

LoRa Technology for IoT Networks a.a. 2019/2020

University of Rome "La Sapienza"

Daniele Croce[†]

[†]Department of Computer Science – University of Rome "Sapienza" – Italy

Slides partly by prof. Ilenia Tinnirello et al.

IoT radio technologies

Different options available...

Local Area Network

Short Range Communication

Well established standards
In building

Battery Live Provisioning Network cost & dependencies

Bluetooth

Low Power Wide Area (LPWAN) Internet of Things

45%

Low power consumption Low cost Positioning

High data rate Emerging standards

Cellular Network

Traditional M2M

15%

Existing coverage High data rate

Autonomy
Total cost of ownership

Low Power Wide Area Networks (LPWAN)

- Typical network architecture:
 - A base-station at highly exposed sites serves up to one million sensor nodes
 - Small and cost-efficient sensors nodes communicate using ultra-low power over ultra-long distances

Challenges of LPWAN

- Ultra-low power in addition to long distances leads to very weak reception levels
 - typical assumption < -140dB
 - very low bit rates (1 < kbit/s)</p>
- Interference from other services when license-exempt bands are used (ISM)
 - e.g. 434MHz, 868/915MHz, 2.4GHz
- Further increased interference at base-station due to highly exposed antennas
- Concepts as CSMA do not work because of the hidden node problem
 - Use of spread spectrum (e.g. DSSS) or frequency hopping

Licensed or ISM?

LoRa Technology and Stack

Patended PHY layer, standardized MAC (LoRaWAN):

Typical Stack

Standardized MAC/PHY

One stack, many suppliers

MAC

PHY

LoRa Stack

Patented PHY + open LoRaWAN MAC

One supplier, personalized stacks

MAC

PHY

LoRawan

SEMTECH

- Increasing energy per bit
 - By acting on transmit power
 - By using spread spectrum for coding a bit with a large bandwidth
- LoRa acts on spread spectrum
 - A variation of chirp-spread spectrum
 - Robust to interference, multipath, and fading
 - Developed by Cycleo, acquired by Semtech in 2012

Symbols and Spreading Factor (SF)

Comparison with other modulations

LoRa Demodulation

Source: Matt Knight

It can work 20dB under the noise floor!

LoRa receiver

- Multiply the received signal with the raw down-chirp
- The resulting signal is made of two periods, each having a constant frequency (d)
- (Down)sample the signal at the chip rate, i.e., at *BW* Hz
- The estimated symbol index \hat{n} is the position of the peak at the output of an iFFT (e)

[Source] C. Goursaud, J.M. Gorce, "Dedicated networks for IoT: PHY / MAC state of the art and challenges", in EAI endorsed trans. on IoT, 2015.

LoRa ISM frequency bands

- Maximum transmission power 14dBm (25mW)
- Three possible bandwidths
 - 125, 250, 500KHz
- 6 SFs available

Channel Number	Central Frequency
CH_10_868	865.20 MHz
CH_11_868	865.50 MHz
CH_12_868	865.80 MHz
CH_13_868	866.10 MHz
CH_14_868	866.40 MHz
CH_15_868	866.70 MHz
CH_16_868	867 MHz
CH_17_868	868 MHz

863-870 MHz Band

Summary on Data Rates @125 KHz

Spreading Factor	Chips/symbol	SNR limit	Time-on-air (10 byte packet)	Bitrate
7	128	-7.5	56 ms	5469 bps
8	256	-10	103 ms	3125 bps
9	512	-12.5	205 ms	1758 bps
10	1024	-15	371 ms	977 bps
11	2048	-17.5	741 ms	537 bps
12	4096	-20	1483 ms	293 bps

with two additional high-speed channels at 11kbps and 50kbps (FSK modulation)

Coverage

- Different sensitivities map to different distances
 - e.g. from -126.50 dBm for SF7 to -133.25dBm for SF12
 - 7 dB difference with a propagation coefficient equal to η=4 correspond to a factor of about 2.5 between range(SF12) and range(SF7)
- Typical links of a few Km
 - Experimental tests with a GW
 on top of a 3 floor building (SF12)

Up to hundreds of km in Line of Sight!

