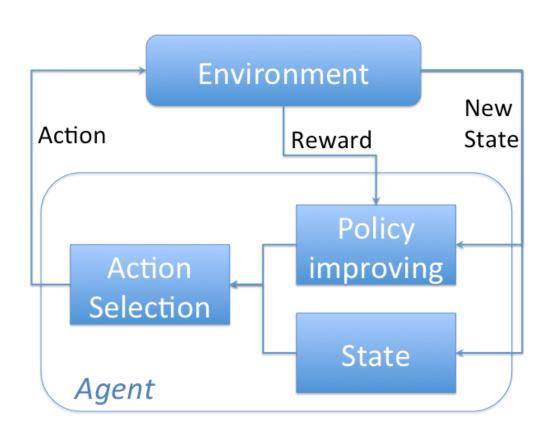
# MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL)

## Historical background

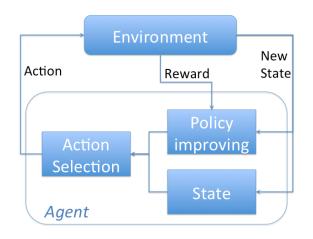
- Original motivation: animal learning
- Early emphasis: neural net implementations and heuristic properties
- Now appreciated that it has close ties with
  - operations research
  - optimal control theory
  - dynamic programming
  - Al state-space search
- Best formalized as a set of techniques to handle:
   Markov Decision Processes (MDPs) or Partially
   Observable Markov Decision Processes (POMDPs)

## Reinforcement learning task



## Reinforcement learning task

$$\begin{array}{c}
a(1) & a(2) & a(3) \\
s(0) \xrightarrow{r(1)} s(1) \xrightarrow{r(2)} s(2) \xrightarrow{r(3)} s(3) \dots
\end{array}$$



 Goal: learn to choose actions that maximize the cumulative reward

$$r(0) + \gamma r(1) + \gamma r(2) + \gamma r(3) + \dots$$

where 
$$0 \le \gamma < 1$$

## Foresighted Optimization

- The key feature of this framework is that actions affect <u>immediate</u> and <u>future</u> system performance
  - We optimize the system "on the long run"
- In scenarios in which actions/decisions affect immediate and future performance, myopic heuristic solutions are suboptimal because they ignore the expected future utility
- Dramatic improvements can be achieved using long term optimization

#### Stochastic Process

- Quick definition: a random process
- □ Often viewed as a collection of indexed random variables  $\{X_t : t \in T\}$ 
  - $\square X_t \in S$  is the system state
  - $\Box$  t is the time
- Useful to characterize "environment" dynamics
  - Set of states with probability law governing evolution of states over time
- We will focus on discrete-time stochastic chains
  - Time is discrete
  - State set S is discrete

## Stochastic Process Dynamics

- The process dynamics can be defined using the transition probabilities
- They specify the stochastic evolution of the process through its states
- For a discrete time process, transition probabilities can be defined as follows

$$P(X_{t+1} = x_{t+1} | X_t = x_t, X_{t-1} = x_{t-1}, ..., X_0 = x_0)$$

## Markov Property

- □ The term Markov property refers to the memoryless property of a stochastic process:
- For a discrete time process, the Markov property is defined as:

$$P(X_{t+1} = x_{t+1} | X_t = x_t, X_{t-1} = x_{t-1}, ..., X_0 = x_0)$$

$$=$$

$$P(X_{t+1} = x_{t+1} | X_t = x_t)$$

- Definition: a stochastic process that satisfies the Markov property is called Markov process
- If the state space is discrete, we refers to these processes as Markov Chains

## Markov Property

- Why useful?
  - Simple model of temporal correlation of environment dynamics
  - Current state contains all information needed to predict distribution of future state(s)
- Does it hold in the real world?
- □ It's an ideal
  - Will allow us to prove properties of algorithms
  - Algorithms mostly still work

#### Markov Chain

- □ Let  $\{X_t: t = 1,2,3,...\}$  be a Markov chain
- Dynamics is defined using the transition probability function

$$P(X_{t+1} = s' | X_t = s)$$
  
  $t \ge 0$ ,  $s', s \in S$ 

Under some assumptions (see previous lesson), a
 Markov chain has a *stationary* transition probability function

$$\pi_j = \lim_{k \to \infty} \pi_j(k)$$

#### Markov Decision Processes

- $\square$  Finite set of states S
- $\square$  Finite set of actions A(s),  $s \in S$
- Immediate reward function

$$R: S \times A \rightarrow R$$

□ Transition (next-state) function

$$T: S \times A \rightarrow S$$

- $lue{}$  More generally, R and T are treated as stochastic
  - We'll stick to the above notation for simplicity
  - In general case, treat the immediate rewards and next states as random variables, take expectations, etc.
- We will focus on discrete time MDPs

