Nn to ROS

Bernardi
hings 2020/2021

Robotics Revolution

Problems in robotic development....before ROS

 Lack of standards

e Little code reusability

* New robot in the lab = start re-coding from scratch
* Keeping reinventing (or rewriting) device drivers
 Access to robot’s interfaces,
* Management of on-board processes,

What is ROS?

ROS is an open-source robot
operating system

A set of software libraries and
tools that helﬂ you build robot
applications that work across a
wide variety of robotic platforms

Originally developed in 2007 at
the Stanford Artificial Intelligence
Laboratory and development
continued at Willow Garage.
Since 2013 managed by OSRF
(Open Source Robotics
Foundation)

ROS Main Features

* ROS has two "sides"

* The operating system side , which provides standard operating system
services such as:
* hardware abstraction
* Low level device control
* implementation of commonly used functionality
* message passing between processes
e package management

* A suite of user contributed packages that implement common robot
functionality such as SLAM, planning, perception, vision, manipulation, etc.

ROS Main Features 2

Code reuse(exec. nodes, groupedin packages)

Distributed, modular design (scalable)

* Language independent(C++, Python, Java, ...)

ROS-agnostic libraries(code is ROS in dep.)

Easy testing (ready-to-use)

Vibrant community & collaborative environment

ROS =plumbing+ tools+ capabilities+
ecosystem

Plumbing

publish-subscribe
messaging
infrastructure
designed to
support the quick
and easy
construction of
distributed
computing
systems.

Tools

tools for configuring,
starting, introspecting,
debugging, visualizing,
logging, testing, and
stopping distributed
computing systems.

+ Sl

.
.
L
N
-

y
o

Capabilities Ecosystem
a broad ROS is
collection of supported and
libraries that improved by a
implement large
useful robot community, with
functionality, a strong focus
with a focus on on integration
mobility, and
manipulation, documentation.

and perception.

Robot specific features

* Provides tools for
* Message Definition
* Process Control
* File System
* Build System

* Provides basic functionalities like:
* Device Support
* Navigation
e Control of Manipulator
* Object Recognition

N ‘ -!
. 7 (ey L ‘
5 e

Fraunhofer IPA Care-O- i
bot

=)

Aldebaran Nao m

= \\
Willow Garage PR2 A

Merlin miabotPro 4_;

|
L

[2y

Clearpath Robotics Husky &

Videre Erratic TurtleBot
Shadow
Lego NXT M

=
‘
M

iRobot Roomba

*fRobotnik

AscTec
Quadrotor

Clearpath
Robotics

Kingfisher

Integration with external libraries

* ROS provides seamless integration of external libraries and popular
open-source projects

O

dpénCV

ROS Version

» ROS is currently supported only
on Ubuntu and Debian

e other variants such as
Windows,Mac OS X, and Android
are considered experimental

e Current ROS Noetic runs on
Ubuntu 20.04

http://wiki.ros.org/noetic/Installa
tion

http://wiki.ros.org/noetic/Installation

ROS ENVIRONMENT

* ROS is fully integrated in the Linux environment: the rosbash package
contains useful bash functions and adds tab completion to a large
number of ROS utilities

 After installing, ROS, setup.*sh files in '/opt/ ros /<distro>/’, need to
be sourced to start rosbash

» After compiling ROS nodes, setup.*sh files in ‘/devel/, need to be
sourced

* This command needs to be run on every new shell to have access to
the ros commands.

ROS Core Concepts

 Packages

* Nodes

* ROS Masters
 Messages and Topics
* Services

* Actions

Packages

* The ROS packages are the most basic unit of the ROS software.

* [t contains the ROS runtime process (nodes), libraries, configuration files,
and so on, which are organized together as a single unit.

 Packages are the atomic build item and release item in the ROS software.

* A ROS package is a directory inside a catkin workspace that has a
package.xml file in it

* A catkin workspace is a set of directories in which a set of related

ROS code/packages live (catkin is the ROS build system: CMake +
Python)

* |tis possible to have multiple workspaces, but work can performed
onh only one at a time

Structure of a workspace

ros_workspace
. build

| .

| Ilivel
L, __src
f: CMakeLists.txt
tutorial pkg
| CMakeLists.txt
+ 1nclude
l_ tutorial pkg
+ package.xml
| _src

Catkin workspace folders

* Source space: workspace folder/src
* Contains the source code of the packages. Each folder withing the source
space contains one or more packages
* Build space: workspace folder/build
* Where catking invoce the cmake to build the packages in source space. Cmake
and catking keep their cache information and other intermediate files here.
* Devel space: workspace folder/devel
* Where the build targets are placed before being installed

* Install space: workspace_folder/install

* Once the targets are build, they can be installed into the install space by
invoking the install targets

Layout of a package

* Source files implement nodes, can be written in multiple languages
* Nodes are launched individually or in groups, using launch files

Directory | Explanation

include/ C++ include headers

src/ Source files

msg/ Folder containing Message (msg) types
srv/ Folder containing Service (srv) types
launch/ Folder containing launch files
package.xml The package manifest

CMakelists.txt CMake build file

Create a new package

 catkin_create_pkg: Tool for creating a new package

catkin_create pkg <package name> [dependl] [depend2] [depend3]

: $ catkin create pkg my first package std msgs rospy roscpp

Created file my first package/package.xml

Created file my first ps kelLists.txt
nclude/my first package

in /home/marcobernardi/RO5_TUTORIAL/ros workspace/src/my first package. Please adjust the walues in package.xml.

