
Introduction to C++
Pt. 2

Emanuele Giona
Department of Computer Science, Sapienza University of Rome

Internet of Things A.Y. 2021/22

Prof. Chiara Petrioli
Department of Computer, Control and Management Engineering, Sapienza University of Rome

Scan QR code or click on the image to follow the URL.

Solutions to Lecture 1 exercises

Solutions to Lecture 1 exercises Internet of Things Lab A.Y. 2021/22

2

https://sites.google.com/view/egiona/activities/ongoing/iot2122/20220309_Lecture1

Exercise 1: solution

Solutions to Lecture 1 exercises Internet of Things Lab A.Y. 2021/22

3

Exercise 2: solution

Solutions to Lecture 1 exercises Internet of Things Lab A.Y. 2021/22

4

1. Operators

5

Basic operators

➤ Assignment (=)

➤ Arithmetic operations
Addition (+), Subtraction (-), Multiplication (*), Division (/), Modulo (%)

➤ Compound assignment
Arithmetic operation using the current value of a variable, assigning it the resulting value afterwards

+=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |=

Examples

y += 2 * x; → y = y + 2 * x;
a %= 3; → a = a % 3;
b /= 4; → b = b / 4;

int v = 10;
v <<= 1; → v = v << 1;

1. Operators Internet of Things Lab A.Y. 2021/22

6

Bitwise operators act on integer data at the bit level

Base-2 representation of 10 is 1010. The shift-left operator (<<) is instructed to
shift by 1 bit towards left, yielding a Base-2 value of 10100, and thus effectively
multiplying by 2.

Increment and decrement operators

As seen in the name of C++ itself, there are specialized operators for incrementing (++) and decrementing (--) the

value of a variable.

There are two ways to use such operators, yielding important consequences on a program:

➤ Prefix (++x, --x)
The operation takes place before the evaluation of the variable contents

int a = 3;
int b = ++a; → a is incremented to 4 first and then b is assigned a’s content (b = 4)

➤ Suffix (x++, x--)
The operation takes place after the evaluation of the variable contents

int a = 3;
int b = a++; → b is assigned a’s content first and then a is incremented to 4 (b = 3)

This might be a cause for silent failures in your program!

1. Operators Internet of Things Lab A.Y. 2021/22

7

Relational, comparison, and logical operators

➤ Relational and comparison operators are used to compare two expressions and they evaluate to logical values

(either true or false)
Equality (==), not equality (!=), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=)

➤ Logical operators perform Boolean logic operations
NOT (!), AND (&&), OR (||)

Examples

!true → false
0 >= 4 → false
!(0 >= 4) → true
(5 == 5) && (3 > 6) → false
(5 == 5) || (3 > 6) → true

1. Operators Internet of Things Lab A.Y. 2021/22

8

2. Program Flow Control

9

Statements

A C++ program consists of a series of statements that are executed in sequence, and there are several types of them:

➤ Labeled

➤ Expression

➤ Compound

➤ Selection (or conditional)

➤ Iteration

➤ Jump

➤ Declaration

➤ Try blocks
➤ Atomic / synchronization blocks

Each statement has a specific purpose and syntax, and most of them have to be succeeded by a semicolon (;).

A special expression statement: the null statement is composed by just a semicolon.

2. Program Flow Control Internet of Things Lab A.Y. 2021/22

10

Also called block, it allows the sequential execution of multiple statements
in place of a single statement
This can be done by simply enclosing them with curly brackets { }

These statements implement transactional memory, in the context of
parallel execution (i.e. not allowing variables in such blocks to expose
thread-unsafe states)

if and switch statements

Selection statements, used to implement a choice among multiple control flows within a program

2. Program Flow Control Internet of Things Lab A.Y. 2021/22

switch statement

➤ Determines the execution of one among several

statements, transferring control to it as well

➤ Suitable for structured conditions

➤ Also employed in cases of high number of

alternative paths

11

if statement

➤ Determines the execution of a statement

depending on a condition

➤ Suitable for unstructured conditions

➤ Usually employed in cases of relatively small

number of alternative paths

If
condition

[true] [false]
Switch

condition

[case1]

[case2]

[case3]

if (condition) statement1 else statement1

The first statement is executed if the condition evaluates

to true, otherwise it is skipped. In the presence of an

else clause instead, the second statement is the one

executed.

The statement used in the else clause might itself be an

if statement, obtaining a nested if statement.

12if syntax

switch (condition) statement1

The statement is often a compound statement consisting

of special statements:

➤ case statements (one or more)

➤ default statement (at most one)

switch syntax

2. Program Flow Control Internet of Things Lab A.Y. 2021/22

The else clause is optional within
the syntax of the if statement

Expression evaluating to a bool value Expression evaluating to an integral value, such as: char, signed char,
unsigned char, short int, signed short int, unsigned
short int, int, signed int, and unsigned int

1: Both single and compound statements are allowed

13if examples

Last if example shows an unstructured condition,
hence the switch statement is not appropriate.

switch examples

2. Program Flow Control Internet of Things Lab A.Y. 2021/22

Both case and default statements can use compound statements after the column (:). These statements are used

to select a flow based on a specific value (case), or execute a flow for all values which were not previously considered

by case statements (default).

Moreover, the break statement is required to stop execution fallthrough: in the switch statement, whenever the

program flow executes a specific case block the execution continues to the next defined block.

In order to prevent this, each case block can control the flow by ending the execution of successive blocks within a

switch statement by inserting a break statement.

