MARKOV PROCESSES

Valerio Di Valerio

Stochastic Process

□ <u>Definition</u>: a stochastic process is a collection of random variables $\{X(t)\}$ indexed by time $t \in T$

- \square Each $X(t) \in X$ is a random variable that satisfy some probability law
- \square X is usually called the state space of the process
- □ A realization of a stochastic process (sample path) is a specific sequence $X(t_0) = x_0$, $X(t_1) = x_1$,...

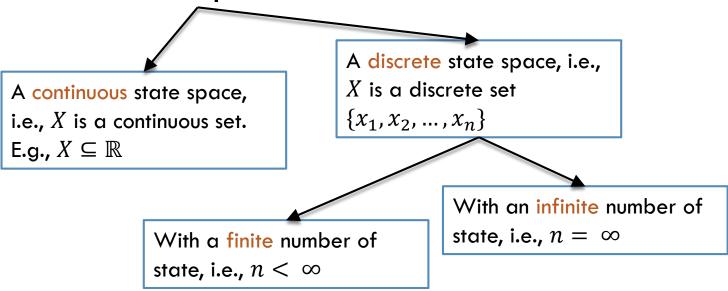
Stochastic Process

- □ Example: toss a coin an infinite number of times, i.e., t = 1, 2, 3, ...
- $\square X = \{ \text{Head, Tail} \}$
- Sample path:

t	X(t)
1	Head
2	Head
3	Tail
4	Head

A Simple Classification

A stochastic process can have:



□ The process can be either continuous time, $T = [0, \infty)$, or discrete time ($T = \mathbb{N}$)

Examples

- Example 1: the process represents the number of people queued at the post office
 - $\square X = \{1, \dots, \infty\}$

discrete state space

 $\Box T = \mathbb{R}^+ \cup 0$

continuous time

- □ Example 2: height of a person on his/her birthday
 - $\square X = \mathbb{R}$

continuous state space

 $T = \{1, 2, ...\}$

discrete time

Stochastic Process Dynamics

- The process dynamics can be defined using the transition probabilities
- They specify the stochastic evolution of the process through its states
- For a discrete time process, transition probabilities can be defined as follows

$$P(X_{k+1} = x_{k+1} | X_k = x_k, X_{k-1} = x_{k-1}, ..., X_0 = x_0)$$

Stochastic Process Dynamics

- Example: we have a bag with 20 balls.
 - 10 are red and 10 are blue
- □ At time any t = 1, 2, ..., n, we draw a ball from the bag, without replacements
- \square Question: what is $P(X_1 = r)$?
- \square Question: what is $P(X_2 = r \mid X_1 = r)$?
- \square Question: what is $P(X_3 = b \mid X_2 = r)$?

Markov Property

- □ The term Markov property refers to the memoryless property of a stochastic process:
- For a discrete time process, the Markov property is defined as:

$$P(X_{k+1} = x_{k+1} | X_k = x_k, X_{k-1} = x_{k-1}, ..., X_0 = x_0)$$

$$=$$

$$P(X_{k+1} = x_{k+1} | X_k = x_k)$$

- Definition: a stochastic process that satisfies the Markov property is called Markov process
- If the state space is discrete, we refers to these processes as Markov Chains

Time-homogeneous Markov chains

 A Markov chain is time-homogeneous if transition probabilities are time-independent

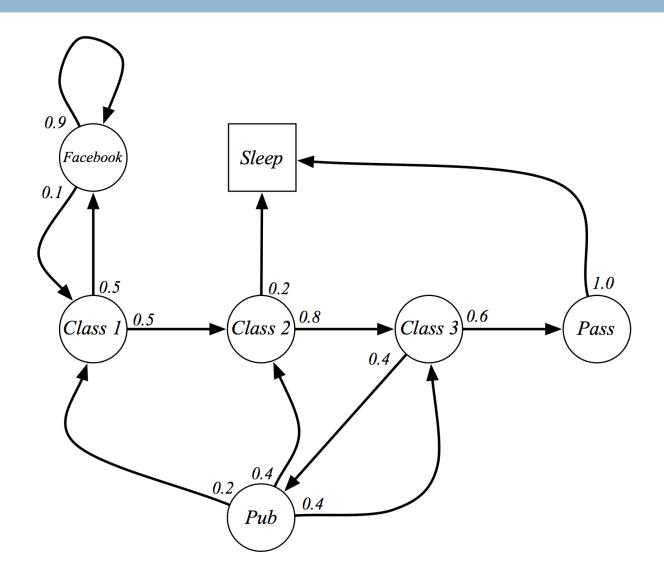
$$P(X_{k+1} = x_{k+1} \mid X_k = x_k)$$
 is the same for all k

If the state space is discrete and finite, transition probabilities are usually represented using a matrix...

$$P = \begin{bmatrix} p_{1,1} & \cdots & p_{n,1} \\ \vdots & \ddots & \vdots \\ p_{n,1} & \cdots & p_{n,n} \end{bmatrix}$$

using a graph!

