
Introduction to C++
Pt. 3

Emanuele Giona
Department of Computer Science, Sapienza University of Rome

Internet of Things A.Y. 2021/22

Prof. Chiara Petrioli
Department of Computer, Control and Management Engineering, Sapienza University of Rome

Scan QR code or click on the image to follow the URL.

Solutions to Lecture 2 exercises

Solutions to Lecture 2 exercises Internet of Things Lab A.Y. 2021/22

https://sites.google.com/view/egiona/activities/ongoing/iot2122/20220318_Lecture2

Exercise 1: solution

Solutions to Lecture 2 exercises Internet of Things Lab A.Y. 2021/22

Exercise 2: solution

Solutions to Lecture 2 exercises Internet of Things Lab A.Y. 2021/22

Exercise 3: solution

Solutions to Lecture 2 exercises Internet of Things Lab A.Y. 2021/22

1. Arrays

An array is a data structure storing multiple variables of the same type. Typically, an index is used to access a specific

variable within an array, representing its position.

There are many implementations of data structures with similar usage in C++:

➤ Static arrays
Number of variables stored must be known at compile time

➤ Dynamically-allocated arrays
Number of variables stored can be specified at runtime, maybe depending on user input

➤ Standard library (STL) containers
Similar to dynamically-allocated arrays, but provide automatic memory management and typical data structure operations

Arrays

1. Arrays Internet of Things Lab A.Y. 2021/22

Similarly to normal variables, arrays are declared with a type and an identifier:

int array[10];
char name[3] = {‘C’, ‘+’, ‘+’};

Accessing arrays

Positions within arrays start from 0, and the access to a particular position relies on the array index operator [].

int array[10];
array[3] = 6;
array[9] = array[3] - 20;

Using a static array

1. Arrays Internet of Things Lab A.Y. 2021/22

Square brackets [] are used to indicate how many variables can be stored in this array (10)

Array name can store at most 3 variables, initialized

6 -14

0 1 2 3 4 5 6 7 8 9

All other indices are filled with default values, which depend on the type

Accessing an array past its maximum size will trigger a runtime error

2. Pointers

As previously mentioned, C++ allows for memory management both at a high level and a low level. Pointers are

variables storing memory addresses of other variables, and can be used to manipulate memory at a low level.

Obtaining a variable’s memory address

Assuming a variable var has already been declared, &var represents its memory address.

Accessing the referenced variable (dereferencing)

Assuming a pointer pVar to variable var has been declared, *pVar represents the referenced variable var.

Declaring a pointer

Low-level memory manipulation in C++

2. Pointers Internet of Things Lab A.Y. 2021/22

Due to different metadata, pointers require specification
regarding the type of the referenced variable
Do not confuse the asterisk * used in declaration from the one
used during a dereferencing operation!

C++ only allows addition and subtraction operations on pointer variables, but with a special meaning: the stored

memory address is modified based on the underlying type used by the referenced variable.

Increment (++) and decrement (--) operators have higher precedence than the dereferencing operator (*):

*p++; → Increment pointer, dereference previous address equivalent: *(p++);
*++p; → Increment pointer, dereference new address equivalent: *(++p);
++*p; → Dereference pointer, increment referenced variable’s value equivalent: ++(*p);
(*p)++; → Dereference pointer, increment referenced variable’s value

Pointer arithmetics

2. Pointers Internet of Things Lab A.Y. 2021/22

char size used in the pointer arithmetics char *p;

p++;

char *p;

Multiple indirection levels are supported, and each of them requires an asterisk (*).

char a;
char *b;
char **c;
a = ‘k’;
b = &a;
c = &b;

Pointers to pointers

2. Pointers Internet of Things Lab A.Y. 2021/22

ka

b

c c (type char**) contains the memory address
of b

c (type char) contains the memory address
of a

**c (type char) contains value ‘k’

Arrays can be implicitly converted to pointers, supporting the same set of operations on them. Indeed, the name of an

array can be used to point to its first element.

Resulting array

Pointers and arrays

2. Pointers Internet of Things Lab A.Y. 2021/22

3 7 -5 22 1

Pointers can be passed as function arguments simply by declaring the required parameters as pointers.

Similarly to variables using pass-by-reference, changes on pointer variables inside the function will also affect the

calling function.

Beware assigning values to pointer variables within a

function: in case of pointers to variables declared inside

a function’s body, such variable will be deleted upon

function exit, leaving the pointer with an invalid memory

address.

This is called a dangling pointer, causing severe issues if

unchecked.

Pointers and functions

2. Pointers Internet of Things Lab A.Y. 2021/22

3. STL containers

The C++ standard library (STL) provides many implementations of collections of elements called containers, as well as

useful algorithms using them.

There are two main categories of containers:

➤ Sequential

➤ Associative

The container choice depends entirely on the functionality required, but computational complexity of the operations

on a container may vastly differ from one another.

Standard library containers

3. STL containers Internet of Things Lab A.Y. 2021/22

In sequential containers, elements are stored in the same order as they are added to them and can be processed
sequentially in the same order.

➤ STL containers
arrayC++11, vector, list, forward_listC++11, deque

➤ STL adaptors
stack, queue, priority_queue

Many containers share the same member functions and functionality, but computational complexity may differ.
Adaptors are not entirely new containers, but rather build specific functionality on top of an existing container.

Sequential containers handbook

➤ array
Pros: random access to elements, usage of STL containers’ functions; Cons: fixed size

➤ vector or deque
Pros: variable size, random access to elements, efficient for front or back operations; Cons: inefficient for operations at the middle

➤ list or forward_list
Pros: variable size, efficient for operations at any point; Cons: memory overhead with small elements, inefficient for random access

Sequential containers

3. STL containers Internet of Things Lab A.Y. 2021/22

Built-in arrays require knowledge of size in order to

iterate over them, whereas STL containers implement a

size() function.

