

LoRa Technology for IoT Networks a.a. 2020/2021

University of Rome "La Sapienza"

Daniele Croce⁺

[†] Department of Engineering – University of Palermo – Italy

Slides partly by prof. Ilenia Tinnirello et al.

IoT radio technologies

Different options available...

	Local Area Network Short Range Communication	Low Power Wide Area (LPWAN) Internet of Things	Cellular Network Traditional M2M	
	40%	45%	15%	
3	Well established standards In building	Low power consumption Low cost Positioning	Existing coverage High data rate	
3	Battery Live Provisioning Network cost & dependencies	High data rate Emerging standards	Autonomy Total cost of ownership	
	Bluetooth	LoRa	55 m - 3G+ / H+ //4G	

UNIVERSITÀ DI ROMA Low Power Wide Area Networks (LPWAN)

• Typical network architecture:

SAPIENZA

- A base-station at highly exposed sites serves up to one million sensor nodes
- Small and cost-efficient sensors nodes communicate using ultra-low power over ultra-long distances

- Ultra-low power in addition to long distances leads to very weak reception levels
 - typical assumption < -140dB

SAPIENZA

UNIVERSITÀ DI ROMA

- very low bit rates (1 < kbit/s)</p>
- Interference from other services when license-exempt bands are used (ISM)
 - e.g. 434MHz, 868/915MHz, 2.4GHz
- Further increased interference at base-station due to highly exposed antennas
- Concepts as CSMA do not work because of the hidden node problem
 - Use of spread spectrum (e.g. DSSS) or frequency hopping

Licensed or ISM?

- LoRa: an innovative physical layer, very robust, for providing connectivity to low power smart objects
- LoRaWAN: a complete stack for building <u>wide area</u> <u>networks</u> on top of LoRa links

Patended PHY layer, standardized MAC (LoRaWAN):

Typical Stack Standardized MAC/PHY One stack, many suppliers

SAPIENZA

UNIVERSITÀ DI ROMA

LoRa Stack

Patented PHY + open LoRaWAN MAC

One supplier, personalized stacks

How to reach very far distances?

Increasing energy per bit

Università di Roma

- By acting on transmit power
- By using spread spectrum for coding a bit with a large bandwidth
- LoRa acts on spread spectrum
 - A variation of chirp-spread spectrum
 - Robust to interference, multipath, and fading
 - Developed by Cycleo, acquired by Semtech in 2012

SAPIENZA UNIVERSITÀ DI ROMA Comparison with other modulations

11

LoRa Demodulation

Source: Matt Knight

It can work 20dB under the noise floor!

LoRa receiver

- Multiply the received signal with the raw down-chirp
- The resulting signal is made of two periods, each having a constant frequency (d)
- (Down)sample the signal at the chip rate, i.e., at *BW* Hz
- The estimated symbol index \hat{n} is the position of the peak at the output of an iFFT (e)

[Source] C. Goursaud, J.M. Gorce, "Dedicated networks for IoT: PHY / MAC state of the art and challenges", in EAI endorsed trans. on IoT, 2015.

LoRa ISM frequency bands

- Maximum transmission power 14dBm (25mW)
- Three possible bandwidths
 - 125, 250, 500KHz

863-870 MHz Band

• 6 SFs available

Channel Number	Central Frequency
CH_10_868	865.20 MHz
CH_11_868	865.50 MHz
CH_12_868	865.80 MHz
CH_13_868	866.10 MHz
CH_14_868	866.40 MHz
CH_15_868	866.70 MHz
CH_16_868	867 MHz
CH_17_868	868 MHz

Summary on Data Rates @125 KHz

SAPIENZA

UNIVERSITÀ DI ROMA

Spreading Factor	Chips/symbol	SNR limit	Time-on-air (10 byte packet)	Bitrate
7	128	-7.5	56 ms	5469 bps
8	256	-10	103 ms	3125 bps
9	512	-12.5	205 ms	1758 bps
10	1024	-15	371 ms	977 bps
11	2048	-17.5	741 ms	537 bps
12	4096	-20	1483 ms	293 bps

120 NAME (1999 NAST //

with two additional high-speed channels at 11kbps and 50kbps (FSK modulation)

Coverage

- Different sensitivities map to different distances
 - e.g. from -126.50 dBm for SF7 to -133.25dBm for SF12
 - 7 dB difference with a propagation coefficient equal to η=4 correspond to a factor of about 2.5 between range(SF12) and range(SF7)
- Typical links of a few Km
 - Experimental tests with a GW
 on top of a 3 floor building (SF12)

Up to hundreds of km in Line of Sight!

SAPIENZA

UNIVERSITÀ DI ROMA

LoRa from a balloon at 38km from the ground

LoRa from space?