Example: Student Markov Chain



Transitory Analysis of a Markov Chain

□ We can define the state probability as $\pi_i(k) = P(X_k = j)$

- lacksquare Definition: it is the probability of finding the process in state j at time k
- Simple theory allows us to compute "next step" probabilities as

$$\pi_j(k+1) = \sum_{i \in X} P(X_{k+1} = j \mid X_k = i) \cdot \pi_i(k)$$

Transitory Analysis of a Markov Chain

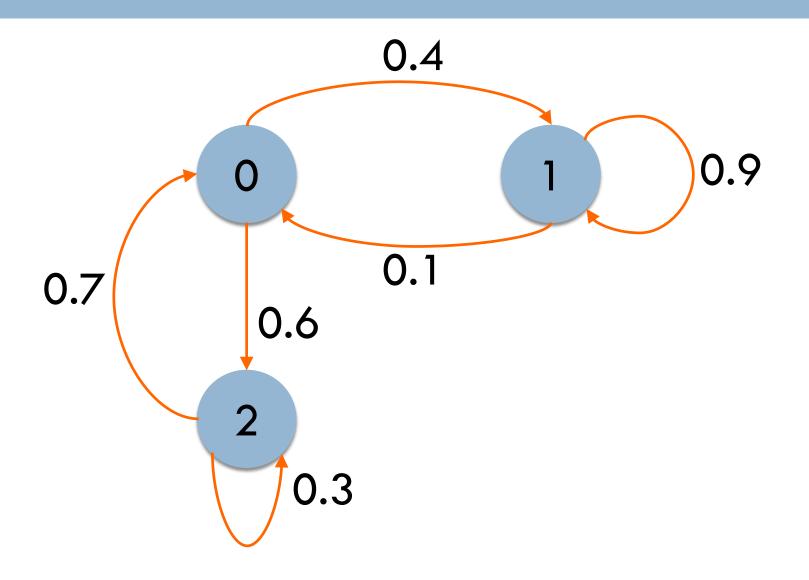
 \Box If we consider all states, we can use the vector $\pi(k) = [\pi_0(k), \pi_1(k), \pi_2(k), \dots]$