#### Markov Decision Processes

Markov Property for MDPs

$$P(s' \mid s, a)$$
  
 $s', s \in S, \quad a \in A(s)$ 

Next state is a function of current <u>state</u> and the <u>action taken!</u>

#### Markov Decision Processes

- If no rewards and only one action, this is just a Markov chain
- Sometimes also called a Controlled Markov Chain
- Overall objective is to determine a policy

$$\pi: S \to A$$

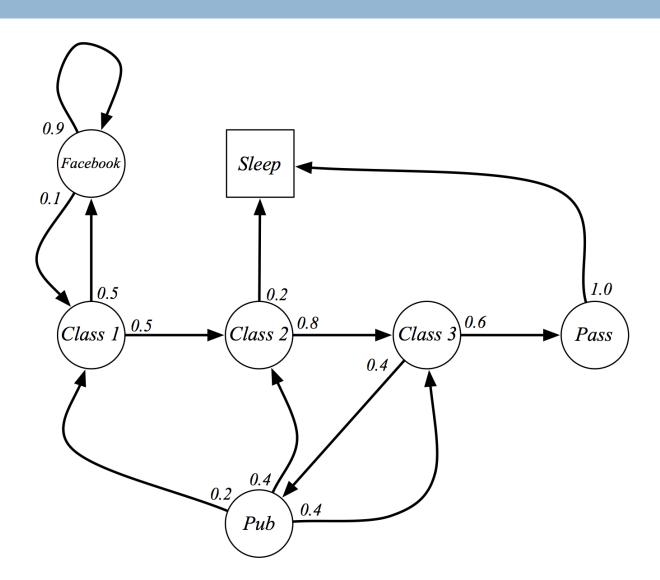
such that some measure of cumulative reward is optimized

■ E.g, 
$$r(0) + \gamma r(1) + \gamma r(2) + \gamma r(3) + ...$$

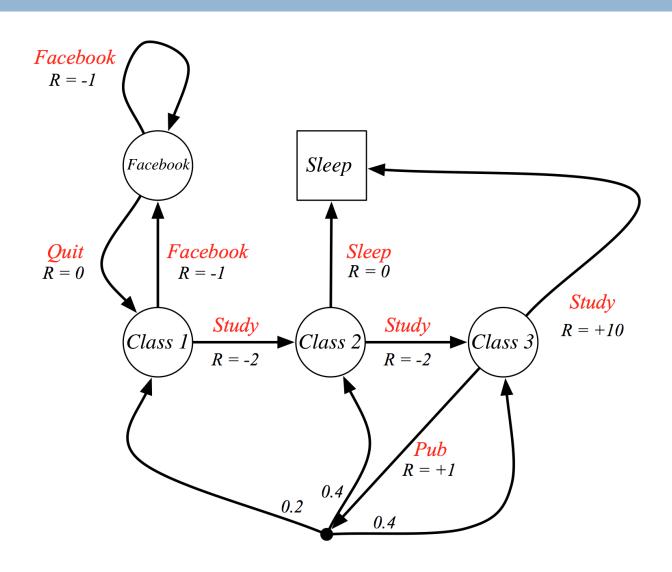
# What's a policy?

| If agent is in this state | Then a good action is |  |
|---------------------------|-----------------------|--|
| S <sub>1</sub>            | a <sub>3</sub>        |  |
| S <sub>2</sub>            | a <sub>7</sub>        |  |
| S <sub>3</sub>            | a <sub>1</sub>        |  |
| S <sub>4</sub>            | a <sub>3</sub>        |  |
|                           | • •                   |  |