Dependencies of a package

* rospack: ROS package management tool

rospack dependsl <package name>

% rospack dependsl my_first_package

Dependencies of a package (another way)

* Package.xml: defines properties about the package such as the
package name, version numbers, authors, maintainers, and
dependencies on other catkin packages

<buildtool depend>catkin</buildtool depend:
<build depend>roscpp</build depend:

<build depend>rospy</build depend:

<build depend>std msgs</build depend:

<build export depend>roscpp</build export depend:

<build export depend>rospy</build export_depend:
<build export depend>std msgs</build export_depend:>
<exec_dependrroscpp</exec_depend>
<{exec_dependrrospy</exec_depend:>

<exec_depend>std msgs</exec_depend:>

Indirect dependencies

* A depencies can have its own depencies

xmlrpcpp

* Check all dependencies of a package

rospack depends <package name>

Compiling a package

e Using catkin_make tool

* Build folder: configure and build your packages.
* Devel folder: executables and libraries

nd gt g e £ i he built

na gmock

Generating

-- Build il

Nodes

* Single purposed executable programs (e.g. sensor driver(s), actuator
driver(s), map building, planner, Ul, etc.)

ROS

MASTER

Registration Registration

Publisher Subscriber
Node Node

Topic
Message

Nodes 2

* Nodes are written using a ROS client library
e roscpp C++ client library
* rospy python client library

* Individually compiled, executed, and managed
* Nodes can publish or subscribe to a Topic
* Nodes can also provide or use a Service or an Action

Nodes: a practical example

Topic Image

Subscribe

Publish
Subscribe

®

Cﬁ'\é'[EDEA PEDESTRIAN
DETECTION
CAR NODE
DETECTION

NODE

ROS Master

* The ROS master provides naming and registration services to enable
the nodes to locate each other and, therefore, to communicate

* Every node registers at startup with the master

e

J/roslaunch-marcobernardi-Precision-3558-18794. log

usage. Usage is <1GB.

http://marcobernardi-Precision-3550: 35091/

roscore

Information about nodes

e Listing running nodes

rosnode list

:~% rosnode list

‘rosout

:~% rosnode info Sfrosout

Node [/rosout]
Publications:
* [rosout_agg [rosgraph_msgs/Log]

Subscriptions:

rOSnOde infO /rOSOUt * frosout [unknown type]

/rosout/get_loggers
* frosout/set_logger level

contacting
Pid: 18812

Running a node: rosrun

* use the package name to directly execute a node within the package
(without having to know the package path)

rosrun [package _name] [node_name]

INFO] [1619256489.094648373]: Starting turtlesim with node name /turtlesim

marcobernardi@marcobernardi-Precision-3550:~/catkin_ws/src$ rosrun turtlesim turtlesim_node
[
INFO] [1619256489.098432194]: Spawning turtle [turtlel] at x=[5,544445], y=[5,544445], theta=[0,000000]

Running a node: rosrun 2
* Check the nodes list

L *

Fturtlesim

 Remapping argument: change the node name

rosrun turtlesim turtlesim_node __name:=mia_tartaruga

e, & snode list

/mia_tartaruga

frosout

The node is up?

* To verify if the node is running use rosnode ping

rosnode ping [node_name]

$ rosnode ping mia_ tartaruga

rosnode: node is [/mia_tartaruga]
pinging /mia_tartaruga with a timeout of 3.8s
xmlrpc reply from http://marcobernardi-Precision-3

: 4B695
xmlrpc reply from http://marcobernardi-Precision-3 : 48695/

8 -4817315ms
8
xmlrpc reply from http://marcobernardi-Precision-3558:48695/
8
8

.B827835ms
.B859468ms
.028329ms

.B849288ms

=t
el
= =
M m
| I |

xmlrpc reply from http://marcobernardi-Precision-3 : 48695/
: 4B695

xmlrpc reply from http://marcobernardi-Precision-35

=t
el
= =
M m
| -
Fd = P B3 5

=t
[
=]
m
Il

Kill a node

rosnode kill [node_name]

$ rosnode kill /mia_tartaruga

killing /mia_tartaruga
killed

Topic and messages

* Communication in ROS exploits messages
* Messages are organized in topics

* A node that wants to share information will publish messages on a
topic(s)

* A node that wants to receive information will subscribe to the topic(s)

* ROS master takes care of ensuring that publishers and subscribers can
find each other

List of the current topic

* Returns a list of all topics currently subscribed and published.