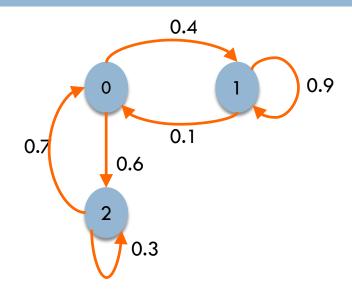
In matrix notation it becomes

$$\pi(k+1) = \pi(k) \cdot P$$

 \square But, if we know initial probabilities $\pi(0)$, then

$$\pi(k+1) = \pi(0) \cdot P^k$$

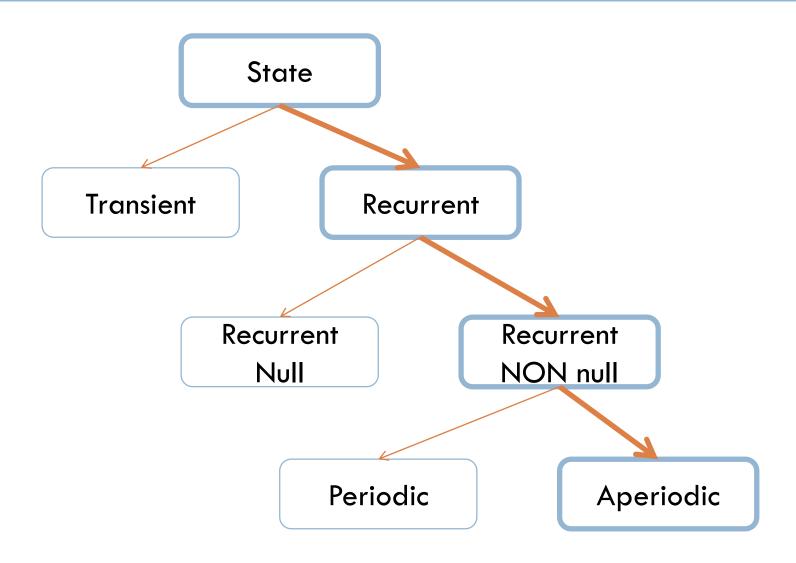


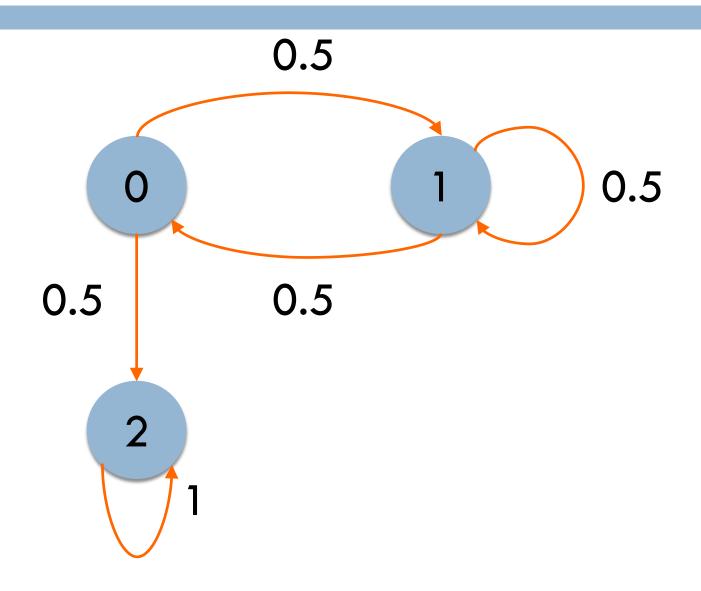


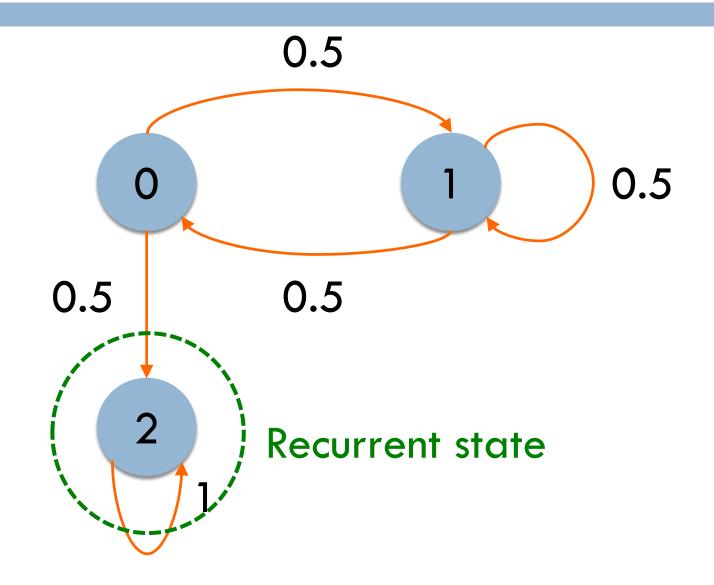
Transition Probabilities

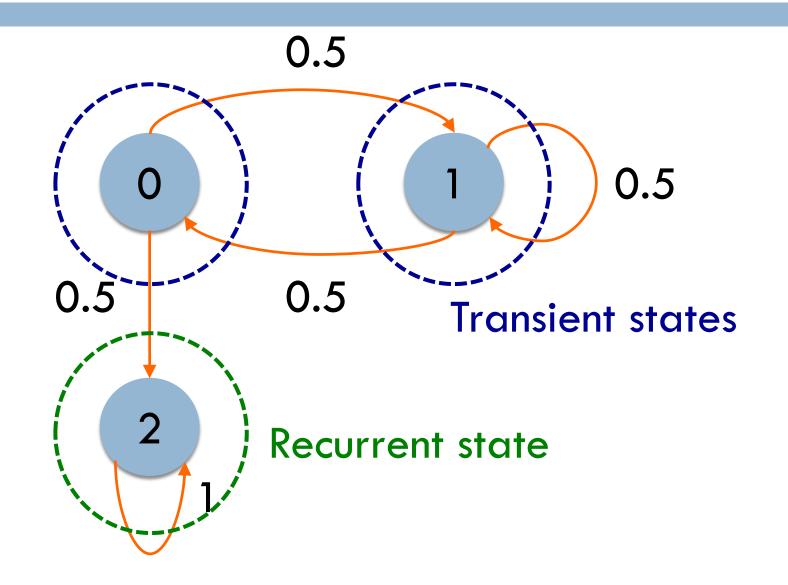
$$P = \begin{bmatrix} 0 & 0.4 & 0.6 \\ 0.1 & 0.9 & 0 \\ 0.7 & 0 & 0.3 \end{bmatrix}$$

