MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL)

Historical background

- Original motivation: animal learning
- Early emphasis: neural net implementations and heuristic properties
- Now appreciated that it has close ties with
 - operations research
 - optimal control theory
 - dynamic programming
 - Al state-space search
- Best formalized as a set of techniques to handle:
 Markov Decision Processes (MDPs) or Partially
 Observable Markov Decision Processes (POMDPs)

Reinforcement learning task

Reinforcement learning task

$$\begin{array}{c}
a(1) & a(2) & a(3) \\
s(0) \xrightarrow{r(1)} s(1) \xrightarrow{r(2)} s(2) \xrightarrow{r(3)} s(3) \dots
\end{array}$$

 Goal: learn to choose actions that maximize the cumulative reward

$$r(0) + \gamma r(1) + \gamma r(2) + \gamma r(3) + \dots$$

where
$$0 \le \gamma < 1$$

Foresighted Optimization

- The key feature of this framework is that actions affect <u>immediate</u> and <u>future</u> system performance
 - We optimize the system "on the long run"
- In scenarios in which actions/decisions affect immediate and future performance, myopic heuristic solutions are suboptimal because they ignore the expected future utility
- Dramatic improvements can be achieved using long term optimization

Stochastic Process

- Quick definition: a random process
- □ Often viewed as a collection of indexed random variables $\{X_t : t \in T\}$
 - $\square X_t \in S$ is the system state
 - \Box t is the time
- Useful to characterize "environment" dynamics
 - Set of states with probability law governing evolution of states over time
- We will focus on discrete-time stochastic chains
 - Time is discrete
 - State set S is discrete

Stochastic Process Dynamics

- The process dynamics can be defined using the transition probabilities
- They specify the stochastic evolution of the process through its states
- For a discrete time process, transition probabilities can be defined as follows

$$P(X_{t+1} = x_{t+1} | X_t = x_t, X_{t-1} = x_{t-1}, ..., X_0 = x_0)$$

Markov Property

- □ The term Markov property refers to the memoryless property of a stochastic process:
- For a discrete time process, the Markov property is defined as:

$$P(X_{t+1} = x_{t+1} | X_t = x_t, X_{t-1} = x_{t-1}, ..., X_0 = x_0)$$

$$=$$

$$P(X_{t+1} = x_{t+1} | X_t = x_t)$$

- Definition: a stochastic process that satisfies the Markov property is called Markov process
- If the state space is discrete, we refers to these processes as Markov Chains

Markov Property

- Why useful?
 - Simple model of temporal correlation of environment dynamics
 - Current state contains all information needed to predict distribution of future state(s)
- Does it hold in the real world?
- □ It's an ideal
 - Will allow us to prove properties of algorithms
 - Algorithms mostly still work

Markov Chain

- □ Let $\{X_t: t = 1,2,3,...\}$ be a Markov chain
- Dynamics is defined using the transition probability function

$$P(X_{t+1} = s' | X_t = s)$$

 $t \ge 0$, $s', s \in S$

Under some assumptions (see previous lesson), a
 Markov chain has a *stationary* transition probability function

$$\pi_j = \lim_{k \to \infty} \pi_j(k)$$

Markov Decision Processes

- \square Finite set of states S
- \square Finite set of actions A(s), $s \in S$
- Immediate reward function

$$R: S \times A \rightarrow R$$

□ Transition (next-state) function

$$T: S \times A \rightarrow S$$

- $lue{}$ More generally, R and T are treated as stochastic
 - We'll stick to the above notation for simplicity
 - In general case, treat the immediate rewards and next states as random variables, take expectations, etc.
- We will focus on discrete time MDPs

Markov Decision Processes

Markov Property for MDPs

$$P(s' \mid s, a)$$

 $s', s \in S, \quad a \in A(s)$

Next state is a function of current <u>state</u> and the <u>action taken!</u>

Markov Decision Processes

- If no rewards and only one action, this is just a Markov chain
- Sometimes also called a Controlled Markov Chain
- Overall objective is to determine a policy

$$\pi: S \to A$$

such that some measure of cumulative reward is optimized

■ E.g,
$$r(0) + \gamma r(1) + \gamma r(2) + \gamma r(3) + ...$$

What's a policy?