:~% rostopic list -w

Publl hed topic
frosout_agg [rosgraph _msgs/Log] 1 publisher
* frosout [r f publisher
* fturtlel/ p _ 1 publisher
*= fturtlel/« " nsor . im/Color] 1 publisher

Subscribed topics:
* frosout [rosgraph msgs/Log]
* fturtlel/cmd vel [geometry msgs/Twi 1 subscriber

Type of a topic

* The publisher and subscriber must send and receive the same
"message type".

* A topic type is defined by the message type posted on it.

rostopic type [topic] rosmsg show [topic]

:~% rostopic type /turtlel/pose
turtlesim/Pose
:~% rosmsg show turtlesim/Pose

tloat32 theta
tloat32 linear_velocity
tloat32 angular_velocity

Type of a topic 2

* The message type can consist of more complex structures

floated
floatbd y
floated z

geometry msgs/Vector3 linear
X

geometry msgs/Vector3 angular
floatbd x
floatbd y
floated =z

Publish on a topic

marcobernardi@marcobernardi-Precision-3550:~/catkin_ws/srcS$ rostopic pub -1 fturtlel/cmd vel geometry msgs/Twist -- '[2.0,0.08,0.0]"

publishing and latching message for 3.8 seconds

rostopic pub [topic] [topic_type]
[vall] ... [vaIN]

TurtleSim

'[1.8,0.0,0.0]"

Print topic messages

* Print messages published to a topic

rostopic echo [topic]

marcobernardi@marcobernardi-Precision-3550:~/catkin_ws/src$ rostopic echo fturtlel/cmd vel
linear:
X: 2.0

Creating a messages

* Messages in ROS are .msg files stored in the corresponding package
folder, within the msg dir

e Supported field types:
* int§, intl16, int32, int64 (plus uint™®)
float32, float64
String
time, duration
othermsg files
variable length array [] and fixed length array [C]
Header: timestamp and coordinate frame information

Creating a messages 2

* Make sure that msg files are turned into source code for C++, Python,
and other languages

* Package.xml

<build_depend>message_generation</build_depend>
<exec_depend>message_runtime</exec_depend>

* CmakelLists.xml
find_package(catkin REQUIRED

COMPONENTS catkin_package(T T e
roscpp FILES
rospy CATKIN_DEPENDS
: Num.msg
std_msgs message_runtime ...)

message_generation ..)

)

Services

 Services are another way that nodes can communicate with each
other.

* It allows nodes to send a request and receive a response.

rosservice list

fclear

/kill
/mia_tartaruga/get_loggers
/mia_tartaruga/set_logger_level
/reset

/rosout/get_loggers

/rosout/set_logger level

/rostopic_149390 1619268518688,/ get_loggers
/rostopic 14939 1619268518688/ et logger level
/spawn

/turtlel/set_pen

/turtlel/teleport_absolute

/turtlel/teleport relative

Type of a service

* As for the topic, the service are defined by a type.

rosservice type spawn

:~% rosservice type spawn| rossrv show
¥

Float32 theta

string name

string name

Call a service

rosservice call [service] [args]

[e =T == ==

marcnbernardi@marEnbernardi-Precisinn-BSSﬂ:~fcatkin_wsfsrc$ rosservice call /spawn 2 2 0.2 ""
name: "turtle2"

TurtleSim

Creating a service

* service files (srv) are just like msg files, except they contain two parts:
a request and a response. The two parts are separated by a '---' line.

* A and B are the request, and Sum is the response.

int64 A
int64 B

int64 Sum

Sum.srv

Creating a service 2

* Make sure that srv files are turned into source code for C++, Python,
and other languages

* Package.xml

<build_depend>message_generation</build_depend>
<exec_depend>message_runtime</exec_depend>

* CmakelLists.xml
find_package(catkin REQUIRED

COMPONENTS . .
add_service_files(
rosepp FILES
rospy
std_msgs Surr;.msg

message_generation

)

Anatomy of ROS NODE

ros: :Publisher pub;

// function called whenever a message is received

void my callback (MsgType* m) {
OtherMessageType m2;
/] deo something with m and valorize m2
pub.publish (m2) ;

int main(int argc, char** argv) {
// initializes the ros ecosystem
ros::init{argc, argv);

// object to access the namespace facilities
ros: :NodeHandle n;

// tell the world that you will provide a topic named “published topic™
pub. advertise<OtherMessageType> ("published topic™);

// tell the world that you will provide a topic named “published topic™
Subscriber s =n.subscribe<MessageType*>("my topic™,my callback);
ros: :spin() ;

Additional Resources

e Site: http://www.ros.org/

* Blog: http://www.ros.org/news/

 Documentation: http://wiki.ros.org/

http://www.ros.org/
http://www.ros.org/news/
http://wiki.ros.org/