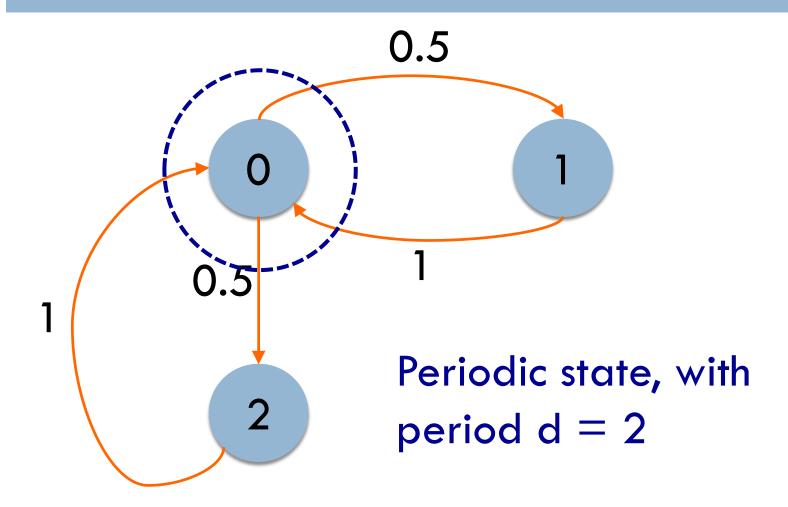
$$\begin{cases} \pi_0(k+1) = 0.1\pi_1(k) + 0.7\pi_2(k) \\ \pi_1(k+1) = 0.4\pi_0(k) + 0.9\pi_1(k) \\ \pi_2(k+1) = 0.6\pi_0(k) + 0.3\pi_2(k) \end{cases}$$