- the Norwegian Space Centre, NORSAT-2 which normally transmits AIS information in the VHF bands was modified to transmit LoRa messages from 600km!
 - ✓ Sent on the Ku band, but on LoRa modulation

• Symbols using different SFs are orthogonal only if perfectly synchronized!

SAPIEN7A

Università di Roma

- In practice, never!
- Capacity is affected by non-null crosscorrelation
 - ✓ Rejection thresholds as low as -10dB

LoRa Intra-SF Interference

- If the symbol is correctly synhcronized, very high capture probability
 - Collisions with signals transmitted at the same SF very often result in the correct reception of the strongest one!
 - ✓ Capture threshold of about 1dB

AN 6 C AVIA

What is LoRaWAN?

- Communications protocol and architecture that utilizes the LoRa physical layer
 - Standardized by the LoRa Alliance
 - www.lora-alliance.org
- Supports:
 - secure bi-directional communication
 - mobility
 - localization

Network Nodes

LoRaWAN Architecture

Source: Thomas Telkamp

End Devices

- Three classes of devices for different application requirements
 - Class A: each uplink transmission is followed by two short downlink receive windows
 - Class B: like A, but extra receive windows at scheduled times
 - Class C: continous receive window, except when transmitting

Receiver Windows

Battery lifetime vs latency

Battery powered sensors

Most energy efficient

- Must be supported by all devices
 Downlink available only after sensor TX

Battery Powered actuators

- Energy efficient with latency controlled downlink
- Slotted communication synchronized with a beacon

Main powered actuators

- Devices which can afford to listen continuously
- No latency for downlink communication

Downlink Network Communication Latency

Gateway

- Collection points deployed on field
 - All GWs receive ALL channels ALL the time
 - ✓ No network controller or reuse planning required
 - Sensors can communicate with any gateway
 - All correctly demodulated packets are forwarded to the network server

Network Server

- Network intelligence centralized
 - Responsible of identifying duplicates between packets
 - Data validation and demultiplexing / multiplexing to application servers
 - Multiple application providers can co-exist on the same network
 - Localization possible, thanks to a central time reference for all gateways
- Low cost gateways, since decisions on network configurations (if any) are taken by the server

Application Examples

- Agriculture
 - Animal health monitoring
 - Water conservation
- Asset management
 - Utilization of resources
 - Asset tracking
- Smart City
 - Energy conservation
 - Operational efficiencty
- Smart Buildings
 - Deep indoor pentratation
 - Safety and security

LoRa-Based Vehicle Tracking

LoRaWAN Frame

Security

- Two layers of security
 - Network (newSkey)
 - Application (128 bit key length)
- Network security for authenticating users and add message integrity check
- Application security for separating application data from network operators
- Static activation (preconfigured) or over the air

(*) MIC = Message Integrity Check

Source: Semtech

Over-The-Air-Activation (OTAA)

- Alternative to static activation configuration.
- Join procedure prior to participating in data exchanges with the Network Server
- A node has to go through a new join procedure every time it has lost the session context information.
- Required information prior to OTAA:
 - JoinEUI: global application ID in IEEE EUI64 address space that uniquely identifies the Join Server (for session keys derivation)
 - DevEUI: Globally unique device identifier in IEEE EUI64 space
 - AppKey: root AES-128 encryption key specific for the end-device; extracting the AppKey from a node compromises this node only!
 - NwkKey: root AES-128 key specific to the end-device, but provided by the network operator

Over-The-Air-Activation (OTAA)

Università di Roma

	Size (bytes)	8	8	2	1	
	Join-request	JoinEUI	DevEUI	DevNonce		
Size (bytes)	3	3	4	1	1	(16) Optional

- NwkSEncKey = aes128_encrypt(NwkKey, 0x04 | JoinNonce | JoinEUI | DevNonce | pad16)
- AppSKey = aes128_encrypt(AppKey, 0x02 | JoinNonce | JoinEUI | DevNonce | pad16)

MAC Commands

Command	Description
LinkCheck ¹	has the purpose of validating the connectivity of the device to the network
LinkADR	used to request to the end-device to change data-rate, transmit power, repetition rate or channel
DutyCycle	allows to set the maximum duty-cycle of a device for trans- mission
RXParamSetup	used to change the reception parameters of the device
DevStatus	used by the network server to reset the status of the device
NewChannel	allows to modify the definition of the radio channel parameters
RXTiming	used to setup the time slots for reception by the device
TXParam	used to change the transmission parameters
DIChannel	allows to create an asymmetric channel by shifting the down- link frequency band with respect to the uplink one (otherwise they have the same band)

Performance evaluation

• Basically, a pure aloha system

SAPIENZA

Università di Roma

- Very limited system efficiency of about 18%!
- For a given traffic model, what is the maximum number of nodes which guarantees to work in stable conditions?
- Can capture effects improve such a result?

