to ROS

s 2020/2021

Actions

* ROS actions are the best way to implement interfaces to time-
extended, goal-oriented behaviors

 Similar to the request and response of a service, an action uses a goal

to initiate a behavior and sends a result when the behavior is
complete

e But the action further uses feedback to provide updates on the
behavior’s progress toward the goal and also allows for goals to be
canceled

* Actions are asynchronous (in contrast to services)

Actions 2

* The action specification is defined in an .action file
* These files are placed in the package’s ./action directory
* Example for an action file:

Define the goal
uint32 dishwasher id # Specify which dishwasher we want to use

Define the result
uint32 total dishes cleaned

Define a feedback message
float32 percent complete

rosbag

* Data contained in ROS messages can be recorded in .bag files

* To have one recording that can be used repeatedly by playing back
each time the exact operational scenario in which the bag was
registered

Example: sensors data

* An example of the usefulness of bag files is given by registration
messages containing the data produced by the robot sensors

* During experiments with the real robot, sensor data can be registered
in a bag

* Recorded messages can then be loaded without the need to repeat
the experiment, thus allowing more easily develop algorithms that
require frequent parameter changes

Rosbag tool

Command
 rosbag record [OPTION] [TOPIC_NAME]
rosbag info [FILE_NAME]
rosbag play [FILE_NAME]
rosbag compress [FILE_NAME]
rosbag decompress [FILE_NAME]

rosbag filter [INPUT_FILE] [OUTPUT_FILE]
[OPTION]

rosbag reindex bag [FILE_NAME]
rosbag check bag [FILE_NAME]

rosbag fix [INPUT_FILE] [OUTPUT_FILE]
[OPTION]

Description

Record the message of a specific topic on the bsg file
Check information of a bag file

Play a specific bag file

Compress a specific bag file

Decompresses a specific bag file

Create a new bag file with the specific content
removed

Reindex

Check if the specific bag file can be played in the
current system

Fix the bag file version that was saved as an
incompatible version

Rgt visualizer & user interface (1)

e User interface developed in Qt

. ROS or
* Custom interfaces can be setup
* Lots of existing plugins .
* Simple to write own plugins oo e

rqt Emcude Bubex Massapes metoving ANY of thase rvies Wl HOT be duglaye
- s ot Ovinag e Worsing

Rgt visualizer & user interface (2)

* Visualizing images

rosrun rqt_image_view rqt_image_view

Rgt visualizer & user interface (3)

* Visualizing numeric plots

rosrun rqt_multiplot rqt_multiplot

Run all plots
Pause all plots
Clear all plots

Export all plots / Import bag file

N [1
e ’ ..'u' o -:.

ont Pestons

WC B HFEDeied w KFE Dedred @ HAA MaGTed " NQLsed KFE Naasure

L/ “Run/pause ploft
’ e Clear plot
- Export plot
Configure plot
Maximize/restore plot

Y
385

Ragt visualizer & user interface (4)

* Visualizing ros computational graph
rosrun rqt_graph rqt_graph

Default - RosGul

File Plugins Running Perspectives ¢

ROS Graph pCH ox
e Nodes/Topics (all |1/ / - & = |
8 namesp & 4 dsinks B leaf s [Hide Debug [Highlight & Fit
Pirtul_joiok brosdcaster 0 . ND
o _,- m—:ﬂ_‘- - move_group
oot state_pubksher TS Umovesrow o] move_group/diplay_planeed_path

- - — —— - -
_ Aoint_state_publisher »MWI) folanning_scene B

Rgt visualizer & user interface

* Displaying and filtering ROS Messages

rosrun rqt_console rqt_console

Default - RosCui

Running
Console
i Load EZsave Pause Displaying 39 messages

MCSS-)Q:
#12 @ The input topic ‘/narrow_stereo/left/image_raw' is not yet advertised
#10 @ The input topic '/narrow_stereo/right/image_raw’ is not yet advertised
#11 @ The input topic ‘/narrow_stereo/right/camera_info' is not yet advertised
#8 @ The input toplc '/narrow_stereo/left/image_raw' is not yet advertised
#9 @ The input topic /narrow_stereo/lert/camera_info’ is not yet advertised wa
#7 @ wolding arms nfo
#18 @ The input topic "fwide_stereo/right/camera_info’ is not yet advertised
#16 @ The input topic ‘Awide_stereo/left/camera_info' is not yet advertised
717 @ The input topic 'Awide_stereo/right/image_raw’ is not yet advertised
#6 @ The input topic ‘wide_stereo/lert/image_raw’ is not yet advertised wa
#5 @ Moving torso up nfo

Exclude Rules:

Highlight Rules:

Node

/narrow_stereo_textured/..
/narrow_stereo/narrow_st.
/narrow_stereo/narrow _st...
/narrow_stereo/narrow_st.
/narrow_stereo/namow_st...