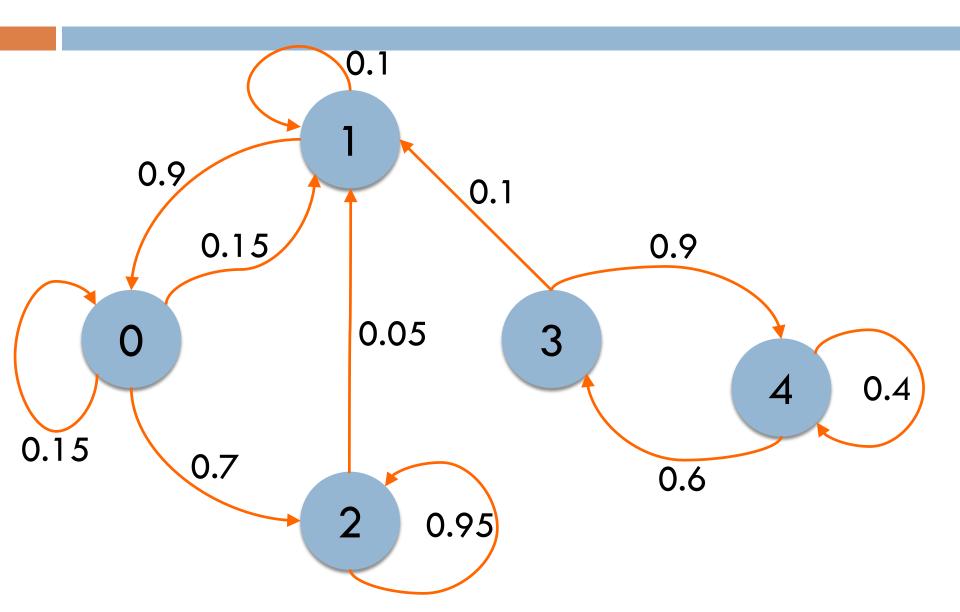




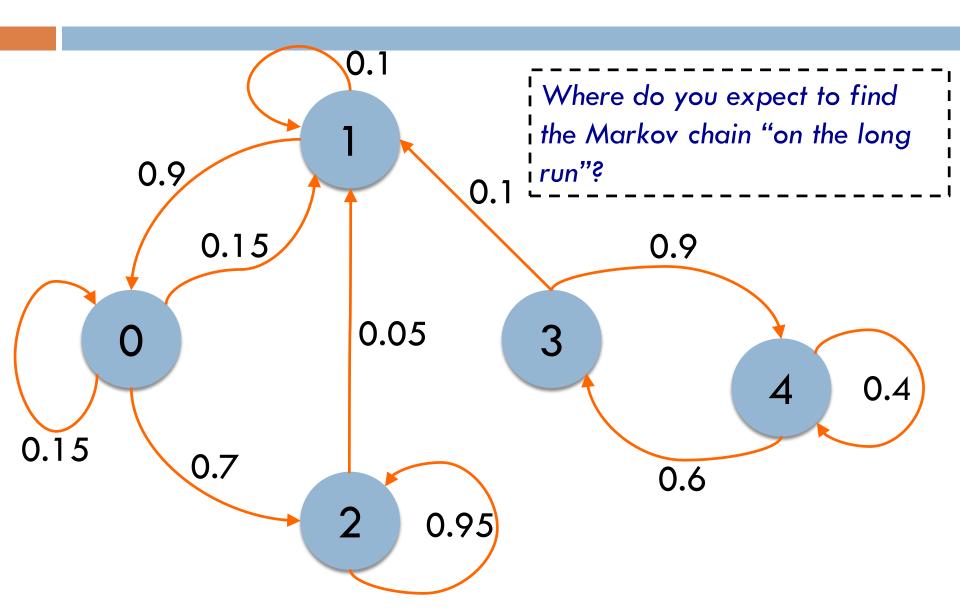




Simple Exercise



Simple Exercise



Analysis of a DTMC

Let us define the stationary probability of a DTMC as

$$\pi_j = \lim_{k \to \infty} \pi_j(k)$$

 $\ \square$ It is the probability to find, on the long run, the DTMC in a certain state j

- Question 1: there exists this steady-state probability?
- \square Question 2: if any, what is the stationary probability that the DTCM is in state j, i.e., how can I compute it?

Some Definitions...

- □ A state j is said to be **accessible** from a state i (written $i \rightarrow j$) if a system started in state i has a non-zero probability of transitioning into state j
- □ A state i is said to **communicate** with state j (written $i \leftrightarrow j$) if both $i \rightarrow j$ and $j \rightarrow i$
- \square A set of states C is a **communicating class** if every pair of states in C communicates with each other, and no state in C is communicating with any state not in C
- A Markov chain is said to be irreducible if its state space is a single communicating class

...and some useful results

- Result 1: if a DTMC has a <u>finite</u> number of states, then at least one state is **recurrent**
- □ Result 2: if i is recurrent and $i \rightarrow j$, then even state j is recurrent
- lacktriangle Results 3: if X' is an irreducible set of states, then states are **all** positive recurrent, recurrent null or transient
- \square Results 4: if X' is a <u>finite</u> irreducible subset of the state space X, then every state in X' is **positive recurrent**

Analysis of a DTMC

Theorem 1: in a DTMC irreducible and aperiodic there exists the limits

$$\pi_j = \lim_{k \to \infty} \pi_j(k)$$
, $\forall j \in X$

and they are independent from the initial distribution π_0

Theorem 2: in a DTMC irreducible and aperiodic in which all states are transient or recurrent null