Back to ALOHA

- No synchronization at all between transmissions
- If a pkt needs transmission:
 - send immediately, provided that duty cycle is satisfied
- In case of collisions, reschedule or cancel
 - In LoRa ACKs from the gateways are used rarely, therefore cancel
- Simplifying assumptions:
 - Extremely high number of devices
 - Fixed length frames
 - Frame arrival rate follows Poisson distribution

- Notation:
 - T = pkt_time

APIENZA

- S: average number of <u>successful</u> transmissions per pkt_time; that is, the *throughput* or *efficiency*.
 - ✓ e.g. 2frames/6pkt_time
- G: average number of total frames transmitted per pkt_time
 ✓ e.g. 2frames/6pkt_time in the first case, 6frames/6pkt_time in the second case

Analysis of Pure ALOHA

Using Pr to have k transmissions at time t:

- What happens in case of collision depends on the Signalto-Interference-Ratio (SIR)
 - if the packets have the same SF \rightarrow capture effect

SAPIFN7A

Università di Roma

- if packets have different SF \rightarrow imperfect orthogonality

Minimum **SIR** [dB] that **allows to demodulate the reference signal**

reference	7	8	9	10	11	12
7	1	-8	9 -9	-9	-9	-9
8	-11	1	-11	-12	-13	-13
9	-15	-13	1	-13	-14	-15
10	-19	-18	-17	1	-17	-18
11	-22	-22	-21	-20	1	-20
12	-25	-25	-25	-24	-23	1

Intra-SF Interference

- For each node, packets received at lower power, do not prevent correct reception
 - Competing load for each device at distance r is lower than the whole G

Maximum Throughput can be much higher than 18%!!

• Aloha \rightarrow dashed lines

LoRaSIM Open

- Our model \rightarrow solid lines
- Simulations → markers

Pure Aloha

Aloha with captures

Each device generates a 20 bytes packet every 90 seconds

Inter-SF Interference

 Each SF, cannot be really considered as independent channel

SAPIENZA UNIVERSITÀ DI ROMA

- Close nodes can create collisions with different SFs
- Each device at distance r has an extra competing load from other SFs

In presence of multiple SFs, maximum throughput of each channel could be lower than 18%!!

Each device generates a 20 bytes packet every 90 seconds

APIENZA

- LoRa cells cannot sustain high loads
 - Maintain reception duty-cycle under 10% per channel
 - Gateways working on multiple channels at the same time (up to 8)
 - Manage opportunistically SFs and transmision power
- How to deal with increasing density of end devices?
 - Deploying multiple gateways!

 Cell capacity can be improved by deploying multiple gateways

Sapienza

UNIVERSITÀ DI ROMA

 If S(G) is the cell throughput, with M gateways the thorugput tends to be M*S(G/M)

Adaptive Data Rate (ADR)

- Basic mechanism: select smallest possible SF for a given SNR/RSSI
 - Highest possible data rate

SAPIENZA UNIVERSITÀ DI ROMA ADR on link-level measurements only?

- Sub-optimal in many scenarios, although standardized by the LoRa Alliance
 - If all devices are close to the gateway, they will work on the minimum SF7
 - Cell capacity depends not only on the number of devices, but also on their position
 - \checkmark Load offered on different SFs critically affected by ADR

• Airtimes at each SF are not equal

SAPIENZA

UNIVERSITÀ DI ROMA

- Roughly, transmissions times are in the ratio
 T(SF12)=2 T(SF11)=4 T(SF10)=...=32 T(SF7)
- With uniform application rates, load balancing requires different nodes on each SF
 - More nodes with lower transmission times

✓ 47%, 26%, 14%, 7%, 4%, 2%

 \checkmark Only a few nodes on SF12

UNIVERSITÀ DI ROMA And which distribution within the cell?

Consider two SFs only

APIFNZA

- Assume all the nodes can be served with smallest SF
- Which allocation is better?
 - Different circular rings or uniform spreading?

Some Performance Results

- Why spreading?
 - Increases capture opportunities and avoids that far users suffer of higher inter-SF interference
 - Inter-SF interference unbalanced, because only far users suffer of it!
 Rings,

Power Control to mitigate interference?

- Inter-SF interference can be avoided using power control, but...
- No real benefit, because it destroys capture opportunities!

UNIVERSITÀ DI ROMA

 Equivalent to move nodes to the same distance from the gateway

Basic Principles

- Take into account RSSI limits
 - Only a portion of nodes can work on higher data rates
- Balance traffic among SFs
- Increase capture probility
 - By distributing users working on the same SF in the total coverage area

Sequential Waterfilling (Single Cell)

RSSI limits & Load Balancing

UNIVERSITÀ DI ROMA

- Users are ordered as a function of their RSSI from the gateway
- SFs are allocated in proportion, starting from SF7
- Example:
 - 30 Nodes, 16@SF7, 8@SF8, 4@SF9, 2@SF10
 - Cell size allows using SF9 and SF10 everywhere, while SF7 and SF8 have the limits shown in the figure

Can we do better?

