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IoT radio technologies
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• Different options available…



Low Power Wide Area Networks (LPWAN)

• Typical network architecture:
– A base-station at highly exposed sites serves up to one 

million sensor nodes
– Small and cost-efficient sensors nodes communicate using 

ultra-low power over ultra-long distances

e.g. 10km

e.g. 10dBm

e.
g.

 1
00

m
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Challenges of LPWAN
• Ultra-low power in addition to long distances leads to very 

weak reception levels
– typical assumption < -140dB
– very low bit rates (1 < kbit/s)

• Interference from other services when license-exempt bands 
are used (ISM)
– e.g. 434MHz, 868/915MHz, 2.4GHz

• Further increased interference at base-station due to highly 
exposed antennas

• Concepts as CSMA do not work because of the hidden node 
problem
– Use of spread spectrum (e.g. DSSS) or frequency hopping
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Licensed or ISM? 
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What are LoRa and LoRaWAN?
• LoRa: an innovative physical layer, very robust, for 

providing connectivity to low power smart objects

• LoRaWAN: a complete stack for building wide area 
networks on top of LoRa links



LoRa Technology and Stack

Standardized MAC/PHY
One stack, many suppliers

Patented PHY + open LoRaWAN MAC 
One supplier, personalized stacks

MAC

PHY PHY

MAC

Typical Stack LoRa Stack
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Patended PHY layer, standardized MAC (LoRaWAN):



LoRa PHY



How to reach very far distances?

• Increasing energy per bit
– By acting on transmit power
– By using spread spectrum for
coding a bit with a large bandwidth

• LoRa acts on spread spectrum
– A variation of chirp-spread spectrum
– Robust to interference, multipath, and fading
– Developed by Cycleo, acquired by Semtech in 2012
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Symbols and Spreading Factor (SF)
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Different 
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namely 
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Comparison with other modulations

tim
e

frequency

on-off keying frequency keying LoRa

Source: Matt Knight

bit 1

bit 0

constant envelope modulation, 
easy to implement
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LoRa Demodulation

Source: Matt Knight It can work 20dB under the noise floor!
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LoRa receiver
• Multiply the received signal 

with the raw down-chirp
• The resulting signal is made 

of two periods, each having 
a constant frequency (d)

• (Down)sample the signal at 
the chip rate, i.e., at BW Hz

• The estimated symbol index 
is the position of the peak 

at the output of an iFFT (e)

[Source] C. Goursaud, J.M. Gorce, “Dedicated 
networks for IoT: PHY / MAC state of the art and 
challenges”, in EAI endorsed trans. on IoT, 2015.
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LoRa ISM frequency bands
• Maximum transmission 

power 14dBm (25mW)
• Three possible 

bandwidths
– 125, 250, 500KHz

• 6 SFs available
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Summary on Data Rates @125 KHz

with two additional high-speed channels at 11kbps and 50kbps (FSK modulation)
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Coverage
• Different sensitivities map to different distances

– e.g. from -126.50 dBm for SF7 to -133.25dBm for SF12
– 7 dB difference with a propagation coefficient equal to 
h=4 correspond to a factor of about 2.5 between
range(SF12) and range(SF7)

• Typical links of a few Km
– Experimental tests with a GW
on top of a 3 floor building (SF12)
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Up to hundreds of km in Line of Sight!
LoRa from space? 

– the Norwegian Space 
Centre, NORSAT-2 which 
normally transmits AIS 
information in the VHF 
bands was modified to 
transmit LoRa messages 
from 600km!
ü Sent on the Ku band, but 

on LoRa modulation
LoRa from a balloon at 
38km from the ground
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LoRa Inter-SF Interference

• Symbols using different 
SFs are orthogonal only if 
perfectly synchronized!
– In practice, never!
– Capacity is affected by 

non-null cross-
correlation 
üRejection thresholds as 

low as -10dB
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LoRa Intra-SF Interference

• If the symbol is correctly 
synhcronized, very high 
capture probability
– Collisions with signals 

transmitted at the 
same SF very often 
result in the correct 
reception of the 
strongest one!
üCapture threshold of 

about 1dB
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LoRaWAN



What is LoRaWAN?
• Communications protocol and architecture that 

utilizes the LoRa physical layer
– Standardized by the LoRa Alliance
– www.lora-alliance.org