$$\pi_j = \lim_{k \to \infty} \pi_j(k) = 0, \forall j \in X$$

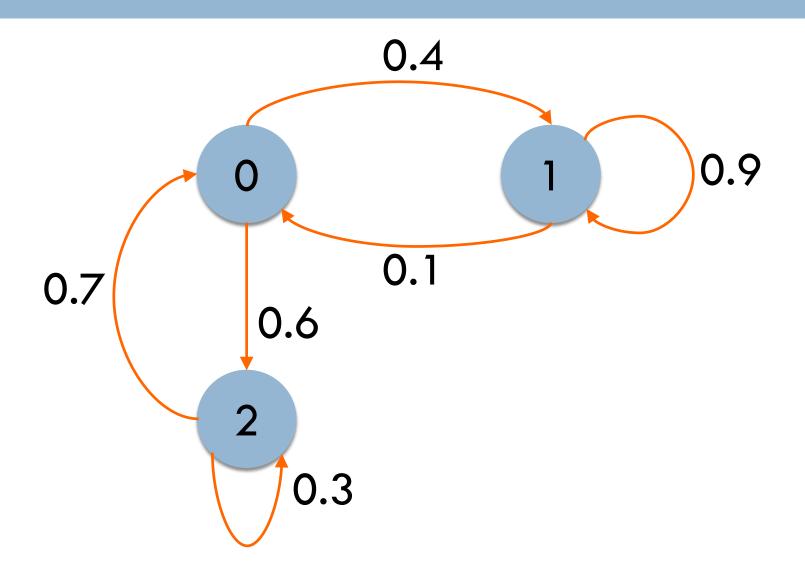
Existence of steady-state distribution

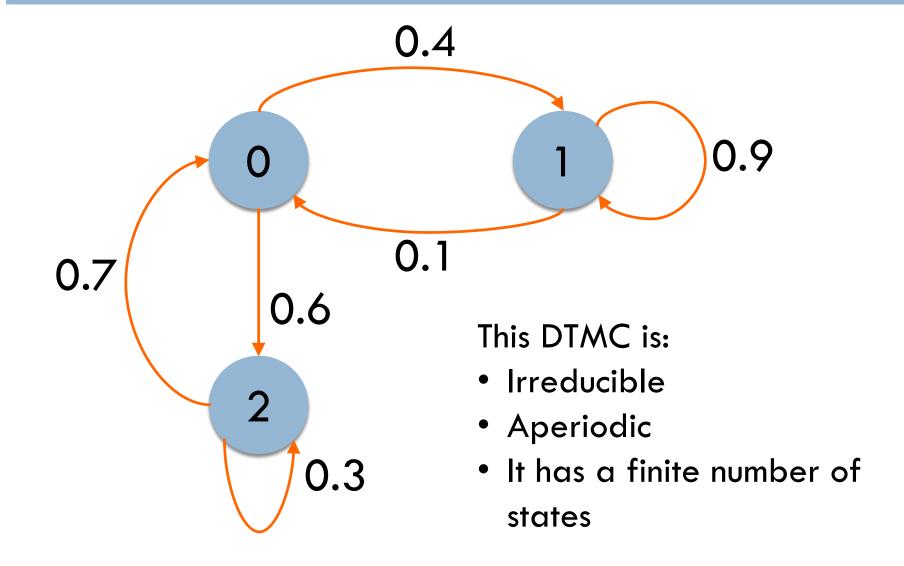
- Consider a time-homogeneous Markov chain is irreducible and aperiodic. Then, the following results hold:
 - If the Markov chain is positive recurrent, then there exists a unique π so that $\pi_j = \lim_{k \to \infty} \pi_j(k)$, $\forall j$, and $\pi = \pi \cdot P$
 - If there exists a positive vector π such $\pi = \pi \cdot P$ and $\sum_{j \in X} \pi_j = 1$, then it must be the stationary distribution and the Markov chain is positive recurrent
 - If there exists a positive vector π such that $\pi = \pi \cdot P$ and $\sum_{j \in X} \pi_j = \infty$ is infinite, then a stationary distribution does not exist and $\lim_{k \to \infty} \pi_j(k) = 0$ for all j

Analysis of a DTMC

To sum up: In order to compute the steady-state probabilities, we have to solve the following linear system:

$$\begin{cases} \pi = \pi \cdot P \\ \sum_{j} \pi_{j} = 1 \end{cases}$$





Linear System

$$\begin{cases} \pi_0 = 0.1\pi_1 + 0.7\pi_2 \\ \pi_1 = 0.4\pi_0 + 0.9\pi_1 \\ \pi_2 = 0.6\pi_0 + 0.3\pi_2 \\ \pi_0 + \pi_1 + \pi_2 = 1 \end{cases}$$

Transition Probabilities

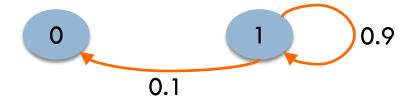
$$P = \begin{bmatrix} 0 & 0.4 & 0.6 \\ 0.1 & 0.9 & 0 \\ 0.7 & 0 & 0.3 \end{bmatrix}$$

Solution

$$\begin{cases} \pi_0 = 0.17 \\ \pi_1 = 0.68 \\ \pi_2 = 0.15 \end{cases}$$

Time spent in a state

- Can we characterize the time spent in each state by the DTMC?
- Let's focus on state 1 of the previous example



- □ With p = 0.1 the DTMC will "jump" to state 0, while with 1 p = 0.1 will remain in state 1
- Question: do you remind something similar??

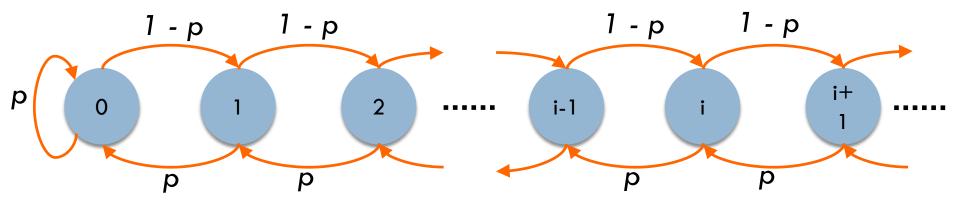
Time spent in a state

- The time spent in a state follows a geometric distribution!
- The geometric distribution is used for modelling the number of trials up to and including the first success
 - p = success
 - $\blacksquare 1 p = failure$
 - $P(Success in K trials) = p \cdot (1 p)^{K}$
- Key feature of this distribution: the geometric distribution is memoryless!!

