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Historical background
2

 Original motivation: animal learning

 Early emphasis: neural net implementations and heuristic
properties

 Now appreciated that it has close ties with

 operations research

 optimal control theory

 dynamic programming

 AI state-space search

 Best formalized as a set of techniques to handle: 
Markov Decision Processes (MDPs) or Partially 
Observable Markov Decision Processes (POMDPs)



Reinforcement learning task
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Reinforcement learning task
4

𝑠 0

𝑎 1
𝑟 1

𝑠 1

𝑎 2
𝑟 2

𝑠 2

𝑎 3
𝑟 3

𝑠 3 …

 Goal: learn to choose actions that maximize the 
cumulative reward

𝑟 0 + 𝛾𝑟 1 + 𝛾𝑟 2 + 𝛾𝑟 3 +…

where 0 ≤ 𝛾 < 1



Foresighted Optimization
5

 The key feature of this framework is that actions 

affect immediate and future system performance

 We optimize the system “on the long run”

 In scenarios in which actions/decisions affect 

immediate and future performance, myopic heuristic 

solutions are suboptimal because they ignore the 

expected future utility 

 Dramatic improvements can be achieved using long 

term optimization



Stochastic Process
6

 Quick definition: a random process

 Often viewed as a collection of indexed random 
variables {𝑋𝑡: 𝑡 ∈ 𝑇}
 𝑋𝑡 ∈ 𝑆 is the system state

 𝑡 is the time

 Useful to characterize “environment” dynamics 

 Set of states with probability law governing evolution 
of states over time 

 We will focus on discrete-time stochastic chains 

 Time is discrete

 State set S is discrete



Stochastic Process Dynamics

 The process dynamics can be defined using the 

transition probabilities

 They specify the stochastic evolution of the process 

through its states

 For a discrete time process, transition probabilities 

can be defined as follows 

𝑃(𝑋𝑡+1 = 𝑥𝑡+1|𝑋𝑡 = 𝑥𝑡 , 𝑋𝑡−1 = 𝑥𝑡−1, … , 𝑋0 = 𝑥0)



Markov Property

 The term Markov property refers to the memoryless 
property of a stochastic process:

 For a discrete time process, the Markov property is defined 
as:

𝑃 𝑋𝑡+1 = 𝑥𝑡+1 𝑋𝑡 = 𝑥𝑡, 𝑋𝑡−1 = 𝑥𝑡−1, … , 𝑋0 = 𝑥0
=

𝑷 𝑿𝒕+𝟏 = 𝒙𝒕+𝟏 𝑿𝒕 = 𝒙𝒕)

 Definition: a stochastic process that satisfies the Markov 
property is called Markov process

 If the state space is discrete, we refers to these processes as 
Markov Chains



Markov Property
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 Why useful?

 Simple model of temporal correlation of environment 

dynamics

 Current state contains all information needed to predict 

distribution of future state(s) 

 Does it hold in the real world? 

 It’s an ideal 

 Will allow us to prove properties of algorithms 

 Algorithms mostly still work 



Markov Chain
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 Let {𝑋𝑡: 𝑡 = 1,2,3, … } be a Markov chain

 Dynamics is defined using the transition probability 

function

𝑃(𝑋𝑡+1 = 𝑠′|𝑋𝑡 = 𝑠)
𝑡 ≥ 0, 𝑠′, 𝑠 ∈ 𝑆

 Under some assumptions (see previous lesson), a 

Markov chain has a stationary transition probability 

function

𝜋𝑗 = lim
𝑘→∞

𝜋𝑗(𝑘)



Markov Decision Processes
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 Finite set of states 𝑆

 Finite set of actions 𝐴(𝑠), 𝑠 𝑆

 Immediate reward function

𝑅: 𝑆 × 𝐴 → 𝑅

 Transition (next-state) function

𝑇: 𝑆 × 𝐴 → 𝑆

 More generally, 𝑅 and 𝑇 are treated as stochastic

 We’ll stick to the above notation for simplicity

 In general case, treat the immediate rewards and next 
states as random variables, take expectations, etc.

 We will focus on discrete time MDPs



Markov Decision Processes
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 Markov Property for MDPs

𝑃 𝑠′ 𝑠, 𝑎 )
𝑠′, 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠)

 Next state is a function of current state and the 

action taken!