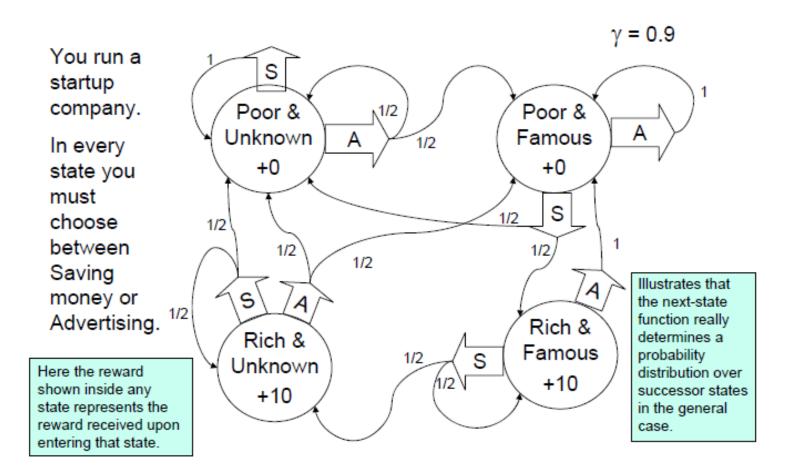
## Student Markov Chain



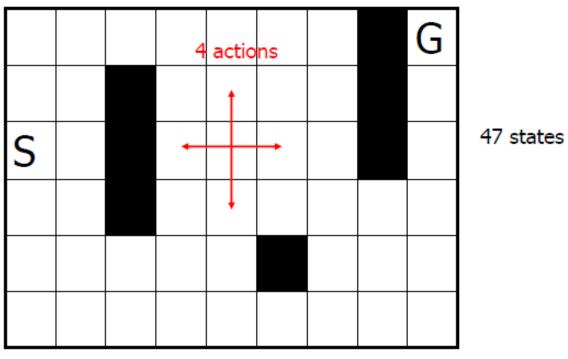
#### Student Markov Decision Process



#### A Markov Decision Process



#### **Another MDP**



Reward = -1 at every step

 $\gamma = 1$ 

G is an absorbing state, terminating any single trial, with a reward of 100 Effect of actions is deterministic

## Applications of MDPs

Many important problems are MDPs....

- ... Robot path planning
- ... Travel route planning
- ... Elevator scheduling
- ... Autonomous aircraft navigation
- ... Manufacturing processes
- ... Network switching & routing

And many of these have been successfully handled using RL methods

## Brief summary of concepts

- The agent and its environment interact over a sequence of discrete time steps
- The specification of their interface defines a particular task:
  - the actions are the choices made by the agent
  - the states are the basis for making the choices
  - the rewards are the basis for evaluating the choices
- A policy is a stochastic rule by which the agent selects actions as a function of states
- The agent's objective is to maximize the amount of reward it receives over time

#### Value Functions

- It turns out that
  - □ RL theory
  - MDP theory
  - Al game-tree search
  - all agree on the idea that evaluating states is a useful thing to do.
- $\square$  A (state) value function V is any function mapping states to real numbers:

$$V: S \rightarrow \mathbb{R}$$

## What's a value function?

| If agent starts in this state | Return when following given policy should be |
|-------------------------------|----------------------------------------------|
| S <sub>1</sub>                | 13                                           |
| S <sub>2</sub>                | -1                                           |
| S <sub>3</sub>                | 22.6                                         |
| S <sub>4</sub>                | 6                                            |
|                               | • •                                          |

## A special value function: the return

□ For any policy  $\pi$ , define the return to be the function  $V^{\pi}\colon S \to I\!\!R$  assigning to each state the quantity

$$V^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^t r(t)$$

Reminder: Use expected values in the stochastic case.

#### where

- lacksquare each action a(t) is chosen according to policy  $\pi$
- $lue{}$  each subsequent s(t+1) arises from the transition function T
- lacksquare each immediate reward r(t) is determined by the immediate reward function R
- $lue{}$   $\gamma$  is a given discount factor in [0,1]

## Why the discount factor $\gamma$ ?

- Models idea that future rewards are not worth as much as immediate rewards
  - Used in economic models
  - Uncertainty about the future
- $\square$  Also models situations where there is a nonzero fixed probability  $1-\gamma$  of termination at any time
- □ Tradeoff between myopic ( $\gamma = 0$ ) vs foresighted optimization ( $\gamma$  close to 1)
- ...and makes the math work out nicely
  - with bounded rewards, sum guaranteed to be finite even in infinite-horizon case

#### Technical remarks

- $\ \square$  If the next state and/or immediate reward functions are stochastic, then the r(t) values are random variables and the return is defined as the expectation of this sum
- If the MDP has absorbing states, the sum may actually be finite
  - lacksquare In that case  $\gamma=1$  is allowed, i.e., no discount
  - We stick with this infinite sum notation for the sake of generality
  - □ The formulation we use is called infinite-horizon

## **Optimal Policies**

 $\square$  Objective: Find a policy  $\pi^*$  such that

$$V^{\pi^*}(s) \ge V^{\pi}(s)$$

for any policy  $\pi$  and any state s

- Such a policy is called an optimal policy
- We define:

$$V^* = V^{\pi^*}$$

## Interesting fact

- $\ \square$  For every MDP such that S is discrete and A(s) is finite there exists an optimal policy
  - $lue{}$  This theorem can be easily extended to the case in which A(s) is a compact set

It's a policy such that for every possible start state there is no better option than to follow the policy

## Finding an Optimal Policy

□ Idea One:

Run through all possible policies.

Select the best.

■ What's the problem ??