LoRa from a balloon at 38km from the ground

LoRa from space?

- the Norwegian Space Centre, NORSAT-2 which normally transmits AIS information in the VHF bands was modified to transmit LoRa messages from 600km!
 - ✓ Sent on the Ku band, but on LoRa modulation

LoRa Inter-SF Interference

- Symbols using different SFs are orthogonal only if perfectly synchronized!
 - In practice, never!
 - Capacity is affected by non-null crosscorrelation
 - ✓ Rejection thresholds as low as -10dB

LoRa Intra-SF Interference

- If the symbol is correctly synhcronized, very high capture probability
 - Collisions with signals transmitted at the same SF very often result in the correct reception of the strongest one!
 - ✓ Capture threshold of about 1dB

- Communications protocol and architecture that utilizes the LoRa physical layer
 - Standardized by the LoRa Alliance
 - www.lora-alliance.org
- Supports:
 - secure bi-directional communication
 - mobility
 - localization

Network Nodes

LoRaWAN Architecture

Source: Thomas Telkamp

End Devices

- Three classes of devices for different application requirements
 - Class A: each uplink transmission is followed by two short downlink receive windows
 - Class B: like A, but extra receive windows at scheduled times
 - Class C: continous receive window, except when transmitting

Receiver Windows

Battery lifetime vs latency

Battery powered sensors

- Most energy efficient
- Must be supported by all devices
 Downlink available only after sensor TX

Battery Powered actuators

- Energy efficient with latency controlled downlink
- Slotted communication synchronized with a beacon

Main powered actuators

- Devices which can afford to listen continuously
- No latency for downlink communication

Downlink Network Communication Latency

Gateway

- Collection points deployed on field
 - All GWs receive ALL channels ALL the time
 - ✓ No network controller or reuse planning required
 - Sensors can communicate with any gateway
 - All correctly demodulated packets are forwarded to the network server

Network Server

- Network intelligence centralized
 - Responsible of identifying duplicates between packets
 - Data validation and demultiplexing / multiplexing to application servers
 - ✓ Multiple application providers can co-exist on the same network
 - Localization possible, thanks to a central time reference for all gateways
- Low cost gateways, since decisions on network configurations (if any) are taken by the server

Application Examples

- Agriculture
 - Animal health monitoring
 - Water conservation
- Asset management
 - Utilization of resources
 - Asset tracking
- Smart City
 - Energy conservation
 - Operational efficiencty
- Smart Buildings
 - Deep indoor pentratation
 - Safety and security

LoRaWAN Frame

Security

- Two layers of security
 - Network (newSkey)
 - Application (128 bit key length)
- Network security for authenticating users and add message integrity check
- Application security for separating application data from network operators
- Static activation (preconfigured) or over the air

Over-The-Air-Activation (OTAA)

- Alternative to static activation configuration.
- Join procedure prior to participating in data exchanges with the Network Server
- A node has to go through a new join procedure every time it has lost the session context information.
- Required information prior to OTAA:
 - JoinEUI: global application ID in IEEE EUI64 address space that uniquely identifies the Join Server (for session keys derivation)
 - DevEUI: Globally unique device identifier in IEEE EUI64 space
 - AppKey: root AES-128 encryption key specific for the end-device;
 extracting the AppKey from a node compromises this node only!
 - NwkKey: root AED-128 key specific to the end-device, but provided by the network operator

- NwkSEncKey = aes128_encrypt(NwkKey, 0x04 | JoinNonce | JoinEUI | DevNonce | pad16)
- AppSKey = aes128_encrypt(AppKey, 0x02 | JoinNonce | JoinEUI | DevNonce | pad16)