If agent is in this state	Then a good action is	
S ₁	a ₃	
S ₂	a ₇	
S ₃	a ₁	
S ₄	a ₃	
	• •	

Student Markov Chain

Student Markov Decision Process

A Markov Decision Process

Another MDP

Reward = -1 at every step

 $\gamma = 1$

G is an absorbing state, terminating any single trial, with a reward of 100 Effect of actions is deterministic

Applications of MDPs

Many important problems are MDPs....

- ... Robot path planning
- ... Travel route planning
- ... Elevator scheduling
- ... Autonomous aircraft navigation
- ... Manufacturing processes
- ... Network switching & routing

And many of these have been successfully handled using RL methods

Brief summary of concepts

- The agent and its environment interact over a sequence of discrete time steps
- The specification of their interface defines a particular task:
 - the actions are the choices made by the agent
 - the states are the basis for making the choices
 - the rewards are the basis for evaluating the choices
- A policy is a stochastic rule by which the agent selects actions as a function of states
- The agent's objective is to maximize the amount of reward it receives over time

Value Functions

- It turns out that
 - □ RL theory
 - MDP theory
 - Al game-tree search
 - all agree on the idea that evaluating states is a useful thing to do.
- \square A (state) value function V is any function mapping states to real numbers:

$$V: S \rightarrow \mathbb{R}$$

What's a value function?

If agent starts in this state	Return when following given policy should be
S ₁	13
S ₂	-1
S ₃	22.6
S ₄	6
	• •

A special value function: the return

□ For any policy π , define the return to be the function $V^{\pi}\colon S \to I\!\!R$ assigning to each state the quantity

$$V^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^t r(t)$$

Reminder: Use expected values in the stochastic case.

where

- lacksquare each action a(t) is chosen according to policy π
- $lue{}$ each subsequent s(t+1) arises from the transition function T
- lacksquare each immediate reward r(t) is determined by the immediate reward function R
- $lue{}$ γ is a given discount factor in [0,1]

Why the discount factor γ ?

- Models idea that future rewards are not worth as much as immediate rewards
 - Used in economic models
 - Uncertainty about the future
- \square Also models situations where there is a nonzero fixed probability $1-\gamma$ of termination at any time
- □ Tradeoff between myopic ($\gamma = 0$) vs foresighted optimization (γ close to 1)
- ...and makes the math work out nicely
 - with bounded rewards, sum guaranteed to be finite even in infinite-horizon case

Technical remarks

- $\ \square$ If the next state and/or immediate reward functions are stochastic, then the r(t) values are random variables and the return is defined as the expectation of this sum
- If the MDP has absorbing states, the sum may actually be finite
 - lacksquare In that case $\gamma=1$ is allowed, i.e., no discount
 - We stick with this infinite sum notation for the sake of generality
 - □ The formulation we use is called infinite-horizon

Optimal Policies

 \square Objective: Find a policy π^* such that

$$V^{\pi^*}(s) \ge V^{\pi}(s)$$

for any policy π and any state s

- Such a policy is called an optimal policy
- We define:

$$V^* = V^{\pi^*}$$

Interesting fact

- $\ \square$ For every MDP such that S is discrete and A(s) is finite there exists an optimal policy
 - $lue{}$ This theorem can be easily extended to the case in which A(s) is a compact set

It's a policy such that for every possible start state there is no better option than to follow the policy

Finding an Optimal Policy

□ Idea One:

Run through all possible policies.

Select the best.

■ What's the problem ??