## Finding an Optimal Policy

- Dynamic Programming approach:
  - Determine the optimal value function for each state
  - $lue{}$  Select actions according to this optimal value function  $V^*$

- $\square$  How do we compute  $V^*$ ?
  - Magic words: Bellman equation(s)

## Simple derivation of the Bellman equation

 $\square$  Given the state transition  $S \rightarrow S'$ 

$$V^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^{t} r(t)$$
$$= r(0) + \gamma \sum_{t=0}^{\infty} \gamma^{t} r(t+1)$$
$$= r(0) + \gamma V^{\pi}(s')$$

## Bellman equations

 $\square$  For any state s and policy  $\pi$ 

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma V^{\pi}(T(s, \pi(s)))$$

 $\square$  For any state S, the optimal value function is

$$V^{*}(s) = \max_{a} \{ R(s, a) + \gamma V^{*}(T(s, a)) \}$$

- Recurrence relations
  - Can be used to compute the return from a given policy or to compute the optimal return via value iteration

## Bellman equations: general form

For completeness, here are the Bellman equations for stochastic and discrete time MDPs:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P_{ss'}(\pi(s)) V^{\pi}(s')$$

$$V^{*}(s) = \max_{a} \{ R(s, a) + \gamma \sum_{s'} P_{ss'}(a) V^{*}(s') \}$$

where R(s, a) now represents  $E(R \mid s, a)$  and

 $P_{SS'}(a)$  = probability that the next state is S' given that action a is taken in state S

## From values to policies

 $lue{}$  Given the optimal value function  $V^*$  it follows from Bellman equation that the optimal policy can be computed as:

$$\pi(s) = \underset{a}{\operatorname{argmax}} \{R(s, a) + \gamma V^*(s')\}$$

- $lue{}$  An optimal policy is said to be <u>greedy</u> for  $V^*$
- $\hfill\Box$  If  $\pi$  is not optimal then a greedy policy for  $V^\pi$  will yield a larger return than  $\pi$ 
  - Not hard to prove
  - Basis for another DP approach to finding optimal policies: policy iteration

## Finding an optimal policy

#### Value Iteration Method

Choose any initial state value function  $V_0$ 

Repeat for all  $n \geq 0$ 

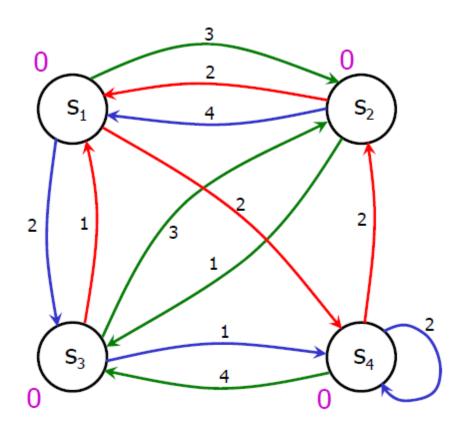
For all s

$$V_{n+1}(s) \leftarrow \max_{a} \{R(s,a) + \gamma V_n(T(s,a))\}$$

Until convergence

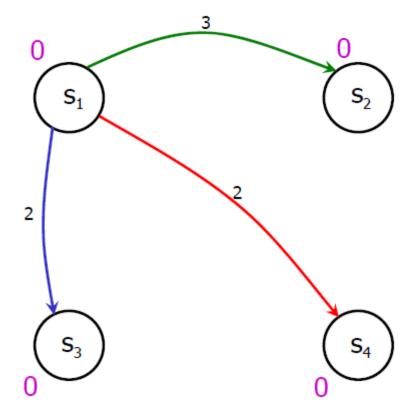
 $lue{}$  This converges to  $V^*$  and any greedy policy with respect to it will be an optimal policy

### Value Iteration



Arbitrary initial value function  $V_o$ 

#### Value Iteration



Computing a new value for s<sub>1</sub> using 1-step lookahead with previous values:

For action  $a_1$  lookahead value is 2 + (.9)(0) = 2

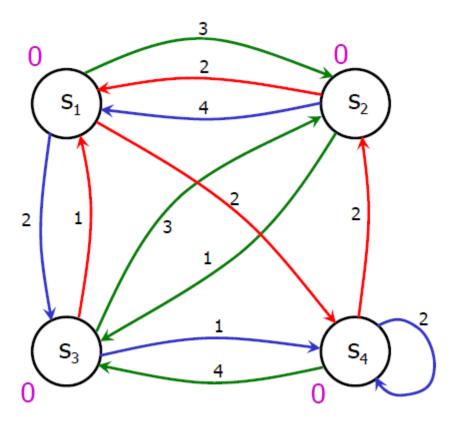
For action  $a_2$  lookahead value is 3 + (.9)(0) = 3

