
Introduction to ROS
Marco Bernardi

Internet of Things 2020/2021

Actions

• ROS actions are the best way to implement interfaces to time-
extended, goal-oriented behaviors
• Similar to the request and response of a service, an action uses a goal

to initiate a behavior and sends a result when the behavior is
complete
• But the action further uses feedback to provide updates on the

behavior’s progress toward the goal and also allows for goals to be
canceled
• Actions are asynchronous (in contrast to services)

Actions 2

• The action specification is defined in an .action file
• These files are placed in the package’s ./action directory
• Example for an action file:

rosbag

• Data contained in ROS messages can be recorded in .bag files

• To have one recording that can be used repeatedly by playing back
each time the exact operational scenario in which the bag was
registered

Example: sensors data

• An example of the usefulness of bag files is given by registration
messages containing the data produced by the robot sensors
• During experiments with the real robot, sensor data can be registered

in a bag
• Recorded messages can then be loaded without the need to repeat

the experiment, thus allowing more easily develop algorithms that
require frequent parameter changes

Rosbag tool

Rqt visualizer & user interface (1)

• User interface developed in Qt
• Custom interfaces can be setup
• Lots of existing plugins
• Simple to write own plugins

rqt

Rqt visualizer & user interface (2)

• Visualizing images

rosrun rqt_image_view rqt_image_view

Rqt visualizer & user interface (3)

• Visualizing numeric plots

rosrun rqt_multiplot rqt_multiplot

Rqt visualizer & user interface (4)

• Visualizing ros computational graph

rosrun rqt_graph rqt_graph

Rqt visualizer & user interface (5)

• Displaying and filtering ROS Messages

rosrun rqt_console rqt_console

Simulation environments in ROS

• Gazebo is the default simulator used in ROS framework, maintained
as a separate project from OSRF.
• CoppeliaSim is a robotic simulators developed by Coppelia Robotics
• It is a commercial software, that can be obtained for free in its educational

version.

How does a node work?

Initialization

• Variable initalization
• Registration with the master
• Publisher/Subscriber initialization
• Service initalization

Infinite loop

• Execution of the node code
• During idle time all callbacks are executed

Shutdown

• CTRL+C stops the node
• Deregistration from the master

Hello word in ROS

• ROS main header file include
• ros::init(…) must be called before other ROS functions
• The node handle is the access point for

communications with the ROS system (topics,
services, parameters)

• ros::Rate is a helper class to run loops at a desired
frequency

• ros::ok() checks if a node should continue running
• ROS_INFO() logs messages to the filesystem
• ros::spinOnce() processes incoming messages via

callbacks
• ros::spin() processes callbacks and will not return until the

node has been shutdown

#include <ros/ros.h>
int main(int argc, char* argv[])
{

ros::init(argc, argv, "hello_world");
ros::NodeHandle nodeHandle;
ros::Rate loopRate(10);
unsigned int count = 0;
while (ros::ok())
{

ROS_INFO_STREAM("Hello World " << count);
ros::spinOnce();
loopRate.sleep();
count++;

}
return 0;
}

Logging in ROS

• Mechanism for logging human readable text from nodes in the
console and to log files
• Different severity levels (INFO, WARN, etc.)
• Instead of std::cout, use e.g. ROS_INFO
• Supports both printf- and stream-style formatting

ROS_INFO("Result: %d", result); // printf
ROS_INFO_STREAM("Result: " << result);

Subscriber

• Start listening to a topic by calling the method subscribe() of the node
handle

• When a message is received, callback function is called with the
contents of the message as argument

ros::Subscriber subscriber = nodeHandle.subscribe(topic, queue_size, callback_function);

Publisher

• Create a publisher with help of the node handle

• Create the message contents
• Publish the contents with

ros::Publisher publisher = nodeHandle.advertise(topic, queue_size);

publisher.publish(message);

Object Oriented Programming

#include #include <ros/ros.h>
#include "my_package/MyPackage.hpp"
int main(int argc, char* argv[])
{

ros::init(argc, argv, "my_package");
ros::NodeHandle nodeHandle("~");
my_package::MyPackage myPackage(nodeHandle);
ros::spin();
return 0;

}

• Main node class providing ROS interface
(subscribers, parameters, timers etc.)
• Class implementing the algorithmic part of

the node
• Note: The algorithmic part of the code could

be separated in a (ROS-independent) library

• Specify a function handler to a method
from within the class as

subscriber_ = nodeHandle_.subscribe(topic, queue_size, &ClassName::methodName,
this);

Additional Resources

• Site: http://www.ros.org/
• Blog: http://www.ros.org/news/
• Documentation: http://wiki.ros.org/

http://www.ros.org/
http://www.ros.org/news/
http://wiki.ros.org/