MAC Commands

Command	Description
LinkCheck ¹	has the purpose of validating the connectivity of the device to the network
LinkADR	used to request to the end-device to change data-rate, transmit power, repetition rate or channel
DutyCycle	allows to set the maximum duty-cycle of a device for trans- mission
RXParamSetup	used to change the reception parameters of the device
DevStatus	used by the network server to reset the status of the device
NewChannel	allows to modify the definition of the radio channel parameters
RXTiming	used to setup the time slots for reception by the device
TXParam	used to change the transmission parameters
DIChannel	allows to create an asymmetric channel by shifting the down- link frequency band with respect to the uplink one (otherwise they have the same band)

Performance evaluation

Single cell LoRa capacity

- Basically, a pure aloha system
 - Very limited system efficiency of about 18%!
- For a given traffic model, what is the maximum number of nodes which guarantees to work in stable conditions?
- Can capture effects improve such a result?

Back to ALOHA

- No synchronization at all between transmissions
- If a pkt needs transmission:
 - send immediately, provided that duty cycle is satisfied
- In case of collisions, reschedule or cancel
 - In LoRa ACKs from the gateways are used rarely, therefore <u>cancel</u>
- Simplifying assumptions:
 - Extremely high number of devices,
 - Fixed length frames
 - Frame arrival rate follows Poisson distribution

Analysis of Pure ALOHA

Notation:

- $T = pkt_time$
- S: average number of <u>successful</u> transmissions per pkt_time; that is, the *throughput* or *efficiency*.
 - √ e.g. 2frames/6pkt_time
- G: average number of total frames transmitted per pkt_time
 - ✓ e.g. 2frames/6pkt_time in the first case, 6frames/6pkt_time in the second case

Vulnerability period: 2T

Analysis of Pure ALOHA

Using Pr to have k transmissions at time t:

$$P_k(t) = \frac{(\Lambda t)^k e^{-\Lambda t}}{k!}$$

and considering:

$$\Lambda \cdot 2T = 2G$$

we have:

$$S = G \cdot \left\lceil \frac{(2G)^k}{k!} e^{-2G} \right\rceil_{k=0} = Ge^{-2G}$$

Channel captures and ortogonality

- What happens in case of collision depends on the Signalto-Interference-Ratio (SIR)
 - if the packets have the same SF → capture effect
 - if packets have different SF → imperfect orthogonality

Minimum SIR [dB] that allows to demodulate the reference signal

reference	7	8	9 //	10	11	12
7	1	-8	9	-9	-9	-9
8	-11	1	-11	-12	-13	-13
9	-15	-13	1, 1,	-13	-14	-15
10	-19	-18	-17	1	-17	-18
11	-22	-22	-21	-20	1	-20
12	-25	-25	-25	-24	-23	1

- For each node, packets received at lower power, do not prevent correct reception
 - Competing load for each device at distance r is lower than the whole G

Maximum Throughput can be much higher than 18%!!

- Our model → solid lines
- Simulations → markers

Data Extraction Rate (DER) with captures

Pure Aloha

Aloha with captures

Each device generates a 20 bytes packet every 90 seconds

- Each SF, cannot be really considered as independent channel
 - Close nodes can create collisions with different SFs
 - Each device at distance r has an extra competing load from other SFs

In presence of multiple SFs, maximum throughput of each channel could be much lower than 18%!!

DER with inter-SF interferece

Pure Aloha

Imperfect orthogonality

Each device generates a 20 bytes packet every 90 seconds

- LoRa cells cannot sustain high loads
 - Maintain reception duty-cycle under 10% per channel
 - Gateways working on multiple channels at the same time (up to 8)
 - Manage opportunistically SFs and transmision power
- How to deal with increasing density of end devices?
 - Deploying multiple gateways!

Multi-Gateway Scenario

Capture event: only the closest device is received

Two correct receptions at two different gateways

With M gateways, system tends to be equivalent to M systems with G/M load

- Cell capacity can be improved by deploying multiple gateways
 - If S(G) is the cell throughput,
 with M gateways the thorugput
 tends to be M*S(G/M)

- Basic mechanism: select smallest possible SF for a given SNR/RSSI
 - Highest possible data rate

ADR on link-level measurements only?