For action  $a_3$  lookahead value is 2 + (.9)(0) = 2

| <b>a</b> <sub>1</sub> | <b>a</b> <sub>2</sub> | <b>a</b> <sub>3</sub> |
|-----------------------|-----------------------|-----------------------|
| 2                     | თ                     | 2                     |

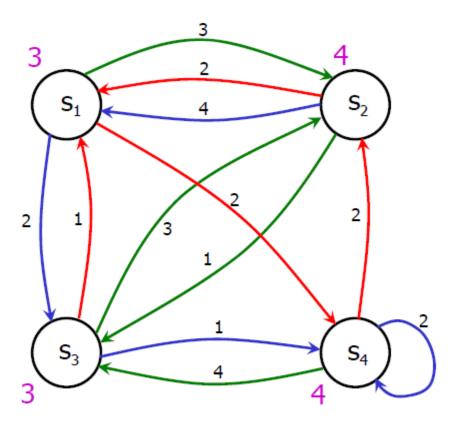
Arbitrary initial value function  $V_o$ 

$$V_1(s_1) = \max\{2,3,2\} = 3$$



| Lookahead value<br>along action |                       |     |   |   |  |  |  |
|---------------------------------|-----------------------|-----|---|---|--|--|--|
|                                 | <b>a</b> <sub>1</sub> | max |   |   |  |  |  |
| s <sub>1</sub>                  | 2                     | 3   | 2 | 3 |  |  |  |
| s <sub>2</sub>                  | 2                     | 1   | 4 | 4 |  |  |  |
| s <sub>3</sub>                  | 1                     | 3   | 1 | 3 |  |  |  |
| S <sub>4</sub>                  | 2                     | 4   | 2 | 4 |  |  |  |

Arbitrary initial value function  $V_o$ 



Updated approximation to V\*:

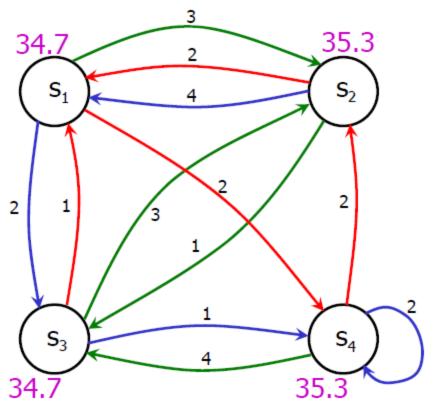
$$V_1(s_1) = 3$$

$$V_1(s_2) = 4$$

$$V_1(s_3) = 3$$

$$V_1(s_4) = 4$$

New value function  $V_1$  after one step of value iteration



|                       | <b>s</b> <sub>1</sub> | <b>s</b> <sub>2</sub> | <b>s</b> <sub>3</sub> | <b>5</b> <sub>4</sub> |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $V_o$                 | 0                     | 0                     | 0                     | 0                     |
| $V_1$                 | 3                     | 4                     | 3                     | 4                     |
| <b>V</b> <sub>2</sub> | 6.6                   | 6.7                   | 6.6                   | 6.7                   |
| <b>V</b> <sub>3</sub> | 9.0                   | 9.9                   | 9.0                   | 9.9                   |
| $V_4$                 | 11.9                  | 12.1                  | 11.9                  | 12.1                  |
| <b>V</b> <sub>5</sub> | 13.9                  | 14.8                  | 13.9                  | 14.8                  |
|                       |                       |                       |                       |                       |
|                       |                       |                       |                       |                       |

