⋮

𝑝𝑛,1 ⋯ 𝑝𝑛,𝑛

 …and the Markov chain can be easily represented 
using a graph!



Example: Student Markov Chain



Transitory Analysis of a Markov Chain

 We can define the state probability as

𝜋𝑗 𝑘 = 𝑃(𝑋𝑘 = 𝑗)

 Definition: it is the probability of finding the process 

in state 𝑗 at time 𝑘

 Simple theory allows us to compute “next step” 

probabilities as

𝜋𝑗 𝑘 + 1 = 

𝑖∈𝑋

𝑃 𝑋𝑘+1 = 𝑗 𝑋𝑘 = 𝑖) ∙ 𝜋𝑖 𝑘



Transitory Analysis of a Markov Chain

 If we consider all states, we can use the vector

𝜋 𝑘 = [𝜋0 𝑘 , 𝜋1 𝑘 , 𝜋2 𝑘 ,… ]

 In matrix notation it becomes

𝜋 𝑘 + 1 = 𝜋(𝑘) ∙ 𝑃

 But, if we know initial probabilities 𝜋 0 , then

𝝅 𝒌 + 𝟏 = 𝝅(𝟎) ∙ 𝑷𝒌



A simple example
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A simple example

Transition Probabilities

𝑃 =
0 0.4 0.6
0.1 0.9 0
0.7 0 0.3

𝜋0(𝑘 + 1) = 0.1𝜋1(𝑘) + 0.7𝜋2(𝑘)
𝜋1(𝑘 + 1) = 0.4𝜋0(𝑘) + 0.9𝜋1(𝑘)
𝜋2(𝑘 + 1) = 0.6𝜋0(𝑘) + 0.3𝜋2(𝑘)
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State Classification

State

Transient Recurrent

Recurrent 

Null

Recurrent 

NON null

Periodic Aperiodic



State Classification
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State Classification
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State Classification
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State Classification
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Simple Exercise
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Simple Exercise
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Where do you expect to find 

the Markov chain “on the long 

run”?



Analysis of a DTMC

 Let us define the stationary probability of a DTMC as

𝜋𝑗 = lim
𝑘→∞

𝜋𝑗(𝑘)

 It is the probability to find, on the long run, the DTMC in 

a certain state 𝑗

 Question 1: there exists this steady-state probability?

 Question 2: if any, what is the stationary probability 

that the DTCM is in state 𝑗, i.e., how can I compute it?



Some Definitions…

 A state 𝑗 is said to be accessible from a state 𝑖 (written 
𝑖 → 𝑗) if a system started in state 𝑖 has a non-zero 
probability of transitioning into state 𝑗

 A state 𝑖 is said to communicate with state 𝑗 (written 
𝑖 ↔ 𝑗) if both 𝑖 → 𝑗 and 𝑗 → 𝑖

 A set of states 𝐶 is a communicating class if every 
pair of states in 𝐶 communicates with each other, and 
no state in 𝐶 is communicating with any state not in 𝐶

 A Markov chain is said to be irreducible if its state 
space is a single communicating class



…and some useful results

 Result 1: if a DTMC has a finite number of states, then 
at least one state is recurrent

 Result 2: if 𝑖 is recurrent and 𝑖 → 𝑗, then even state 𝑗 is 
recurrent

 Results 3: if 𝑋′ is an irreducible set of states, then states 
are all positive recurrent, recurrent null or transient

 Results 4: if 𝑋′ is a finite irreducible subset of the state 
space 𝑋, then every state in 𝑋′ is positive recurrent



Analysis of a DTMC

 Theorem 1: in a DTMC irreducible and aperiodic 

there exists the limits

𝜋𝑗 = lim
𝑘→∞

𝜋𝑗(𝑘) , ∀𝑗 ∈ 𝑋

and they are independent from the initial distribution 

𝜋0

 Theorem 2: in a DTMC irreducible and aperiodic in 

which all states are transient or recurrent null 

𝜋𝑗 = lim
𝑘→∞

𝜋𝑗(𝑘) = 0, ∀𝑗 ∈ 𝑋



Existence of steady-state distribution

 Consider a time-homogeneous Markov chain is
irreducible and aperiodic. Then, the following results
hold: 

 If the Markov chain is positive recurrent, then there exists a 
unique 𝜋 so that 𝜋𝑗 = lim

𝑘→∞
𝜋𝑗 𝑘 , ∀𝑗, and 𝜋 = 𝜋 ∙ 𝑃

 If there exists a positive vector 𝜋 such 𝜋 = 𝜋 ∙ 𝑃 and 
 𝑗∈𝑋 𝜋𝑗 = 1, then it must be the stationary distribution and 

the Markov chain is positive recurrent

 If there exists a positive vector 𝜋 such that 𝜋 = 𝜋 ∙ 𝑃 and 
 𝑗∈𝑋 𝜋𝑗 = ∞ is infinite, then a stationary distribution does

not exist and lim
𝑘→∞

𝜋𝑗 𝑘 = 0 for all 𝑗



Analysis of a DTMC

 To sum up: In order to compute the steady-state 

probabilities, we have to solve the following linear 

system:

 

𝝅 = 𝝅 ∙ 𝑷

 

𝒋

𝝅𝒋 = 𝟏



A simple example

0 1

2

0.3

0.9

0.1

0.4

0.6
0.7



A simple example

0 1
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This DTMC is:

• Irreducible

• Aperiodic

• It has a finite number of 
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A simple example

Transition Probabilities

𝑃 =
0 0.4 0.6
0.1 0.9 0
0.7 0 0.3

Linear System

𝜋0 = 0.1𝜋1 + 0.7𝜋2
𝜋1 = 0.4𝜋0 + 0.9𝜋1
𝜋2 = 0.6𝜋0 + 0.3𝜋2
𝜋0 + 𝜋1 + 𝜋2 = 1

Solution

 

𝜋0 = 0.17
𝜋1 = 0.68
𝜋2 = 0.15



Time spent in a state

 Can we characterize the time spent in each state by 

the DTMC?