Jarm_holder

Jwide_stereo/wide_stereo.
Jwide_stereofwide_stereo...
Jwide_stereofwide_stereo.
Jwide_stereofwide_stereo...

Jarm_holder

D CP ox

Clear Resize Columns

Time
21:39:04.833 (2013-05-06)
21:39:02.337 (2013-05-06)
21:39:02.237 (2013-05-06)
21:39:02.336 (2013-05-06)
21:39:02.236 (2013-05-06)
21:39:01.402 (2013-05-06)
21:39:01.086 (2013-05-06)
21:39:01.085 (2013-05-06)
21:39:01.085 (2013-05-06)
21:39:01.085 (2013-05-06)
21:38:56.400 (2013-05-06)

Jre
Jre
Jre
i
Jre
te
Jre
Jre
fre
fie
fe.

Simulation environments in ROS

* Gazebo is the default simulator used in ROS framework, maintained
as a separate project from OSRF.

* CoppeliaSim is a robotic simulators developed by Coppelia Robotics

* Itis a commercial software, that can be obtained for free in its educational
version.

CoppellaSim

from the creators of V-REP

GAZEBO

How does a node work?

¢ Variable initalization)
e Registration with the master
¢ Publisher/Subscriber initialization
e e - e Service initalization
Initialization
J
~
e Execution of the node code
- o . . .
it s During idle time all callbacks are executed
/)
~

e CTRL+C stops the node
e Deregistration from the master

Hello word in ROS

#include <ros/ros.h>
int main(int argc, char* argv(])
{
ros::init(argc, argyv, "hello_world");
ros::NodeHandle nodeHandle;
ros::Rate loopRate(10);
unsigned int count = 0;
while (ros::ok())
{
ROS_INFO_STREAM("Hello World " << count);
ros::spinOnce();
loopRate.sleep();
count++;
}

return O;

}

ROS main header file include
ros::init(...) must be called before other ROS functions

The node handle is the access point for
communications with the ROS system (topics,
services, parameters)

ros::Rate is a helper class to run loops at a desired
frequency

ros::ok() checks if a node should continue running
ROS_INFO() logs messages to the filesystem

ros::spinOnce() processes incoming messages via
callbacks

* ros::spin() processes callbacks and will not return until the
node has been shutdown

Logging In ROS

* Mechanism for logging human readable text from nodes in the
console and to log files

* Different severity levels (INFO, WARN, etc.)
* Instead of std::cout, use e.g. ROS_INFO
e Supports both printf- and stream-style formatting

ROS_INFO("Result: %d", result); // printf
ROS_INFO_STREAM("Result: " << result);

Subscriber

e Start listening to a topic by calling the method subscribe() of the node
handle

ros::Subscriber subscriber = nodeHandle.subscribe(topic, queue_size, callback_function);

 When a message is received, callback function is called with the
contents of the message as argument

Publisher

* Create a publisher with help of the node handle

ros::Publisher publisher = nodeHandle.advertise(topic, queue_size);

* Create the message contents
 Publish the contents with

publisher.publish(message);

Object Oriented Programming

* Main node class providing ROS interface
(subscribers, parameters, timers etc.)

#include #include <ros/ros.h>

incude " package/Pacoge oo’ * Class implementing the algorithmic part of
INT Maintint argc, cnar™ argv
I the node
ros::init(argc, argv, "my package"); . .
sl b i 4 odettandle * Note: The algorithmic part of the code could
my package::lVlyFackage myrackage{nodemnandie), . . .
roszspin(); be separated in a (ROS-independent) library
return 0;
: Specify a function handler to a method

from within the class as

subscriber_ = nodeHandle_.subscribe(topic, queue_size, &ClassName::methodName,
this);

Additional Resources

e Site: http://www.ros.org/

* Blog: http://www.ros.org/news/

* Documentation: http://wiki.ros.org/

http://www.ros.org/
http://www.ros.org/news/
http://wiki.ros.org/