Finding an Optimal Policy

- Dynamic Programming approach:
 - Determine the optimal value function for each state
 - $lue{}$ Select actions according to this optimal value function V^*

- \square How do we compute V^* ?
 - Magic words: Bellman equation(s)

Simple derivation of the Bellman equation

 \square Given the state transition $S \rightarrow S'$

$$V^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^{t} r(t)$$
$$= r(0) + \gamma \sum_{t=0}^{\infty} \gamma^{t} r(t+1)$$
$$= r(0) + \gamma V^{\pi}(s')$$

Bellman equations

 \square For any state s and policy π

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma V^{\pi}(T(s, \pi(s)))$$

 \square For any state S, the optimal value function is

$$V^{*}(s) = \max_{a} \{ R(s, a) + \gamma V^{*}(T(s, a)) \}$$

- Recurrence relations
 - Can be used to compute the return from a given policy or to compute the optimal return via value iteration

Bellman equations: general form

For completeness, here are the Bellman equations for stochastic and discrete time MDPs:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P_{ss'}(\pi(s)) V^{\pi}(s')$$

$$V^{*}(s) = \max_{a} \{ R(s, a) + \gamma \sum_{s'} P_{ss'}(a) V^{*}(s') \}$$

where R(s, a) now represents $E(R \mid s, a)$ and

 $P_{SS'}(a)$ = probability that the next state is S' given that action a is taken in state S

From values to policies

 $lue{}$ Given the optimal value function V^* it follows from Bellman equation that the optimal policy can be computed as:

$$\pi(s) = \underset{a}{\operatorname{argmax}} \{R(s, a) + \gamma V^*(s')\}$$

- $lue{}$ An optimal policy is said to be <u>greedy</u> for V^*
- $\hfill\Box$ If π is not optimal then a greedy policy for V^π will yield a larger return than π
 - Not hard to prove
 - Basis for another DP approach to finding optimal policies: policy iteration

Finding an optimal policy

Value Iteration Method

Choose any initial state value function V_0

Repeat for all $n \geq 0$

For all s

$$V_{n+1}(s) \leftarrow \max_{a} \{R(s,a) + \gamma V_n(T(s,a))\}$$

Until convergence

 $lue{}$ This converges to V^* and any greedy policy with respect to it will be an optimal policy

Value Iteration

Arbitrary initial value function V_o

Value Iteration

Computing a new value for s₁ using 1-step lookahead with previous values:

For action a_1 lookahead value is 2 + (.9)(0) = 2

For action a_2 lookahead value is 3 + (.9)(0) = 3

For action a_3 lookahead value is 2 + (.9)(0) = 2

a ₁	a ₂	a ₃
2	თ	2

Arbitrary initial value function V_o

$$V_1(s_1) = \max\{2,3,2\} = 3$$

Lookahead value along action							
	a ₁	max					
s ₁	2	3	2	3			
s ₂	2	1	4	4			
s ₃	1	3	1	3			
S ₄	2	4	2	4			

Arbitrary initial value function V_o

Updated approximation to V*:

$$V_1(s_1) = 3$$

$$V_1(s_2) = 4$$

$$V_1(s_3) = 3$$

$$V_1(s_4) = 4$$

New value function V_1 after one step of value iteration

	s ₁	s ₂	s ₃	5 ₄
V_o	0	0	0	0
V_1	3	4	3	4
V ₂	6.6	6.7	6.6	6.7
V ₃	9.0	9.9	9.0	9.9
V_4	11.9	12.1	11.9	12.1
V ₅	13.9	14.8	13.9	14.8

V*

34.7

35.3

34.7

35.3

Keep doing this until it converges to V^*

Determining a greedy policy for V^*

Lookahead value along action							
	a ₁	best					
s ₁	33.8	34.8	33.2	a ₂			
s ₂	33.2	32.2	35.2	a ₃			
s ₃	32.2	34.8	32.8	a ₂			
s ₄	33.8	35.2	33.8	a ₂			

Optimal policy

Value iteration — Full Version

```
Initialize V arbitrarily, e.g., V(s) = 0, for all s \in \mathcal{S}^+
Repeat
    \Delta \leftarrow 0
    For each s \in \mathcal{S}:
           v \leftarrow V(s)
           V(s) \leftarrow \max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[ \mathcal{R}_{ss'}^{a} + \gamma V(s') \right]
           \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output a deterministic policy, \pi, such that
    \pi(s) = \arg\max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[ \mathcal{R}_{ss'}^{a} + \gamma V(s') \right]
```

Maze Task

Reward = -1 at every step

 $\gamma = 1$

G is an absorbing state, terminating any single trial, with a reward of 100 Effect of actions is deterministic

Maze Task

How would you model the MDP?

