
Introduction to ROS
Marco Bernardi

Internet of Things 2020/2021

Robotics Revolution

Problems in robotic development….before ROS

• Lack of standards

• Little code reusability

• New robot in the lab = start re-coding from scratch

• Keeping reinventing (or rewriting) device drivers

• Access to robot’s interfaces,

• Management of on-board processes,

• …

What is ROS?

• ROS is an open-source robot
operating system

• A set of software libraries and
tools that help you build robot
applications that work across a
wide variety of robotic platforms

• Originally developed in 2007 at
the Stanford Artificial Intelligence
Laboratory and development
continued at Willow Garage.
Since 2013 managed by OSRF
(Open Source Robotics
Foundation)

ROS Main Features

• ROS has two "sides"
• The operating system side , which provides standard operating system

services such as:
• hardware abstraction

• Low level device control

• implementation of commonly used functionality

• message passing between processes

• package management

• A suite of user contributed packages that implement common robot
functionality such as SLAM, planning, perception, vision, manipulation, etc.

ROS Main Features 2

• Code reuse(exec. nodes, groupedin packages)

• Distributed, modular design (scalable)

• Language independent(C++, Python, Java, …)

• ROS-agnostic libraries(code is ROS in dep.)

• Easy testing (ready-to-use)

• Vibrant community & collaborative environment

ROS =plumbing+ tools+ capabilities+
ecosystem

publish-subscribe
messaging
infrastructure
designed to
support the quick
and easy
construction of
distributed
computing
systems.

tools for configuring,
starting, introspecting,
debugging, visualizing,
logging, testing, and
stopping distributed
computing systems.

a broad
collection of
libraries that
implement
useful robot
functionality,
with a focus on
mobility,
manipulation,
and perception.

ROS is
supported and
improved by a
large
community, with
a strong focus
on integration
and
documentation.

Robot specific features

• Provides tools for
• Message Definition
• Process Control
• File System
• Build System

• Provides basic functionalities like:
• Device Support
• Navigation
• Control of Manipulator
• Object Recognition

Integration with external libraries

• ROS provides seamless integration of external libraries and popular
open-source projects

ROS Version

• ROS is currently supported only
on Ubuntu and Debian

• other variants such as
Windows,Mac OS X, and Android
are considered experimental

• Current ROS Noetic runs on
Ubuntu 20.04

http://wiki.ros.org/noetic/Installa
tion

http://wiki.ros.org/noetic/Installation

ROS ENVIRONMENT
• ROS is fully integrated in the Linux environment: the rosbash package

contains useful bash functions and adds tab completion to a large
number of ROS utilities

• After installing, ROS, setup.*sh files in '/opt/ ros /<distro>/’, need to
be sourced to start rosbash

• After compiling ROS nodes, setup.*sh files in ‘/devel/, need to be
sourced

• This command needs to be run on every new shell to have access to
the ros commands.

ROS Core Concepts

• Packages

• Nodes

• ROS Masters

• Messages and Topics

• Services

• Actions

Packages

• The ROS packages are the most basic unit of the ROS software.
• It contains the ROS runtime process (nodes), libraries, configuration files,

and so on, which are organized together as a single unit.
• Packages are the atomic build item and release item in the ROS software.

• A ROS package is a directory inside a catkin workspace that has a
package.xml file in it

• A catkin workspace is a set of directories in which a set of related
ROS code/packages live (catkin is the ROS build system: CMake +
Python)

• It is possible to have multiple workspaces, but work can performed
on only one at a time

Structure of a workspace

Catkin workspace folders

• Source space: workspace_folder/src
• Contains the source code of the packages. Each folder withing the source

space contains one or more packages

• Build space: workspace_folder/build
• Where catking invoce the cmake to build the packages in source space. Cmake

and catking keep their cache information and other intermediate files here.

• Devel space: workspace_folder/devel
• Where the build targets are placed before being installed

• Install space: workspace_folder/install
• Once the targets are build, they can be installed into the install space by

invoking the install targets

Layout of a package

• Source files implement nodes, can be written in multiple languages

• Nodes are launched individually or in groups, using launch files

Create a new package

• catkin_create_pkg: Tool for creating a new package

catkin_create_pkg <package_name> [depend1] [depend2] [depend3]

Dependencies of a package

• rospack: ROS package management tool

rospack depends1 <package_name>

Dependencies of a package (another way)

• Package.xml: defines properties about the package such as the
package name, version numbers, authors, maintainers, and
dependencies on other catkin packages

Indirect dependencies

• A depencies can have its own depencies

• Check all dependencies of a package

rospack depends <package_name>

Compiling a package
• Using catkin_make tool

• Build folder: configure and build your packages.

