MARKOV PROCESSES



Stochastic Process

Definition: a stochastic process is a collection of
random variables {X(t)} indexed by time t € T

Each X(t) € X is a random variable that satisfy
some probability law

X is usually called the state space of the process

A realization of a stochastic process (sample path)
is a specific sequence X (ty) = xo, X(t1) = X4,...



Stochastic Process

Example: toss a coin an infinite number of times, i.e.,
t = 1,2,3,..

X ={Head, Tail}

Sample path:

Head
Head
Tail

Head
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A Simple Classification

N
1 A stochastic process can have:

A discrete state space, i.e.,

A continuous state space, X is a discrete set
i.e., X is a continuous set. {x1, %9, 0, xp}
Eg, X <SR

With an infinite number of

With a finite number of state, i.e.,, n = 00

state, i.e, n < ©

-1 The process can be either continuous time, T =
|0, ), or discrete time (T = N)



Examples

Example 1: the process represents the number of
people queued at the post office

X ={1,..,0} discrete state space

T = RtUO continuous time

Example 2: height of a person on his/her birthday

X =R continuous state space
T =1{1,2,..} discrete time



Stochastic Process Dynamics

The process dynamics can be defined using the
transition probabilities

They specify the stochastic evolution of the process
through its states

For a discrete time process, transition probabilities
can be defined as follows

P(Xk+1 = Xp41|Xk = Xp, Xj—1 = Xg—1, .., Xo = %)



Stochastic Process Dynamics

Example: we have a bag with 20 balls.

10 are red and 10 are blue

At time any t = 1,2,...,n, we draw a ball from
the bag, without replacements

Question: what is P(X; = 1)?
Question: what is P(X, =71 | X; = 1)?
Question: whatis P(X3 =b | X, =71, X{= 1)2




Markov Property

The term Markov property refers to the memoryless
property of a stochastic process:

For a discrete time process, the Markov property is
defined as:

P(Xk+1 = Xg+11 Xk = X, Xj—1 = Xg—1, -, Xo = %)

P(Xp1 = Xpa1 | X = x)

Definition: a stochastic process that satisfies the
Markov property is called Markov process

If the state space is discrete, we refers to these
processes as Markov Chains



Time-homogeneous Markov chains

A Markov chain is time-homogeneous if transition
probabilities are time-independent

P(X; 11 = Xp41 | Xi = xy) is the same for all k

If the state space is discrete and finite, transition
probabilities are usually represented using a matrix...

P11 0 Pna’

Pn1 " DPnn.

...and the Markov chain can be easily represented
using a graph!



Example: Student Markov Chain




Transitory Analysis of a Markov Chain

We can define the state probability as
mj(k) = P(X = j)
: it is the probability of finding the process

in state j at time k

Simple theory allows us to compute “next step”
probabilities as

mi(k+1) = ) P(Xiesr =1 Xie = D) - (k)

1EX



Transitory Analysis of a Markov Chain

If we consider all states, we can use the vector
T[(k) — [7T0 (k)) 77:1 (k)) 7T2 (k)) ]

In matrix notation it becomes
n(k+1)=mn(k)-P
But, if we know initial probabilities (0), then

n(k + 1) = m(0) - P*



A simple example
—

0.4
T

,:)0.9

0.1

0.6




A simple example
1
0.4

< D Transition Probabilities
0 1 0.9
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A

(11o(k + 1) = 0.1, (k) + 0.7, (k)
m1(k+1) =04n,(k) + 091, (k)
m,(k + 1) = 0.6my(k) + 0.3m,(k)
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State Classification
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State Classification

Periodic state, with
period d = 2




Simple Exercise
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Simple Exercise
=

| Where do you expect to find

|
|
: the Markov chain “on the long :
: run’’e |
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Analysis of a DTMC

Let us define the stationary probability of a DTMC as

7 = im (k)

It is the probability to find, on the long run, the DTMC in
a certain state j

Question 1: there exists this steady-state probability?

Question 2: if any, what is the stationary probability
that the DTCM is in state J, i.e., how can | compute it2



Some Definitions...

A state j is said to be accessible from a state [ (written
I — J)if asystem started in state [ has a non-zero
probability of transitioning into state j

A state [ is said to communicate with state j (written
I © jJ)ifbothi — jandj] — 1

A set of states C is a communicating class if every
pair of states in C communicates with each other, and
no state in C is communicating with any state not in C

A Markov chain is said to be irreducible if its state
space is a single communicating class



...and some useful results

Result 1:if a DTMC has a finite number of states, then
at least one state is recurrent

Result 2: if 1 is recurrent and [ — J, then even state j is
recurrent

Results 3: if X' is an irreducible set of states, then states
are all positive recurrent, recurrent null or transient

Results 4: if X' is a finite irreducible subset of the state
space X, then every state in X' is positive recurrent



Analysis of a DTMC

Theorem 1:in a DTMC irreducible and aperiodic
there exists the limits

T[j — lll—{glon—](k)'v] e X

and they are independent from the initial distribution
Ity

Theorem 2: in a DTMC irreducible and aperiodic in
which all states are transient or recurrent null

7Tj = lim TL'](k) = O,V] e X

k—o00



Existence of steady-state distribution

Consider a time-homogeneous Markov chain is
irreducible and aperiodic. Then, the following results

hold:

If the Markov chain is positive recurrent, then there exists a
unique T so that r; = lim m;(k),Vj,and T = 7 - P
k—oo

If there exists a positive vector T suchm = 7+ P and
Zjex mj = 1, then it must be the stationary distribution and

the Markov chain is positive recurrent

If there exists a positive vector 1T such that m = 7+ P and
Zjex Tj = 00 is infinite, then a stationary distribution does

not exist and lim 7;(k) = 0 for all j

k—oo



Analysis of a DTMC

To sum up: In order to compute the steady-state
probabilities, we have to solve the following linear
system:



A simple example
—
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A simple example

e
0.4

TN

0.1
0.6 This DTMC is:
* |rreducible
* Aperiodic
0.3 * |t has a finite number of

states



A simple example
—

Linear System Transition Probabilities
(115 = 0.171; + 0.7m, ~ 0 04 06
Ty = 0.477:0 + 0.977,'1 P=101 09 0

3 0.7 0 0.3

m, = 0.6my + 0.3,
Tto + T + T, = 1

\

Solution
7T0 = 0.17
m, = 0.68



Time spent in a state

Can we characterize the time spent in each state by
the DTMC?

Let’s focus on state 1 of the previous example

o B os

0.1

With p = 0.1 the DTMC will “jump” to state O, while
with 1-p = 0.1 will remain in state 1

Question: do you remind something similare?



Time spent in a state

The time spent in a state follows a geometric
distribution!

The geometric distribution is used for modelling the
number of trials up to and including the first success

P = success

1 - p =failure

P(Success in K trials) = p - (1 — p)X
Key feature of this distribution: the geometric
distribution is memoryless!!

P(T=m+n|T >m)=P(T =n)



A more complex example
N

o1 A discrete time birth-death process

l-p l-p l-p l-p
pm ...... m....
P P P P

1 The DTMC is irreducible

and aperiodic



Birth-death process

l-p l-p l-p I -p
A A el A A
0] 1 2  ssamas i-1 i i:- ......
M /kM

p p p p

There exists the steady-state probabilities?

Intuitively

if p <12 the DTMC will probably diverge, so maybe states
are transient
if p > 12 the DTMC will probably remain “near” 0O, so state

O could be positive recurrent, and since the DTMC is
irreducible, all states would be positive recurrent

if p = 12 the DTMC will probably neither diverge or
converge, so maybe states are recurrent null




Birth-death process solution
—

CHECK OUT THE DASHBOARD!




Birth-death process solution

Average population sizt




Continuous Time Markov Chain (CTMC)

Let S be the current time instant and T an arbitrary
time interval

Markov property for continuous time MC
P(X(s+1)=j|X(s) =1)

No state memory: next state depends only on the
current state, and not on all history

No age memory: the time already spent in the
current state is irrelevant to determining the
remaining time and the next state




DTMC versus CTMC

The core of Discrete Time MC is the probability matrix

P

Remember: It defines the probability to “jump” to another
state in the next slot

The core of a Continuous Time MC is the rate matrix

It defines the rate at which the process transits from
one state to another

E.g., the MC transits from state 0 to state 1 with a rate
of 5 times per seconds



Homogeneous CTMC

A CTMC is said to be homogeneous if

P(X(s+1)=j|X(s) =)

is independent from s, i.e., only the “time interval” T
matters



Design a CTMC




Design a CTMC




Existence of steady state distribution

Consider a time-homogeneous Markov chain is

irreducible and aperiodic. Then, the following results
hold:

If the Markov chain is positive recurrent, then there exists
a unique T so that TQ = 0 and m; = lim m;(k), V)
k— oo

If there exists a positive vector T such mQ = 0 and
Zjex m; = 1, then it must be the stationary distribution

and the Markov chain is positive recurrent



Analysis of a CTMC

To sum up: In order to compute the steady-state
probabilities, we have to solve the following linear
system:




—61my + 311 + 41, =0
57T0 — 117T1 + 27T2 =0
Ty + 8Ty — 61, =0

o Flow equilibrium
equations!



Time spent in a state

If v(i) is the time spent in state i, for CTMC it
follows an exponential distribution:

Plv(j)<t)=1—e AU
where A(j) is the exit rate from state j

Memoryless property: the exponential distribution is
memoryless!



Exercise: model a wireless link using o

DTMC

Consider a simple model of a wireless link where, due to channel
conditions, either one packet or no packet can be served in each time
slot. Let s[k] denote the number of packets served in time slot k and
suppose that s[k] are i.i.d. Bernoulli random variables with mean p.
Further, suppose that packets arrive to this wireless link according to a
Bernoulli process with mean 4, i.e., alk] is Bernoulli with mean A where
alk] is the number of arrivals in time slot k and a[k] are i.i.d. across
time slots. Assume that a[k| and s[k] are independent processes.

We specify the following order in which events occur in each time slot:

We assume that any packet arrival occurs first in the time slot,
followed by any packet departure, i.e., a packet that arrives in a
time slot can be served in the same time slot

Packets that are not served in a time slot are queued in a buffer for
service in a future time slot.

Compute, if exists, the steady-state distribution.