V\*

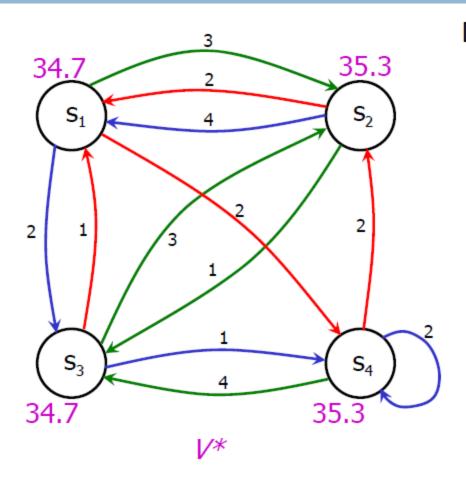
34.7

35.3

34.7

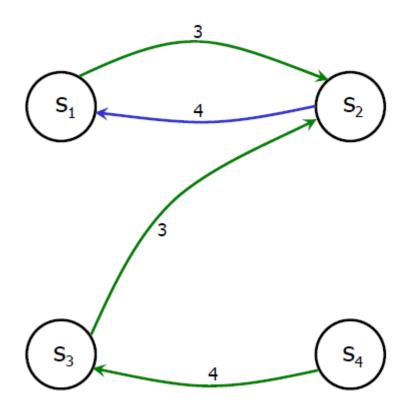
35.3

Keep doing this until it converges to  $V^*$ 



# Determining a greedy policy for $V^*$

| Lookahead value<br>along action |                       |      |      |                       |  |  |  |
|---------------------------------|-----------------------|------|------|-----------------------|--|--|--|
|                                 | <b>a</b> <sub>1</sub> | best |      |                       |  |  |  |
| s <sub>1</sub>                  | 33.8                  | 34.8 | 33.2 | <b>a</b> <sub>2</sub> |  |  |  |
| s <sub>2</sub>                  | 33.2                  | 32.2 | 35.2 | <b>a</b> <sub>3</sub> |  |  |  |
| s <sub>3</sub>                  | 32.2                  | 34.8 | 32.8 | a <sub>2</sub>        |  |  |  |
| s <sub>4</sub>                  | 33.8                  | 35.2 | 33.8 | <b>a</b> <sub>2</sub> |  |  |  |

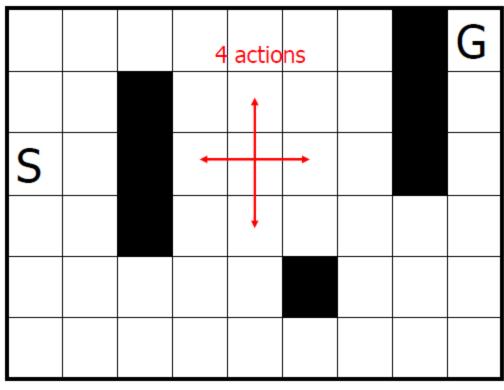


Optimal policy

#### Value iteration — Full Version

```
Initialize V arbitrarily, e.g., V(s) = 0, for all s \in \mathcal{S}^+
Repeat
    \Delta \leftarrow 0
    For each s \in \mathcal{S}:
           v \leftarrow V(s)
           V(s) \leftarrow \max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[ \mathcal{R}_{ss'}^{a} + \gamma V(s') \right]
           \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output a deterministic policy, \pi, such that
    \pi(s) = \arg\max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[ \mathcal{R}_{ss'}^{a} + \gamma V(s') \right]
```

### Maze Task

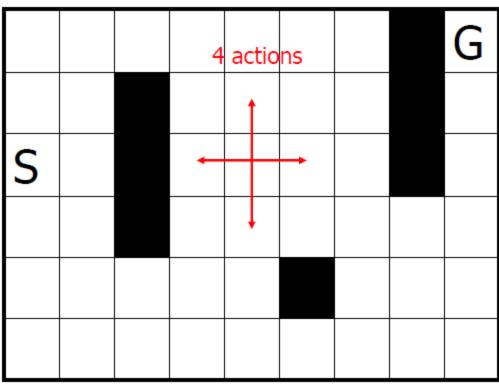


Reward = -1 at every step

 $\gamma = 1$ 

G is an absorbing state, terminating any single trial, with a reward of 100 Effect of actions is deterministic

### Maze Task



How would you model the MDP?

Reward = -1 at every step

$$\gamma = 1$$

G is an absorbing state, terminating any single trial, with a reward of 100

Effect of actions is deterministic

#### Maze Task - MDP model

- □ State is a couple:  $s = (x, y), x, y \in \{1, ..., 9\}$  defining the robot position
- □ Actions:  $A(s) = \{\text{up, down, left, rig}ht\}$  (except for those states near the black squares)
- Reward Function:  $R(s) = \begin{cases} -1, & \forall s \neq G \\ 100, & \text{if } s = G \end{cases}$
- Transition function:  $s' = \begin{cases} (x+1,y) & \text{if } a = \text{right} \\ (x-1,y) & \text{if } a = \text{left} \\ (x,y+1) & \text{if } a = \text{up} \\ (x,y-1) & \text{if } a = \text{down} \end{cases}$

### Maze Task - Value function

|   | 86 | 87 | 88 | 89 | 90 | 91 | 92 |    | 100 | G |
|---|----|----|----|----|----|----|----|----|-----|---|
|   | 85 | 86 |    | 90 | 91 | 92 | 93 |    | 99  |   |
| S | 86 | 87 |    | 91 | 92 | 93 | 94 |    | 98  |   |
|   | 87 | 88 |    | 92 | 93 | 94 | 95 | 96 | 97  |   |
|   | 88 | 89 | 90 | 91 | 92 |    | 94 | 95 | 96  |   |
|   | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95  |   |



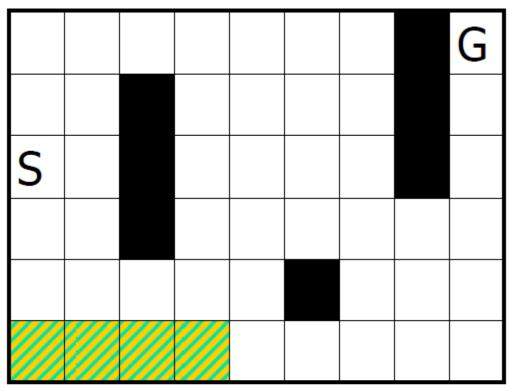
What's an optimal path from S to G?