• Supports:
– secure bi-directional communication
– mobility
– localization
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Network Nodes
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LoRaWAN Architecture

Source: Thomas Telkamp
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End Devices
• Three classes of devices for different 

application requirements
– Class A: each uplink transmission is 

followed by two short downlink receive 
windows

– Class B: like A, but extra receive windows 
at scheduled times

– Class C: continous receive window, 
except when transmitting
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Receiver Windows
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Battery lifetime vs latency
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Gateway
• Collection points deployed on field

– All GWs receive ALL channels ALL the time
üNo network controller or reuse planning required 

– Sensors can communicate with any gateway
– All correctly demodulated packets are forwarded to the 

network server
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Network Server
• Network intelligence centralized

– Responsible of identifying duplicates between
packets

– Data validation and demultiplexing / multiplexing 
to application servers
üMultiple application providers can co-exist on the same

network
– Localization possible, thanks to a central time 

reference for all gateways
• Low cost gateways, since decisions on network 

configurations (if any) are taken by the server
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Application Examples
• Agriculture

– Animal health monitoring
– Water conservation

• Asset management
– Utilization of resources
– Asset tracking

• Smart City
– Energy conservation
– Operational efficiencty

• Smart Buildings
– Deep indoor pentratation
– Safety and security
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LoRaWAN Frame
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Security
• Two layers of security

– Network (newSkey)
– Application (128 bit key 

length)
• Network security for 

authenticating users and 
add message integrity check

• Application security for 
separating application data 
from network operators

• Static activation (pre-
configured) or over the air
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Over-The-Air-Activation (OTAA)
• Alternative to static activation configuration.
• Join procedure prior to participating in data exchanges 

with the Network Server
• A node has to go through a new join procedure every time 

it has lost the session context information.
• Required information prior to OTAA:

– JoinEUI: global application ID in IEEE EUI64 address space that 
uniquely identifies the Join Server (for session keys derivation)

– DevEUI: Globally unique device identifier in IEEE EUI64 space
– AppKey: root AES-128 encryption key specific for the end-device; 

extracting the AppKey from a node compromises this node only!
– NwkKey: root AES-128 key specific to the end-device, but 

provided by the network operator
32



Over-The-Air-Activation (OTAA)

• NwkSEncKey = aes128_encrypt(NwkKey, 0x04 | 
JoinNonce | JoinEUI | DevNonce | pad16)

• AppSKey = aes128_encrypt(AppKey, 0x02 | JoinNonce | 
JoinEUI | DevNonce | pad16)
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MAC Commands
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Performance evaluation



Single cell LoRa capacity
• Basically, a pure aloha system

– Very limited system efficiency of about 18%!
• For a given traffic model, what is the maximum 

number of nodes which guarantees to work in stable 
conditions?

• Can capture effects improve such a result?
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Back to ALOHA
• No synchronization at all between transmissions
• If a pkt needs transmission:

– send immediately, provided that duty cycle is satisfied
• In case of collisions, reschedule or cancel 

– In LoRa ACKs from the gateways are used rarely, therefore cancel
• Simplifying assumptions:

– Extremely high number of devices
– Fixed length frames
– Frame arrival rate follows Poisson distribution

new frame 
arrival

packet

new frame 
arrival

packet packet

new frame 
arrival

packet

rnd RTX delay
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Analysis of Pure ALOHA 
• Notation:

– T = pkt_time 
– S: average number of successful transmissions per pkt_time; 

that is, the throughput or efficiency.
ü e.g. 2frames/6pkt_time

– G: average number of total frames transmitted per pkt_time
ü e.g. 2frames/6pkt_time in the first case, 6frames/6pkt_time in the 

second case

Packet T Packet T

Packet T Packet T Packet TPacket T Packet T Packet T
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Vulnerability period: 2T

Packet TTarget STA

Interfering 
STA

TT

OK!

Collision on initial 
part of the pkt

Collision on final 
part of the pkt
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Analysis of Pure ALOHA
Using Pr to have k transmissions at time t:

and considering: 

we have:
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Maximum Throughput 
is only 18% of the 
network capacity!!