Markov Decision Processes
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 If no rewards and only one action, this is just a 

Markov chain

 Sometimes also called a Controlled Markov Chain

 Overall objective is to determine a policy

 ∶ 𝑆 𝐴

such that some measure of cumulative reward is

optimized

 E.g, 𝑟 0 + 𝛾𝑟 1 + 𝛾𝑟 2 + 𝛾𝑟 3 +…



What’s a policy?
14



Student Markov Chain



Student Markov Decision Process
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Facebook

Class 1 Class 2 Class 3

Sleep



A Markov Decision Process
17



Another MDP
18



Applications of MDPs
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Many important problems are MDPs….

… Robot path planning

… Travel route planning

… Elevator scheduling

… Autonomous aircraft navigation

… Manufacturing processes

… Network switching & routing

And many of these have been successfully handled

using RL methods



Brief summary of concepts
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 The agent and its environment interact over a sequence of 
discrete time steps

 The specification of their interface defines a particular
task: 
 the actions are the choices made by the agent

 the states are the basis for making the choices

 the rewards are the basis for evaluating the choices

 A policy is a stochastic rule by which the agent selects
actions as a function of states

 The agent's objective is to maximize the amount of reward
it receives over time



Value Functions
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 It turns out that

 RL theory

 MDP theory

 AI game-tree search

all agree on the idea that evaluating states is a 

useful thing to do.

 A (state) value function 𝑉 is any function mapping 

states to real numbers:

𝑉 ∶ 𝑆 → 𝐼𝑅



What’s a value function?
22



A special value function: the return
23

 For any policy , define the return to be the function 
𝑉𝜋: 𝑆 → 𝐼𝑅 assigning to each state the quantity

𝑉𝜋 𝑠 =  

𝑡=0

∞

𝛾𝑡𝑟(𝑡)

where

 𝑠(0) = 𝑠

 each action 𝑎(𝑡) is chosen according to policy 𝜋

 each subsequent 𝑠(𝑡 + 1) arises from the transition function 𝑇

 each immediate reward 𝑟(𝑡) is determined by the immediate 
reward function 𝑅

  is a given discount factor in [0, 1]

Reminder: Use expected

values in the

stochastic case.



Why the discount factor 𝛾?
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 Models idea that future rewards are not worth as much 
as immediate rewards

 Used in economic models

 Uncertainty about the future

 Also models situations where there is a nonzero fixed 
probability 1 − 𝛾 of termination at any time

 Tradeoff between myopic (𝛾 = 0) vs foresighted
optimization (𝛾 close to 1)

 …and makes the math work out nicely 

 with bounded rewards, sum guaranteed to be finite even in 
infinite-horizon case



Technical remarks
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 If the next state and/or immediate reward functions 
are stochastic, then the 𝑟(𝑡) values are random 
variables and the return is defined as the 
expectation of this sum

 If the MDP has absorbing states, the sum may
actually be finite

 In that case 𝛾 = 1 is allowed, i.e., no discount

 We stick with this infinite sum notation for the sake of
generality

 The formulation we use is called infinite-horizon



Optimal Policies
26

 Objective: Find a policy 𝜋∗ such that

𝑉𝜋∗
𝑠 ≥ 𝑉𝜋 𝑠

for any policy 𝜋 and any state 𝑠

 Such a policy is called an optimal policy

 We define:

𝑉∗ = 𝑉𝜋∗



Interesting fact
27

 For every MDP such that 𝑆 is discrete and 𝐴(𝑠) is 

finite there exists an optimal policy

 This theorem can be easily extended to the case in 

which 𝐴(𝑠) is a compact set

 It’s a policy such that for every possible start state 

there is no better option than to follow the policy



Finding an Optimal Policy
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 Idea One:

Run through all possible policies.

Select the best.

 What’s the problem ??



Finding an Optimal Policy
29

 Dynamic Programming approach:

 Determine the optimal value function for each state

 Select actions according to this optimal value function

𝑉∗

 How do we compute 𝑉∗?