• Devel folder: executables and libraries

Nodes

• Single purposed executable programs (e.g. sensor driver(s), actuator
driver(s), map building, planner, UI, etc.)

Nodes 2

• Nodes are written using a ROS client library
• roscpp C++ client library

• rospy python client library

• Individually compiled, executed, and managed

• Nodes can publish or subscribe to a Topic

• Nodes can also provide or use a Service or an Action

Nodes: a practical example

Topic Image

CAMERA
NODE

Publish

CAR
DETECTION

NODE

Subscribe

PEDESTRIAN
DETECTION

NODE

Subscribe

ROS Master

• The ROS master provides naming and registration services to enable
the nodes to locate each other and, therefore, to communicate

• Every node registers at startup with the master

roscore

Information about nodes

• Listing running nodes

• Extracting nodes information

rosnode list

rosnode info /rosout

Running a node: rosrun

• use the package name to directly execute a node within the package
(without having to know the package path)

rosrun [package_name] [node_name]

Running a node: rosrun 2
• Check the nodes list

• Remapping argument: change the node name

rosrun turtlesim turtlesim_node __name:=mia_tartaruga

The node is up?

• To verify if the node is running use rosnode ping

rosnode ping [node_name]

Kill a node

rosnode kill [node_name]

Topic and messages

• Communication in ROS exploits messages

• Messages are organized in topics

• A node that wants to share information will publish messages on a
topic(s)

• A node that wants to receive information will subscribe to the topic(s)

• ROS master takes care of ensuring that publishers and subscribers can
find each other

List of the current topic

• Returns a list of all topics currently subscribed and published.

Type of a topic

• The publisher and subscriber must send and receive the same
"message type".

• A topic type is defined by the message type posted on it.

rostopic type [topic] rosmsg show [topic]

Type of a topic 2

• The message type can consist of more complex structures

Publish on a topic

rostopic pub [topic] [topic_type]
[val1] … [valN]

Print topic messages

• Print messages published to a topic

rostopic echo [topic]

Creating a messages

• Messages in ROS are .msg files stored in the corresponding package
folder, within the msg dir

• Supported field types:
• int8, int16, int32, int64 (plus uint*)

• float32, float64

• String

• time, duration

• othermsg files

• variable length array [] and fixed length array [C]

• Header: timestamp and coordinate frame information

Creating a messages 2

• Make sure that msg files are turned into source code for C++, Python,
and other languages

• Package.xml

• CmakeLists.xml

<build_depend>message_generation</build_depend>
<exec_depend>message_runtime</exec_depend>

find_package(catkin REQUIRED
COMPONENTS

roscpp
rospy

std_msgs
message_generation

)

catkin_package(
...

CATKIN_DEPENDS
message_runtime ...

...)

add_message_files(
FILES

Num.msg
)

Services

• Services are another way that nodes can communicate with each
other.

• It allows nodes to send a request and receive a response.

rosservice list

Type of a service

rosservice type spawn

• As for the topic, the service are defined by a type.

Call a service

rosservice call [service] [args]

Creating a service

• service files (srv) are just like msg files, except they contain two parts:
a request and a response. The two parts are separated by a '---' line.

• A and B are the request, and Sum is the response.

int64 A
int64 B

int64 Sum

Sum.srv

Creating a service 2

• Make sure that srv files are turned into source code for C++, Python,
and other languages

• Package.xml

• CmakeLists.xml

<build_depend>message_generation</build_depend>
<exec_depend>message_runtime</exec_depend>

find_package(catkin REQUIRED
COMPONENTS

roscpp
rospy

std_msgs
message_generation

)

add_service_files(
FILES

Sum.msg
)

Anatomy of ROS NODE

Additional Resources

• Site: http://www.ros.org/

• Blog: http://www.ros.org/news/

• Documentation: http://wiki.ros.org/

http://www.ros.org/
http://www.ros.org/news/
http://wiki.ros.org/