Channel captures and ortogonality
• What happens in case of collision depends on the Signal-

to-Interference-Ratio (SIR)
– if the packets have the same SF à capture effect
– if packets have different SF à imperfect orthogonality
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referenceinterferer
Minimum SIR [dB] that allows to demodulate the reference signal



Intra-SF Interference
• For each node, packets 

received at lower power, 
do not prevent correct 
reception
– Competing load for 

each device at 
distance r  is lower 
than the whole G

Maximum Throughput can be much higher than 18%!!

LoRaSIM Open 
Source Simulator
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• Aloha à dashed lines

• Our model à solid lines

• Simulations à markers
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Data Extraction Rate (DER) with captures
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Inter-SF Interference
• Each SF, cannot be really 

considered as independent 
channel
– Close nodes can create 

collisions with different SFs
– Each device at distance r 

has an extra competing 
load from other SFs

In presence of multiple SFs, maximum throughput 
of each channel could be lower than 18%!!
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DER with inter-SF interferece

45

0 500 1000 1500 2000
End devices

0

0.2

0.4

0.6

0.8

1

D
at

a 
Ex

tra
ct

io
n 

R
at

e

SF 7
SF 8
SF 9
SF 10
SF 11
SF 12

0 500 1000 1500 2000
End devices

0

0.2

0.4

0.6

0.8

1

D
at

a 
Ex

tra
ct

io
n 

R
at

e

SF 7
SF 8
SF 9
SF 10
SF 11
SF 12

Each device generates a 20 bytes packet every 90 seconds

Pure Aloha Imperfect orthogonality



Considerations on Scalability
• LoRa cells cannot sustain high loads

– Maintain reception duty-cycle under 10% 
per channel

– Gateways working on multiple channels at 
the same time (up to 8)

– Manage opportunisticaly SFs and 
transmision power

• How to deal with increasing density of end 
devices?
– Deploying multiple gateways!
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Multi-Gateway Scenario

• Cell capacity can be improved by 
deploying multiple gateways
– If S(G) is the cell throughput, 

with M gateways the thorugput 
tends to be M*S(G/M)

Capture event: only 
the closest device 
is received

Two correct 
receptions at two 
different gateways

With M gateways, system 
tends to be equivalent to M 
systems with G/M load 

500 devices
with 1 GW

About 2000 
devices with 4 
GW or 4000 
with 8 GW
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SF Allocations



Adaptive Data Rate (ADR)
• Basic mechanism: select smallest possible SF for a 

given SNR/RSSI
– Highest possible data rate
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ADR on link-level measurements only?
• Sub-optimal in many scenarios, although standardized by the 

LoRa Alliance
– If all devices are close to the gateway, they will work on the 

minimum SF7
– Cell capacity depends not only on the number of devices, but also on 

their position
üLoad offered on different SFs critically affected by ADR
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How to balance between SFs?
• Airtimes at each SF are not equal

– Roughly, transmissions times are in the ratio                
T(SF12)=2 T(SF11)=4 T(SF10)=...=32 T(SF7)

• With uniform application rates, load balancing requires 
different nodes on each SF
– More nodes with lower transmission times

ü47%, 26%, 14%, 7%, 4%, 2%
üOnly a few nodes on SF12
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And which distribution within the cell?
• Consider two SFs only
• Assume all the nodes can be served with smallest SF
• Which allocation is better?

– Different circular rings or uniform spreading?
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Some Performance Results

Rings, 
balance

Random, 
balance

Rings, no balance

• Why spreading?
– Increases capture opportunities and avoids that 

far users suffer of higher inter-SF interference
– Inter-SF interference unbalanced, because only 

far users suffer of it!
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Power Control to mitigate interference?
• Inter-SF interference can be avoided using power 

control, but…
• No real benefit, because it destroys capture 

opportunities!
– Equivalent to move nodes to the same distance 

from the gateway
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Mapping to SF Allocations: 
EXPLORA



Basic Principles

• Take into account RSSI limits
– Only a portion of nodes can work on higher data rates

• Balance traffic among SFs
• Increase capture probility 

– By distributing users working on the same SF in the total 
coverage area
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Sequential Waterfilling (Single Cell)
• RSSI limits & Load Balancing

– Users are ordered as a function of their RSSI from the gateway
– SFs are allocated in proportion, starting from SF7