 Magic words: Bellman equation(s)



Simple derivation of the Bellman equation

30

 Given the state transition 𝑠 → 𝑠’



Bellman equations
31

 For any state 𝑠 and policy 𝜋

 For any state 𝑠, the optimal value function is

 Recurrence relations

 Can be used to compute the return from a given policy or to 
compute the optimal return via value iteration



Bellman equations: general form
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 For completeness, here are the Bellman equations for 
stochastic and discrete time MDPs:

where 𝑅(𝑠, 𝑎) now represents 𝐸(𝑅 | 𝑠, 𝑎) and

𝑃𝑠𝑠′(𝑎) = probability that the next state is 𝑠′

given that action 𝑎 is taken in state 𝑠



From values to policies
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 Given the optimal value function 𝑉∗ it follows from Bellman
equation that the optimal policy can be computed as:

𝜋(𝑠) = argmax
𝑎

𝑅 𝑠, 𝑎 + 𝛾𝑉∗(𝑠′)

 An optimal policy is said to be greedy for 𝑉∗

 If  is not optimal then a greedy policy for 𝑉 will yield a 
larger return than 

 Not hard to prove

 Basis for another DP approach to finding optimal policies: policy 
iteration



Finding an optimal policy
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Value Iteration Method

Choose any initial state value function 𝑉0

Repeat for all 𝑛 ≥ 0

For all 𝑠

𝑉𝑛+1(𝑠) ← max
𝑎

{𝑅 𝑠, 𝑎 + 𝛾𝑉𝑛 𝑇 𝑠, 𝑎 }

Until convergence

 This converges to 𝑉∗ and any greedy policy with 
respect to it will be an optimal policy



Value Iteration
45



Value Iteration
46



Value Iteration
47



Value Iteration
48



Value Iteration
49



Value Iteration
50



Value Iteration
51



Value iteration – Full Version
52



Maze Task
53



Maze Task
54

How would you 

model the MDP?



Maze Task – MDP model
55

 State is a couple: s = 𝑥, 𝑦 , 𝑥, 𝑦 ∈ {1, … , 9} defining the robot 
position

 Actions: 𝐴 𝑠 = {up, down, left, rigℎ𝑡}

(except for those states near the black squares)

 Reward Function: 𝑅 𝑠 =  
−1, ∀𝑠 ≠ 𝐺
100, if 𝑠 = 𝐺

 Transition function: 𝑠′ =

𝑥 + 1, 𝑦 if 𝑎 = right

𝑥 − 1, 𝑦 if 𝑎 = left

𝑥, 𝑦 + 1 if 𝑎 = up

𝑥, 𝑦 − 1 if 𝑎 = down



Maze Task – Value function
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Maze Task – Optimal Path
57



Another Maze Task
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With:

P=0.1 to the right

P=0.1 to the left



Another Maze Task – MDP model
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 Reward function: same as before, except that

𝑅 𝑠 = −100, ∀𝑠 ∈ 𝑆: 𝑥 ≤ 4, 𝑦 = 1

 Transition function:

𝑠 = 𝑥, 𝑦 , 𝑎 = up
𝑃 𝑠′ = 𝑥, 𝑦 + 1 𝑠, 𝑎) = 0.8
𝑃 𝑠′ = 𝑥 + 1, 𝑦 𝑠, 𝑎) = 0.1
𝑃 𝑠′ = 𝑥 − 1, 𝑦 𝑠, 𝑎) = 0.1



Another Maze Task
60



Why is On-line Learning Important?
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 So far, we assumed all system parameters to be 

known

 Finding the optimal policy becomes a 

straightforward computational problem

 E.g., value iteration, but even policy iteration, linear 

programming, ecc…

 What if rewards/transitions probabilities are 

unknown? Can we compute the optimal policy?

 We have to deal with a Reinforcement Learning 

problem!



Agent-Environment Interaction
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 Everything inside the agent is completely known and 

controllable by the agent

 Everything outside is incompletely controllable but may or may not 

be completely known



Agent Knowledge
63

 A reinforcement learning problem can be posed in a 
variety of different ways depending on assumptions 
about the level of knowledge initially available to the 
agent

 In problems of complete knowledge, the agent has a 
complete and accurate model of the environment's 
dynamics 

 If the environment is an MDP, then such a model consists 
of the one-step transition probabilities and expected 
rewards for all states and their allowable actions

 In problems of incomplete knowledge, a complete and 
perfect model of the environment is not available



Q-Values

 For any policy , define 𝑄𝜋: 𝑆 × 𝐴 → 𝑅 by

𝑄𝜋 𝑠, 𝑎 =  𝑡=0
∞ 𝛾𝑡𝑟(𝑡)

 𝑠 0 = 𝑠 is the initial state, 

 𝑎(0) = 𝑎 is the action taken,

 and all subsequent states, actions, and rewards arise following 
policy 

 Just like 𝑉 except that action 𝑎 is taken at the very first 
step and only after this, policy  is followed