# Maze Task – Optimal Path

| _ |    |    |    |    |    |    |    |    |     |   |
|---|----|----|----|----|----|----|----|----|-----|---|
|   | 86 | 87 | 88 | 89 | 90 | 91 | 92 |    | 100 | G |
|   | 85 | 86 |    | 90 | 91 | 92 | 93 |    | 99  |   |
| S | 86 | 87 |    | 91 | 92 | 93 | 94 |    | 98  |   |
|   | 87 | 88 |    | 92 | 93 | 94 | 95 | 96 | 97  |   |
|   | 88 | 89 | 90 | 91 | 92 |    | 94 | 95 | 96  |   |
|   | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95  |   |



#### Another Maze Task



Now what's an optimal path from S to G?

With:

P=0.1 to the right

P=0.1 to the left

Everything else same as before, except:

With some nonzero probability, a small wind gust might displace the agent one cell to the right or left of its intended direction of travel on any step

Entering any of the 4 patterned cells at the southwest corner yields a reward of -100

#### Another Maze Task - MDP model

Reward function: same as before, except that

$$R(s) = -100, \quad \forall s \in S: x \le 4, y = 1$$

Transition function:

$$s = (x, y), a = up$$
  
 $P(s' = (x, y + 1) | s, a) = 0.8$   
 $P(s' = (x + 1, y) | s, a) = 0.1$   
 $P(s' = (x - 1, y) | s, a) = 0.1$ 

#### Another Maze Task

|   | 86.04 | 87.14 | 88.14 | 89.05 | 89.96 | 90.86 | 91.69 |       | 100   | G |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|
|   | 85.15 | 86.13 |       | 89.93 | 90.87 | 91.87 | 92.78 |       | 99.00 |   |
| S | 84.25 | 85.03 |       | 90.83 | 91.85 | 92.87 | 93.88 |       | 98.00 |   |
|   | 83.33 | 84.95 |       | 91.44 | 92.61 | 93.70 | 94.89 | 95.99 | 97.00 |   |
|   | 82.39 | 82.89 | 81.8  | 90.66 | 91.61 |       | 93.98 | 94.98 | 95.90 |   |
|   | 81,44 | 81.73 | 81.78 | 90.21 | 91.17 | 92.17 | 93.08 | 93.97 | 94.81 |   |

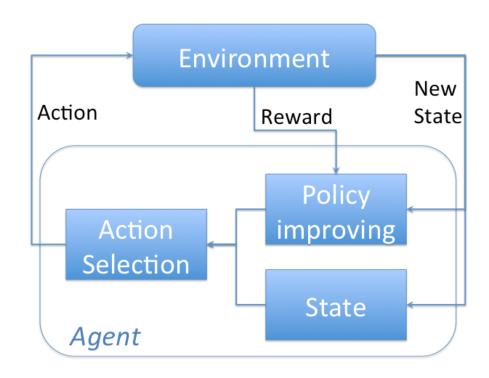
With probability 0.2, a small wind gust might displace the agent one cell to the right or left of its intended direction of travel on any step

Entering any of the 4 patterned cells at the southwest corner yields a reward of -100

# Why is On-line Learning Important?

- So far, we assumed all system parameters to be known
- Finding the optimal policy becomes a straightforward computational problem
  - E.g., value iteration, but even policy iteration, linear programming, ecc...
- What if rewards/transitions probabilities are unknown? Can we compute the optimal policy?
- We have to deal with a Reinforcement Learning problem!