$$P(T = m + n \mid T > m) = P(T = n)$$

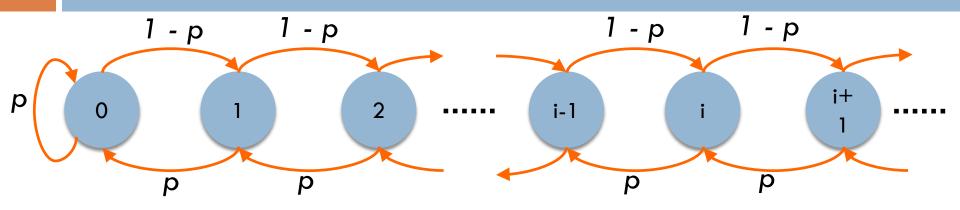
A more complex example

A discrete time birth-death process



The DTMC is irreducible and aperiodic

Birth-death process

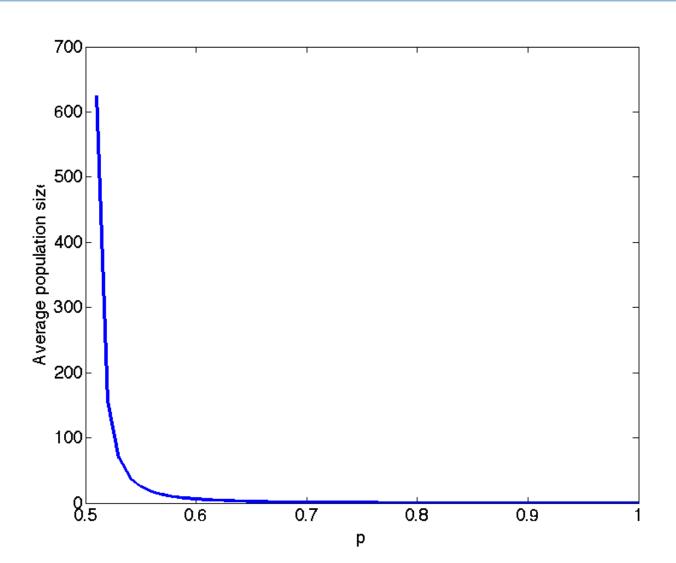


- There exists the steady-state probabilities?
- Intuitively
 - if $p < \frac{1}{2}$ the DTMC will probably diverge, so maybe states are <u>transient</u>
 - if $p > \frac{1}{2}$ the DTMC will probably remain "near" 0, so state 0 could be positive recurrent, and since the DTMC is irreducible, all states would be positive <u>recurrent</u>
 - if $p = \frac{1}{2}$ the DTMC will probably neither diverge or converge, so maybe states are <u>recurrent null</u>

Birth-death process solution

CHECK OUT THE DASHBOARD!

Birth-death process solution



Continuous Time Markov Chain (CTMC)

- lacksquare Let s be the current time instant and $oldsymbol{ au}$ an arbitrary time interval
- Markov property for continuous time MC

$$P(X(s+\tau)=j\mid X(s)=i)$$

- No state memory: next state depends only on the current state, and not on all history
- No age memory: the time already spent in the current state is <u>irrelevant</u> to determining the remaining time and the next state

DTMC versus CTMC

- The core of Discrete Time MC is the probability matrix
 P
 - Remember: It defines the probability to "jump" to another state in the next slot
- $lue{}$ The core of a Continuous Time MC is the rate matrix Q
- It defines the rate at which the process transits from one state to another
- E.g., the MC transits from state 0 to state 1 with a rate of 5 times per seconds