• Example: 
– 30 Nodes, 16@SF7, 8@SF8, 4@SF9, 2@SF10
– Cell size allows using SF9 and SF10 everywhere, while SF7 and 

SF8 have the limits shown in the figure 

– In some cases, budget limits can prevent perfect balancing
High                                RSSI values                                  Low  

SF7 SF8

High                                RSSI values                                  Low  

SF7 SF8
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Can we do better?
• We should distribute as much as possible users working 

on the same SF for increasing captures!
– Distance between consecutive nodes

ü If RSSI differ from previous node more than 3dB, keep SF
ü Otherwise, use a different SF (compatible with link budget)

• Example: 
– 30 Nodes, 16@SF7, 8@SF8, 4@SF9, 2@SF10

High                                RSSI values                                  Low  

SF7 SF8
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Sequential Waterfilling (Multi Cell, M GWs)
• Nodes are divided into M sets

– Nodes are assigned to the closest gateway
• Each gateway assigns SFs keeping the proportions

– Interference between cells is proportional on each SF in 
absence of link constraints

• Distance between nodes is generalized, taking into account the set 
of visible GWs

• Example: 3 cells in a row
– 6@SF7, 3@SF8, 1@SF9 in 
each cell
– nodes a and b are ‘distant’ because
they see different GWs, while
nodes b and c are close

Cell 1

Cell 1

SF7 SF8

a b,
c
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Sequential Waterfilling (Multi Cell, Multi ISP)
• If some nodes are controlled by a different operator?
• Each GW computes the ‘residual’ proportion for each SF and runs

the algorithm with the new budgets! 

• Example: 1 nearby operator
– Interference only @SF7
– Assuming 20 nodes, proportions become:

ü (16-6)@SF7, 8@SF8, 4@SF9, 2@SF10
(being 4 the ‘equivalent’ number of devices)

Cell 1

Nearby 
Operator

High                                RSSI values                                  Low  

SF7 SF8
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Some Results

No link budget constraints With link budget constraints 
and bigger cells
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Is it fair in presence of captures?
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Is it enough to go random?

Multi-gateway Multi-gateway, multi-operator
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Open Issues



1) Experimental Studies
• How to do experiments with thousands of nodes?
• Possible idea: work on traffic emulator, given:

– # of nodes, source rates and SF allocation
– Position of the nodes (Rmin and Rmax) 

• Schedule transmissions (including collisions) and generate 
aggregated signal to transmit via software radios (e.g. USRP)

Nodes with SF8Nodes with SF7
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Emulator architecture

Legend
Gateway
Node
Control panel
Configuration
Digital Signal
Message
Statistics
Radio Signal

Traffic Generator

Scheduler

USER

GUIGUI
“Hello
World!”

LoRa Gateway

GUI• Source Rate
• Spreading 

Factor
• Topology
• Message

Settings:

Modulator

Statistics
Processing

Traffic Analyzer

Data
Collector
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An example of aggregated trace

SF7

SF8

SF7+SF8

Ch1

Ch2

On Air
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2) Network optimizations
• Definition of network capacity predictors for general 

gateway deployments, traffic scenarios and network 
configurations

• But how to enforce optimal configurations?
– Simple rules, for avoiding per-device commands sent 

by the network server
üUnfeasible to dynamically change per-device parameters over 

time (too much downlink bandwidth)
– Which alternative solutions? 

üChoose SF7 with a given probability, within a given RSSI 
range, etc. 

üsupport broadband configuration commands
• Special cases: anomaly detection, network re-start…
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3) Interference Cancellation
• Since collisions result in the correct demodulation of the 

strongest signal, is it possible to cancel the signal and 
recover the weakest one? 
– In principle yes! But complex estimation of frequency 

and time off-sets between colliding transmitters
üCurrent receivers are very simple, although at the gateway 

we can envision something more complicated
– Ongoing work… 
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Conclusions
• Pros:

– Outdoor, indoor and deep indoor connectivity
– Low cost of ownership with private or public networks
– Scalable architectures robust to interference
– Strong ecosystem of partners and applications 
– Active research area & open source community

• Cons:
– ISM band = no performance guarantees
– Difficult to optimize

• IoT is a competitive market!
– SigFox, LoRa, NB-IoT, LTE-M, etc.
– Somehow complementary (performance vs. costs)
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Thank you!
Questions?