 Bellman equations can be rewritten in terms of 

Q-values

66

Again, the correct expression

for a general MDP should use

expected values here



What are Q-values?
67



Q-Values
68

 Relationship between Value function and Q-function

(given the state transition 𝑠 → 𝑠’)

𝑉𝜋(𝑠) = 𝑅 𝑠, 𝜋(𝑠) + 𝛾𝑉𝜋(𝑠′)

versus

𝑄𝜋(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + 𝛾𝑉𝜋(𝑠′)



Q-Values
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 Relationship between Value function and Q-function

𝑉𝜋(𝑠) = 𝑅 𝑠, 𝜋(𝑠) + 𝛾𝑉𝜋(𝑠′)

versus

𝑄𝜋(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + 𝛾𝑉𝜋(𝑠′)



Q-Values
70

 Define 𝑄∗ = 𝑄𝜋∗
, where * is an optimal policy

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝑠′

 Since:

𝑉∗(𝑠) = max
𝑎

𝑅 𝑠, 𝑎 + 𝛾𝑉∗(𝑠′)

 Then:

𝑉∗(𝑠) = max
𝑎

𝑄∗(𝑠, 𝑎)

 And:

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾max
𝑎′

𝑄∗(𝑠′, 𝑎′)



Q-Values
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 The optimal policy * is greedy for 𝑄∗, that is

𝜋∗(𝑠) = argmax
𝑎

𝑄∗(𝑠, 𝑎)

[it follows from 𝑉∗(𝑠) = max
𝑎

𝑄∗ 𝑠, 𝑎 ]



Q-learning Algorithm
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Q is the estimated utility function 

 It tells us how good an action is, given a certain state

 It includes immediate reward for making an action + best 

utility (Q) for the resulting state (future utility)

 It allows to compute the optimal policy

 Q-learning is based on an online estimation of the Q 

function

𝑄(𝑠, 𝑎) ← (1 −  )𝑄(𝑠, 𝑎) +  [ 𝑟(𝑠, 𝑎) + max
𝑎′

𝑄(𝑠′, 𝑎′)]
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Initialize 𝑄(𝑠, 𝑎) arbitrarily

Repeat  (for each decision epoch)

Initialize 𝑠

Repeat (for each step of episode)

Choose 𝑎 from 𝑠 using a policy derived from 𝑄

Take action 𝑎, observe 𝑟(𝑠, 𝑎), 

𝑄(𝑠, 𝑎) ← (1 − 𝛼 )𝑄(𝑠, 𝑎) +  [ 𝑟(𝑠, 𝑎) + max
𝑎′

𝑄(𝑠′, 𝑎′)]

𝑠 𝑠′

until 𝑠 is terminal

Q-learning Algorithm



74 74

Exploitation and exploration

• Q-learning algorithm does not specify what the agent should 

actually do. The agent learns a Q-function that can be used to 

determine an optimal action. There are two things that are 

useful for the agent to do:

– exploit the knowledge that it has found for the current state s by doing 

one of the actions a that maximizes Q[s,a].

– explore in order to build a better estimate of the optimal Q-function. 

That is, it should select a different action from the one that it currently 

thinks is best.
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Choose a from s using a policy derived from Q

– Simple Approach: -greedy policy

–  small number, e.g., 0.1

Generate a random number p

if p  

Choose an action at random   explore

else

Choose the greedy action  𝑎∗ = argmax
𝑎

𝑄(𝑠, 𝑎) exploit

end

Exploitation and exploration



Q-learning discussion
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 Q-learning is guaranteed to converge to the 

optimal Q-values if all Q(s,a) values are updated 

infinitely often (Watkins and Dayan 1992)

 It follows that exploration is necessary

 A common approach is the -greedy strategy

 Q-learning can be very slow to converge to the 

optimal policy, especially if the state space is large

 One of the biggest challenges in the RL field is to 

speed up the learning process



Learning or planning?
77

 Classical DP emphasis for optimal control

 Dynamics and reward structure known

 Off-line computation

 Traditional RL emphasis

 Dynamics and/or reward structure initially unknown

 On-line learning

 Computation of an optimal policy off-line with 

known dynamics and reward structure can be 

regarded as planning



More information
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 You can find more information about MDPs and 

learning here:

https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html