Additionally, many useful functions provided within the

standard library only accept STL containers.

Using STL arrays and vectors

3. STL containers Internet of Things Lab A.Y. 2021/22

Iterators are objects that behave in a similar way to pointers, but specifically for STL containers.

They can be classified into the following categories:

➤ Input

➤ Output

➤ Forward

➤ Bidirectional

➤ Random-access

Not all containers support every type of iterator!

Utility of iterators

➤ Conveniency when working with containers

➤ Reusable interface for all containers

➤ Allow for dynamic insertion/deletion of elements

Iterators

3. STL containers Internet of Things Lab A.Y. 2021/22

Iterators example

3. STL containers

Common iterator operations

➤ begin(), end()
Return beginning / after-end positions of a container

➤ advance()
Increments an iterator by a user-specified value

➤ prev(), next()
Returns new iterators pointing at positions further back / forward by a user-specified value

➤ inserter()
Inserts elements at any position of the container

Internet of Things Lab A.Y. 2021/22

➤ Doubly-linked lists: bidirectional iteration, constant-time insertion/deletion at any point of the container

➤ Elements stored in non-contiguous memory, each at unrelated memory locations

➤ No fast random access, list must be traversed until the element is found

Using lists

3. STL containers Internet of Things Lab A.Y. 2021/22

In associative containers, elements are stored and retrieved by a key. Two primary data structures map and set are

tweaked in order to provide various functionality:

➤ Ordered
set, multiset, map, multimap

➤ UnorderedC++11

unordered_set, unordered_multiset, unordered_map, unordered_multimap

Associative containers handbook

➤ map
Stores key-value pairs, with unique keys

➤ set
Stores unique keys, with keys being also values

➤ multi containers
Allow multiple copies of a key

➤ Unordered containers
Key-value pairs are organized by a hash function rather than an ordering on keys, yielding faster individual element access

Associative containers

3. STL containers Internet of Things Lab A.Y. 2021/22

Using map

3. STL containers Internet of Things Lab A.Y. 2021/22

Using set

3. STL containers Internet of Things Lab A.Y. 2021/22

Starting from C++11, it is possible to use the for each loop by means of range-based for:

for (range declaration : range expression) statement

STL containers can be passed as range expression by variables’ name without further effort, as the loop will use

an iterator.

It must be noted that this loop acts on copies of the contents, therefore performance issues may arise if not carefully

handled:

➤ for (auto element : container) statement
Default behavior, elements are copied (capture-by-value)

➤ for (const auto &element : container) statement
Capture-by-reference behavior, read-only; in case elements have to be modified, use a auto & variable declaration

Range-based for loop

3. STL containers Internet of Things Lab A.Y. 2021/22

Variable declaration, its type must be the
same as elements of the sequence
represented by range expression
Variables are often declared auto

Expression representing a sequence
accepted by the range-based for loop:
an array, object with begin() and end()
functions, etc.

4. More on functions

As previously mentioned, pass by reference is a method to provide arguments to functions in order to allow the values

of the variables to be modified during the execution of a function and the new value to be exposed to the calling

function.

void swapFloat(float &num1, float &num2);

What would happen if the function declaration included a const float & parameter instead?

The parameter would be passed in read-only mode, therefore the function would not be able to manipulate its value,

although a reference was passed.

This is useful when dealing with memory-heavy parameters, where passing by value would take a long time due to the

copy operation, but the function is not intended to access them in writing mode. Trying to do so will trigger a compile

time error.

const pass by reference?

4. More on functions Internet of Things Lab A.Y. 2021/22

C++ does not allow passing built-in array arguments to a function.

At least not directly

Arrays are implicitly converted to pointers despite the syntax might not show it. For instance:

int values[5] = {45, 7, 22, 980, 12};
int sumV = sumAll(values);

can be compiled with all the following sumAll() declarations, although the underlying implementation will always be

the first one:

1. int sumAll(int *array);
2. int sumAll(int array[10]);
3. int sumAll(int array[]);

Declaration #2 does not provide any additional benefits (e.g. automatic size checking), and passing an argument

specifying the array size is a good practice.

Array arguments for a function

4. More on functions Internet of Things Lab A.Y. 2021/22

5. Exercises

1. Write a program that, given two arrays of equal size, uses a function that merges them into a single array having

elements from the first and the second one alternating every position
(e.g. input: [1,2,3], [7,8,9], output: [1,7,2,8,3,9]; hint: function should accept three array parameters, the last one being double the

size of the first two)

2. Implement the same program of Exercise 1 using STL containers (not necessarily of the same size) and iterators
(hint: use vector and pass-by-reference mechanism)

Exercises

5. Exercises Internet of Things Lab A.Y. 2021/22

➤ https://www.cplusplus.com/doc/tutorial/arrays/

➤ https://www.cplusplus.com/doc/tutorial/pointers/

➤ https://www.cplusplus.com/reference/stl/

➤ https://www.cplusplus.com/reference/iterator/

➤ https://en.cppreference.com/w/cpp/language/range-for

References

Internet of Things Lab A.Y. 2021/22

https://www.cplusplus.com/doc/tutorial/arrays/
https://www.cplusplus.com/doc/tutorial/pointers/
https://www.cplusplus.com/reference/stl/
https://www.cplusplus.com/reference/iterator/
https://en.cppreference.com/w/cpp/language/range-for