- We should distribute as much as possible users working on the same SF for increasing captures!
 - Distance between consecutive nodes
 - ✓ If RSSI differ from previous node more than 3dB, keep SF
 - ✓ Otherwise, use a different SF (compatible with link budget)
- Example:
 - 30 Nodes, 16@SF7, 8@SF8, 4@SF9, 2@SF10

Sequential Waterfilling (Multi Cell, M GWs)

Nodes are divided into M sets

Università di Roma

- Nodes are assigned to the closest gateway
- Each gateway assigns SFs keeping the proportions
 - Interference between cells is proportional on each SF in absence of link constraints
- Distance between nodes is generalized, taking into account the set of visible GWs
- Example: 3 cells in a row
 - 6@SF7, 3@SF8, 1@SF9 in each cell
 - nodes a and b are 'distant' because they see different GWs, while nodes b and c are close

Sequential Waterfilling (Multi Cell, Multi ISP)

- If some nodes are controlled by a different operator?
- Each GW computes the 'residual' proportion for each SF and runs the algorithm with the new budgets!
 Cell 1

• Example: 1 nearby operator

Università di Roma

- Interference only @SF7
- Assuming 20 nodes, proportions become:
 ✓ (16-6)@SF7, 8@SF8, 4@SF9, 2@SF10 (being 4 the 'equivalent' number of devices)

Some Results

No link budget constraints

With link budget constraints and bigger cells

UNIVERSITÀ DI ROMA Is it fair in presence of captures?

SAPIENZA

62

- How to do experiments with thousands of nodes?
- Possible idea: work on traffic emulator, given:
 - # of nodes, source rates and SF allocation
 - Position of the nodes (Rmin and Rmax)
- Schedule transmissions (including collisions) and generate aggregated signal to transmit via software radios (e.g. USRP)

SAPIENZA

UNIVERSITÀ DI ROMA An example of aggregated trace

- Definition of network capacity predictors for general gateway deployments, traffic scenarios and network configurations
- But how to enforce optimal configurations?
 - Simple rules, for avoiding per-device commands sent by the network server
 - Unfeasible to dynamically change per-device parameters over time (too much downlink bandwidth)
 - Which alternative solutions?
 - ✓ Choose SF7 with a given probability, within a given RSSI range, etc.

✓ support broadband configuration commands

• Special cases: anomaly detection, network re-start...

3) Interference Cancellation

- Since collisions result in the correct demodulation of the strongest signal, is it possible to cancel the signal and recover the weakest one?
 - In principle yes! But complex estimation of frequency and time off-sets between colliding transmitters

 \checkmark Current receivers are very simple, although at the gateway we can envision something more complicated

Ongoing work...

Conclusions

- Pros:
 - Outdoor, indoor and deep indoor connectivity
 - Low cost of ownership with private or public networks
 - Scalable architectures robust to interference
 - Strong ecosystem of partners and applications
 - Active research area & open source community
- Cons:
 - ISM band = no performance guarantees
 - Difficult to optimize
- IoT is a competitive market!
 - SigFox, LoRa, NB-IoT, LTE-M, etc.
 - Somehow complementary (performance vs. costs)

References

- Do LoRa Low-Power Wide-Area Networks Scale?
 - Martin Bor, Utz Roedig Lancaster University, Thiemo Voigt Uppsala University and SICS, Juan M. Alonso Nac. de San Luis, Argentina
- LoRaWAN specification
 - N.Sornin , M. Luis , T. Eirich , T. Kramp , and O. Hersent , LoRa Alliance Inc., San Ramon, CA, Ver. 1.0., January 2015
- Impact of LoRa Imperfect Orthogonality: Analysis of Link-Level Performance
 - D. Croce, M. Gucciardo, S. Mangione, G. Santaromita and I. Tinnirello, in IEEE Communications Letters, vol. 22, no. 4, pp. 796-799, April 2018
- Long-Range IoT Technologies: The Dawn of LoRa
 - L. Vangelista, A. Zanella, M. Zorzi, in Future Access Enablers of Ubiquitous and Intelligent Infrastructures, pp. 51–58, Springer, 2015
- Extending the performance of LoRa by suitable spreading factor allocations
 - F. Cuomo, M. Campo, A. Caponi, G. Bianchi, G. Rossini and P. Pisani, WiMob 2017
- LoRaSIM simulator
 - https://github.com/adwaitnd/lorasim