Reward = -1 at every step

$$\gamma = 1$$

G is an absorbing state, terminating any single trial, with a reward of 100

Effect of actions is deterministic

Maze Task - MDP model

- □ State is a couple: $s = (x, y), x, y \in \{1, ..., 9\}$ defining the robot position
- □ Actions: $A(s) = \{\text{up, down, left, rig}ht\}$ (except for those states near the black squares)
- Reward Function: $R(s) = \begin{cases} -1, & \forall s \neq G \\ 100, & \text{if } s = G \end{cases}$
- Transition function: $s' = \begin{cases} (x+1,y) & \text{if } a = \text{right} \\ (x-1,y) & \text{if } a = \text{left} \\ (x,y+1) & \text{if } a = \text{up} \\ (x,y-1) & \text{if } a = \text{down} \end{cases}$

Maze Task - Value function

	86	87	88	89	90	91	92		100	G
	85	86		90	91	92	93		99	
S	86	87		91	92	93	94		98	
	87	88		92	93	94	95	96	97	
	88	89	90	91	92		94	95	96	
	87	88	89	90	91	92	93	94	95	

What's an optimal path from S to G?

Maze Task – Optimal Path

_										
	86	87	88	89	90	91	92		100	G
	85	86		90	91	92	93		99	
S	86	87		91	92	93	94		98	
	87	88		92	93	94	95	96	97	
	88	89	90	91	92		94	95	96	
	87	88	89	90	91	92	93	94	95	

Another Maze Task

Now what's an optimal path from S to G?

With:

P=0.1 to the right

P=0.1 to the left

Everything else same as before, except:

With some nonzero probability, a small wind gust might displace the agent one cell to the right or left of its intended direction of travel on any step

Entering any of the 4 patterned cells at the southwest corner yields a reward of -100

Another Maze Task - MDP model

Reward function: same as before, except that

$$R(s) = -100, \quad \forall s \in S: x \le 4, y = 1$$

Transition function:

$$s = (x, y), a = up$$

 $P(s' = (x, y + 1) | s, a) = 0.8$
 $P(s' = (x + 1, y) | s, a) = 0.1$
 $P(s' = (x - 1, y) | s, a) = 0.1$

Another Maze Task

	86.04	87.14	88.14	89.05	89.96	90.86	91.69		100	G
	85.15	86.13		89.93	90.87	91.87	92.78		99.00	
S	84.25	85.03		90.83	91.85	92.87	93.88		98.00	
	83.33	84.95		91.44	92.61	93.70	94.89	95.99	97.00	
	82.39	82.89	81.8	90.66	91.61		93.98	94.98	95.90	
	81,44	81.73	81.78	90.21	91.17	92.17	93.08	93.97	94.81	

With probability 0.2, a small wind gust might displace the agent one cell to the right or left of its intended direction of travel on any step

Entering any of the 4 patterned cells at the southwest corner yields a reward of -100

Why is On-line Learning Important?

- So far, we assumed all system parameters to be known
- Finding the optimal policy becomes a straightforward computational problem
 - E.g., value iteration, but even policy iteration, linear programming, ecc...
- What if rewards/transitions probabilities are unknown? Can we compute the optimal policy?
- We have to deal with a Reinforcement Learning problem!

Agent-Environment Interaction

- Everything inside the agent is completely known and controllable by the agent
- Everything outside is incompletely controllable but may or may not be completely known

Agent Knowledge

- A reinforcement learning problem can be posed in a variety of different ways depending on assumptions about the level of knowledge initially available to the agent
- In problems of complete knowledge, the agent has a complete and accurate model of the environment's dynamics
- If the environment is an MDP, then such a model consists of the one-step transition probabilities and expected rewards for all states and their allowable actions
- □ In problems of <u>incomplete knowledge</u>, a complete and perfect model of the environment is not available

 \square For any policy π , define $Q^{\pi}: S \times A \to R$ by

$$Q^{\pi}(s,a) = \sum_{t=0}^{\infty} \gamma^t r(t)$$

Again, the correct expression for a general MDP should use expected values here

- $\mathbf{a}(0) = a$ is the action taken,
- \blacksquare and all subsequent states, actions, and rewards arise following policy π
- In Just like V^{π} except that action a is taken at the very first step and only after this, policy π is followed
- Bellman equations can be rewritten in terms of Q-values

What are Q-values?