- Sub-optimal in many scenarios, although standardized by the LoRa Alliance
 - If all devices are close to the gateway, they will work on the minimum SF7
 - Cell capacity depends not only on the number of devices, but also on their position
 - ✓ Load offered on different SFs critically affected by ADR

- Airtimes at each SF are not equal
 - Roughly, transmissions times are in the ratio
 T(SF12)=2 T(SF11)=4 T(SF10)=...=32 T(SF7)
- With uniform application rates, load balancing requires different nodes on each SF
 - More nodes with lower transmission times
 - √47%, 26%, 14%, 7%, 4%, 2%
 - ✓ Only a few nodes on SF12

- Consider two SFs only
- Assume all the nodes can be served at the smallest SF
- Which allocation is better?
 - Different circular rings or uniform spreading?

Some Performance Results

- Why spreading?
 - Increases capture opportunities and avoids that far users suffer of higher inter-SF interference

 Inter-SF interference unbalanced, because only far users suffer of it!

- Inter-SF interference can be avoided using power control, but...
- No real benefit, because it destroys capture opportunities!
 - Equivalent to move nodes to the same distance from the gateway

1) Experimental Studies

- How to do experiments with thousands of nodes?
- Possible idea: work on traffic emulator, given:
 - # of nodes, source rates and SF allocation
 - Position of the nodes (Rmin and Rmax)
- Schedule transmissions (including collisions) and generate aggregated signal to transmit via software radios (e.g. USRP)

Emulator architecture

An example of aggregated trace

2) Network optimizations

- Definition of network capacity predictors for general gateway deployments, traffic scenarios and network configurations
- But how to enforce optimal configurations?
 - Simple rules, for avoiding per-device commands sent by the network server
 - ✓ Unfeasible to dynamically change per-device parameters over time (too much downlink bandwidth)
 - Which alternative solutions?
 - ✓ Choose SF7 with a given probability, within a given RSSI range, etc.
 - ✓ support broadband configuration commands

- Since collisions result in the correct demodulation of the strongest signal, is it possible to cancel the signal and recover the weakest one?
 - In principle yes.. but complex estimation of frequency and time off-sets between colliding transmitters
 - ✓ Current receivers are very simple, although at the gateway we can envision something more complicated
 - Ongoing work...

Conclusions

• Pros:

- Outdoor, indoor and deep indoor connectivity
- Low cost of ownership with private or public networks
- Scalable architectures robust to interference
- Strong ecosystem of partners and applications
- Active research area & open source community

• Cons:

- ISM band = no performance guarantees
- Difficult to optimize
- IoT is a competitive market!
 - SigFox, LoRa, NB-IoT, LTE-M, etc.
 - Somehow complementary (performance vs. costs)

References

- Do LoRa Low-Power Wide-Area Networks Scale?
 - Martin Bor, Utz Roedig Lancaster University, Thiemo Voigt Uppsala University and SICS, Juan M. Alonso Nac. de San Luis, Argentina
- LoRaWAN specification
 - N.Sornin , M. Luis , T. Eirich , T. Kramp , and O. Hersent , LoRa Alliance Inc., San Ramon, CA, Ver. 1.0., January 2015
- Impact of LoRa Imperfect Orthogonality: Analysis of Link-Level Performance
 - D. Croce, M. Gucciardo, S. Mangione, G. Santaromita and I. Tinnirello, in IEEE Communications Letters, vol. 22, no. 4, pp. 796-799, April 2018
- Long-Range IoT Technologies: The Dawn of LoRa
 - L. Vangelista, A. Zanella, M. Zorzi, in Future Access Enablers of Ubiquitous and Intelligent Infrastructures, pp. 51–58, Springer, 2015
- Extending the performance of LoRa by suitable spreading factor allocations
 - F. Cuomo, M. Campo, A. Caponi, G. Bianchi, G. Rossini and P. Pisani,
 WiMob 2017
- LoRaSIM simulator
 - https://github.com/adwaitnd/lorasim