# Agent-Environment Interaction



- Everything inside the agent is completely known and controllable by the agent
- Everything outside is incompletely controllable but may or may not be completely known

# Agent Knowledge

- A reinforcement learning problem can be posed in a variety of different ways depending on assumptions about the level of knowledge initially available to the agent
- In problems of complete knowledge, the agent has a complete and accurate model of the environment's dynamics
- If the environment is an MDP, then such a model consists of the one-step transition probabilities and expected rewards for all states and their allowable actions
- □ In problems of <u>incomplete knowledge</u>, a complete and perfect model of the environment is not available

 $\square$  For any policy  $\pi$ , define  $Q^{\pi}: S \times A \to R$  by

$$Q^{\pi}(s,a) = \sum_{t=0}^{\infty} \gamma^t r(t)$$

Again, the correct expression for a general MDP should use expected values here

- $\mathbf{a}(0) = a$  is the action taken,
- $\blacksquare$  and all subsequent states, actions, and rewards arise following policy  $\pi$
- In Just like  $V^{\pi}$  except that action a is taken at the very first step and only after this, policy  $\pi$  is followed
- Bellman equations can be rewritten in terms of Q-values

## What are Q-values?

| If agent is in this state | And starts with this action and then follows the policy | Return should<br>be |
|---------------------------|---------------------------------------------------------|---------------------|
| $s_1$                     | $a_1$                                                   | -5                  |
| $s_1$                     | <b>a</b> <sub>2</sub>                                   | 3                   |
| s <sub>2</sub>            | $a_1$                                                   | 17.1                |
| s <sub>2</sub>            | <b>a</b> <sub>2</sub>                                   | 10                  |
|                           |                                                         |                     |

□ Relationship between Value function and Q-function (given the state transition  $S \to S'$ )

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma V^{\pi}(s')$$

versus

$$Q^{\pi}(s,a) = R(s,a) + \gamma V^{\pi}(s')$$

Relationship between Value function and Q-function

$$V^{\pi}(s) = R(s(\pi(s)) + \gamma V^{\pi}(s')$$

versus

$$Q^{\pi}(s,a) = R(sa) + \gamma V^{\pi}(s')$$

 $\hfill\Box$  Define  $Q^*=Q^{\pi^*}$  , where  $\pi^*$  is an optimal policy

$$Q^*(s,a) = R(s,a) + \gamma V^*(s')$$

□ Since:

$$V^{*}(s) = \max_{a} \{ R(s, a) + \gamma V^{*}(s') \}$$

□ Then:

$$V^*(s) = \max_a Q^*(s, a)$$

□ And:

$$Q^*(s, a) = R(s, a) + \gamma \max_{a'} Q^*(s', a')$$

 $lue{}$  The optimal policy  $\pi^*$  is greedy for  $Q^*$ , that is

$$\pi^*(s) = \operatorname*{argmax}_a Q^*(s, a)$$

[it follows from 
$$V^*(s) = \max_a Q^*(s, a)$$
]

# Q-learning Algorithm

- Q is the estimated utility function
  - It tells us how good an action is, given a certain state
  - It includes immediate reward for making an action + best utility (Q) for the resulting state (future utility)
  - It allows to compute the optimal policy
- Q-learning is based on an online estimation of the Q function

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[ r(s,a) + \gamma \max_{a'} Q(s',a') \right]$$

## Q-learning Algorithm

```
Initialize Q(s, a) arbitrarily
Repeat (for each decision epoch)
  Initialize s
  Repeat (for each step of episode)
        Choose a from s using a policy derived from Q
        Take action a, observe r(s, a),
        Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[ r(s,a) + \gamma \max_{a'} Q(s',a') \right]
        s \leftarrow s'
  until s is terminal
```

### Exploitation and exploration

- Q-learning algorithm does not specify what the agent should actually do. The agent learns a Q-function that can be used to determine an optimal action. There are two things that are useful for the agent to do:
  - exploit the knowledge that it has found for the current state s by doing one of the actions a that maximizes Q[s,a].
  - explore in order to build a better estimate of the optimal Q-function.
     That is, it should select a different action from the one that it currently thinks is best.

## Exploitation and exploration

#### Choose a from s using a policy derived from Q

- Simple Approach: ε-greedy policy
  - $-\epsilon$  small number, e.g., 0.1



```
Generate a random number p if p \le \varepsilon Choose an action at random \to \exp explore else Choose the greedy action a^* = \arg\max_a Q(s,a) \to \exp end
```

# Q-learning discussion

- Q-learning is guaranteed to converge to the optimal Q-values if all Q(s,a) values are updated infinitely often (Watkins and Dayan 1992)
- It follows that exploration is necessary
  - A common approach is the *E*-greedy strategy
- Q-learning can be very slow to converge to the optimal policy, especially if the state space is large
- One of the biggest challenges in the RL field is to speed up the learning process

# Learning or planning?

- Classical DP emphasis for optimal control
  - Dynamics and reward structure known
  - Off-line computation
- Traditional RL emphasis
  - Dynamics and/or reward structure initially unknown
  - On-line learning
- Computation of an optimal policy off-line with known dynamics and reward structure can be regarded as planning

### More information

You can find more information about MDPs and learning here:

https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html