If agent is in this state	And starts with this action and then follows the policy	Return should be
s_1	a_1	-5
s_1	a ₂	3
s ₂	a_1	17.1
s ₂	a ₂	10

□ Relationship between Value function and Q-function (given the state transition $S \to S'$)

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma V^{\pi}(s')$$

versus

$$Q^{\pi}(s,a) = R(s,a) + \gamma V^{\pi}(s')$$

Relationship between Value function and Q-function

$$V^{\pi}(s) = R(s(\pi(s)) + \gamma V^{\pi}(s')$$

versus

$$Q^{\pi}(s,a) = R(sa) + \gamma V^{\pi}(s')$$

 $\hfill\Box$ Define $Q^*=Q^{\pi^*}$, where π^* is an optimal policy

$$Q^*(s,a) = R(s,a) + \gamma V^*(s')$$

□ Since:

$$V^{*}(s) = \max_{a} \{ R(s, a) + \gamma V^{*}(s') \}$$

□ Then:

$$V^*(s) = \max_a Q^*(s, a)$$

□ And:

$$Q^*(s, a) = R(s, a) + \gamma \max_{a'} Q^*(s', a')$$

 $lue{}$ The optimal policy π^* is greedy for Q^* , that is

$$\pi^*(s) = \operatorname*{argmax}_a Q^*(s, a)$$

[it follows from
$$V^*(s) = \max_a Q^*(s, a)$$
]

Q-learning Algorithm

- Q is the estimated utility function
 - It tells us how good an action is, given a certain state
 - It includes immediate reward for making an action + best utility (Q) for the resulting state (future utility)
 - It allows to compute the optimal policy
- Q-learning is based on an online estimation of the Q function

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[r(s,a) + \gamma \max_{a'} Q(s',a') \right]$$

Q-learning Algorithm

```
Initialize Q(s, a) arbitrarily
Repeat (for each decision epoch)
  Initialize s
  Repeat (for each step of episode)
        Choose a from s using a policy derived from Q
        Take action a, observe r(s, a),
        Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[ r(s,a) + \gamma \max_{a'} Q(s',a') \right]
        s \leftarrow s'
  until s is terminal
```

Exploitation and exploration

- Q-learning algorithm does not specify what the agent should actually do. The agent learns a Q-function that can be used to determine an optimal action. There are two things that are useful for the agent to do:
 - exploit the knowledge that it has found for the current state s by doing one of the actions a that maximizes Q[s,a].
 - explore in order to build a better estimate of the optimal Q-function.
 That is, it should select a different action from the one that it currently thinks is best.

Exploitation and exploration

Choose a from s using a policy derived from Q

- Simple Approach: ε-greedy policy
 - $-\epsilon$ small number, e.g., 0.1


```
Generate a random number p if p \le \varepsilon Choose an action at random \to \exp explore else Choose the greedy action a^* = \arg\max_a Q(s,a) \to \exp end
```

Q-learning discussion

- Q-learning is guaranteed to converge to the optimal Q-values if all Q(s,a) values are updated infinitely often (Watkins and Dayan 1992)
- It follows that exploration is necessary
 - A common approach is the *E*-greedy strategy
- Q-learning can be very slow to converge to the optimal policy, especially if the state space is large
- One of the biggest challenges in the RL field is to speed up the learning process

Learning or planning?

- Classical DP emphasis for optimal control
 - Dynamics and reward structure known
 - Off-line computation
- Traditional RL emphasis
 - Dynamics and/or reward structure initially unknown
 - On-line learning
- Computation of an optimal policy off-line with known dynamics and reward structure can be regarded as planning

More information

You can find more information about MDPs and learning here:

https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html