 Let’s focus on state 1 of the previous example

 With p = 0.1 the DTMC will “jump” to state 0, while 

with 1-p = 0.1 will remain in state 1

 Question: do you remind something similar??

0 1 0.9

0.1



Time spent in a state

 The time spent in a state follows a geometric 
distribution!

 The geometric distribution is used for modelling the 
number of trials up to and including the first success

 𝑝 = success

 1 – 𝑝 = failure

 P(Success in K trials) = 𝑝 ∙ (1 − 𝑝)𝐾

 Key feature of this distribution: the geometric 
distribution is memoryless!!

𝑃 𝑇 = 𝑚 + 𝑛 𝑇 > 𝑚) = 𝑃(𝑇 = 𝑛)



A more complex example

 A discrete time birth-death process

 The DTMC is irreducible 

and aperiodic

0 1 2 i-1 i
i+

1

1 - p 1 - p 1 - p 1 - p

p p p p

p



Birth-death process

 There exists the steady-state probabilities?

 Intuitively

 if p < ½ the DTMC will probably diverge, so maybe states 
are transient

 if p > ½ the DTMC will probably remain “near” 0, so state 
0 could be positive recurrent, and since the DTMC is 
irreducible, all states would be positive recurrent

 if p = ½ the DTMC will probably neither diverge or 
converge, so maybe states are recurrent null

0 1 2 i-1 i
i+

1

1 - p 1 - p 1 - p 1 - p

p p p p

p



Birth-death process solution

CHECK OUT THE DASHBOARD!



Birth-death process solution



Continuous Time Markov Chain (CTMC)

 Let 𝑠 be the current time instant and 𝝉 an arbitrary 

time interval

 Markov property for continuous time MC

𝑷 𝑿(𝒔 + 𝝉) = 𝒋 𝑿(𝒔) = 𝒊)

 No state memory: next state depends only on the 

current state, and not on all history

 No age memory: the time already spent in the 

current state is irrelevant to determining the 

remaining time and the next state



DTMC versus CTMC

 The core of Discrete Time MC is the probability matrix 

𝑃

 Remember: It defines the probability to “jump” to another 

state in the next slot

 The core of a Continuous Time MC is the rate matrix 𝑄

 It defines the rate at which the process transits from 

one state to another

 E.g., the MC transits from state 0 to state 1 with a rate 

of 5 times per seconds



Homogeneous CTMC

A CTMC is said to be homogeneous if

𝑷 𝑿(𝒔 + 𝝉) = 𝒋 𝑿(𝒔) = 𝒊)

is independent from 𝒔, i.e., only the “time interval” 𝝉
matters



Design a CTMC
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Design a CTMC
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Existence of steady state distribution

 Consider a time-homogeneous Markov chain is 

irreducible and aperiodic. Then, the following results 

hold: 

 If the Markov chain is positive recurrent, then there exists 

a unique 𝜋 so that 𝜋𝑄 = 0 and 𝜋𝑗 = lim
𝑘→∞

𝜋𝑗 𝑘 , ∀𝑗

 If there exists a positive vector 𝜋 such 𝜋𝑄 = 0 and 

 𝑗∈𝑋 𝜋𝑗 = 1, then it must be the stationary distribution 

and the Markov chain is positive recurrent 



Analysis of a CTMC

 To sum up: In order to compute the steady-state 

probabilities, we have to solve the following linear 

system:

𝝅 ∙ 𝑸 = 𝟎

 

𝒋

𝝅𝒋 = 𝟏



 Flow equilibrium 

equations!

Example

0 1

2 2

8

3
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4

 

−6𝜋0 + 3𝜋1 + 4𝜋2 = 0
5𝜋0 − 11𝜋1 + 2𝜋2 = 0
𝜋0 + 8𝜋1 − 6𝜋2 = 0

𝑄 =
−6 5 1
3 −11 8
4 2 −6



Time spent in a state

 If 𝑣(𝑖) is the time spent in state 𝑖, for CTMC it 

follows an exponential distribution:

𝑷 𝒗 𝒋 < 𝒕 = 𝟏 − 𝒆−𝚲 𝒋 𝒕

where 𝚲 𝒋 is the exit rate from state 𝑗

 Memoryless property: the exponential distribution is 

memoryless!



Exercise: model a wireless link using a 

DTMC

Consider a simple model of a wireless link where, due to channel 
conditions, either one packet or no packet can be served in each time 
slot. Let 𝑠[𝑘] denote the number of packets served in time slot 𝑘 and 
suppose that 𝑠[𝑘] are i.i.d. Bernoulli random variables with mean 𝜇. 
Further, suppose that packets arrive to this wireless link according to a 
Bernoulli process with mean 𝜆, i.e., 𝑎[𝑘] is Bernoulli with mean 𝜆 where 
𝑎[𝑘] is the number of arrivals in time slot 𝑘 and 𝑎[𝑘] are i.i.d. across 
time slots. Assume that 𝑎[𝑘] and 𝑠[𝑘] are independent processes. 

We specify the following order in which events occur in each time slot: 

 We assume that any packet arrival occurs first in the time slot, 
followed by any packet departure, i.e., a packet that arrives in a 
time slot can be served in the same time slot

 Packets that are not served in a time slot are queued in a buffer for 
service in a future time slot. 

Compute, if exists, the steady-state distribution.