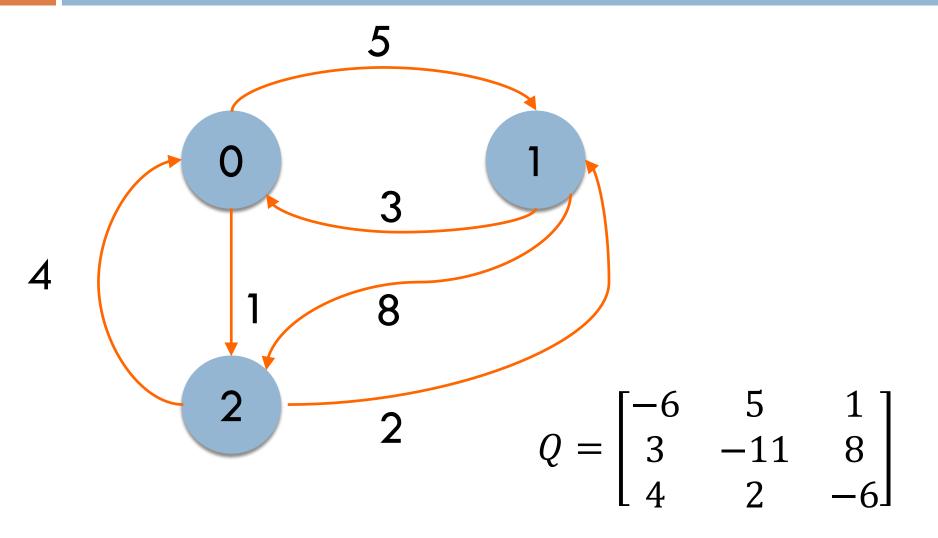
Homogeneous CTMC

A CTMC is said to be homogeneous if

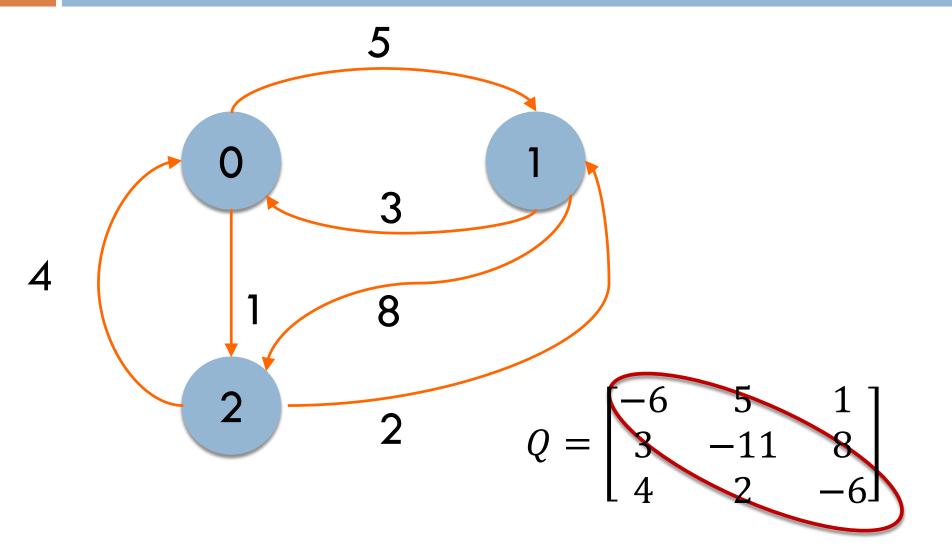
$$P(X(s+\tau)=j\mid X(s)=i)$$

is independent from s, i.e., only the "time interval" au matters

Design a CTMC



Design a CTMC



Existence of steady state distribution

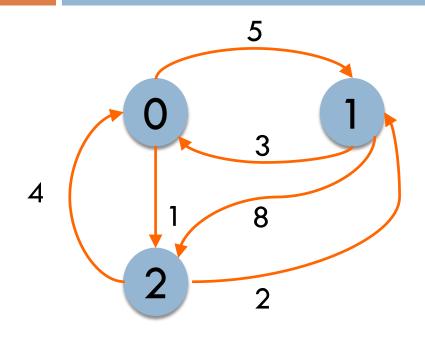
- Consider a time-homogeneous Markov chain is irreducible and aperiodic. Then, the following results hold:
 - If the Markov chain is positive recurrent, then there exists a unique π so that $\pi Q=0$ and $\pi_j=\lim_{k\to\infty}\pi_j(k)$, $\forall j$
 - If there exists a positive vector π such $\pi Q = 0$ and $\sum_{j \in X} \pi_j = 1$, then it must be the stationary distribution and the Markov chain is positive recurrent

Analysis of a CTMC

To sum up: In order to compute the steady-state probabilities, we have to solve the following linear system:

$$\begin{cases} \pi \cdot Q = 0 \\ \sum_{j} \pi_{j} = 1 \end{cases}$$

Example



$$Q = \begin{bmatrix} -6 & 5 & 1 \\ 3 & -11 & 8 \\ 4 & 2 & -6 \end{bmatrix}$$

Flow equilibrium equations!

$$\begin{cases} -6\pi_0 + 3\pi_1 + 4\pi_2 = 0 \\ 5\pi_0 - 11\pi_1 + 2\pi_2 = 0 \\ \pi_0 + 8\pi_1 - 6\pi_2 = 0 \end{cases}$$

Time spent in a state

 \square If v(i) is the time spent in state i, for CTMC it follows an exponential distribution:

$$P(v(j) < t) = 1 - e^{-\Lambda(j)t}$$

where $\Lambda(j)$ is the exit rate from state j

Memoryless property: the exponential distribution is memoryless!

Exercise: model a wireless link using a DTMC

Consider a simple model of a wireless link where, due to channel conditions, either one packet or no packet can be served in each time slot. Let S[k] denote the number of packets served in time slot k and suppose that S[k] are i.i.d. Bernoulli random variables with mean μ . Further, suppose that packets arrive to this wireless link according to a Bernoulli process with mean λ , i.e., a[k] is Bernoulli with mean λ where a[k] is the number of arrivals in time slot k and a[k] are i.i.d. across time slots. Assume that a[k] and s[k] are independent processes.

We specify the following order in which events occur in each time slot:

- We assume that any packet arrival occurs first in the time slot, followed by any packet departure, i.e., a packet that arrives in a time slot can be served in the same time slot
- Packets that are not served in a time slot are queued in a buffer for service in a future time slot.

Compute, if exists, the steady-state distribution.