14More on the switch statement

2. Program Flow Control Internet of Things Lab A.Y. 2021/22

These statements are used to repeat the execution of a block, subject to the evaluation of a condition. There are three

types of loops provided by C++:

➤ while (condition) statement
Statement execution after evaluation of condition, repeating it until the condition evaluates to true

➤ do statement while (condition);
Statement execution before evaluation of condition, if it evaluates to true, it will be repeated until it does

➤ for (initializer; condition; expression statement1) statement
initializer is executed first and only once at the start, then condition is evaluated; if it evaluates to true, the statement is

executed, after which the expression statement is executed. The repetition occurs until condition evaluates to true after

the first run

Loops support some jump statements to provide more granular flow control: break and continue statements can

be included within the statement block that should be repeated.

1: One or more expression statements are supported; for multiple statements, each statement must be succeeded by

a comma (,) instead of a semicolon (;).

15Iterative statements (or loops)

2. Program Flow Control Internet of Things Lab A.Y. 2021/22

while

➤ condition must be true in

order to run for the first time

➤ Repetition occurs until

condition evaluates to

true after statement

execution

➤ Statement must handle

updating condition

variables (if any)

16Printing first 5 integers

2. Program Flow Control Internet of Things Lab A.Y. 2021/22

do while

➤ First run is executed before

condition evaluation

➤ Repetition occurs until

condition evaluates to

true after statement

execution

➤ Statement must handle

updating condition

variables (if any)

for

➤ condition must be true in

order to run for the first time

➤ Repetition occurs until

condition evaluates to

true after expression

statement execution

➤ condition variables (if any)

are updated directly by

expression statement

These statements unconditionally transfer the control flow of the program.

➤ break
Exits a loop, regardless of the condition evaluation

➤ continue
Skips the rest of the statements within the current iteration, starting the following one

➤ return
Terminates the function currently in execution, returning control to the caller of this function

➤ goto
Transfers control to an arbitrary location identified by a labeled statement; it should be used carefully

break and continue statements are often executed as a result of an if statement, for early loop termination.

return statement has two forms:

➤ return; → for functions without return type

➤ return expression statement; → for functions returning a specific type

17Jump statements

2. Program Flow Control Internet of Things Lab A.Y. 2021/22

while

Infinite loop!

18Printing odds only within first 5 integers

2. Program Flow Control Internet of Things Lab A.Y. 2021/22

do while

Infinite loop!

for

Correctly prints values 1 and 3

Although the continue statements are all placed at the same point within the three loops, while and do while
loops will result in an infinite execution: their condition is based on variable n, which is not updated if the continue
statement is executed. Instead, the for loop updates n via its expression statement, which is still executed after the
continue statement and before running the new iteration.

Labeled statements

identifier: statement

Within the switch statement, case and default statements are examples of labeled statements, using reserved

identifiers. However, outside of a switch statement users can define arbitrary labels for statements, subject to the

rules of general identifiers.

Control flow via goto

goto should be avoided in general, given the many choices of control flow management in C++. The usage of goto is

straightforward:

goto label;

Labels must be defined within the same function the goto statement is being used.

19goto and labeled statements

2. Program Flow Control Internet of Things Lab A.Y. 2021/22

label being the identifier of a labeled statement

3. Functions

20

A function is a group of statements with a given identifier, which can be called from some point of the program. The

most common definition of a function can resemble the following:

type name (parameter1, parameter2, ...) { statement }

Example

int main() { statements }

21Function basics

3. Functions Internet of Things Lab A.Y. 2021/22

Type of the
value returned
by the function

List of parameters (zero or more)
Each parameter consists of type and identifier

Parameters are separated by commas

Body of the function, consisting of zero or more statements

Identifier used to call the function

All the programs you implemented so far

No parameters

Executing a program calls main()

main returns a value of type int, i.e. the execution status

Return the maximum value between two integers.

Some functions may not need to return any value:
this can be specified by using the special type void
as return value.

22Function basics

3. Functions Internet of Things Lab A.Y. 2021/22

Returns an int
value

Function named
findMax

Takes two int
parameters

This statement is only reachable in cases the
previous return has not been invoked

Early return since the maximum value
between the two is already known

23Function basics

3. Functions Internet of Things Lab A.Y. 2021/22

findMax declaration

findMax definition

Function must be
declared or entirely
defined before the
main function

If a function has only
been declared, a
definition must be
provided

C++ allows two methods for passing arguments to functions:

➤ By value
Parameters in a function will receive copies of the the variable contents upon invocation

➤ By reference
Parameters in a function will receive the variable itself upon invocation

Pass-by-value is the default method, but requiring a pass-by-reference can be specified at function declaration time

for a particular parameter by inserting an ampersand (&) after the parameter’s type:

void mulByTwo(int &n) { n *= 2; };

Why use pass-by-reference?

Whenever a function is expected to modify the variables with which it has been invoked. Sometimes it can be done for

efficiency purposes as well.

24Passing arguments to functions

3. Functions Internet of Things Lab A.Y. 2021/22

This function multiplies the value by 2 in place, i.e. directly
modifying the contents of the variable that has been passed

4. Exercises

25

1. Write a program that prompts the user to insert an integer value and sums its digits, printing them at the end
(e.g. for a provided integer value of 76, the result should be 13)

2. Write a program that includes a function that swaps the contents of two float variables, printing the two

variables before and after function invocation
(hint: function should return void)

3. Implement the for loop, without using while or do while loops, only using if and goto statements

26Exercises

4. Exercises Internet of Things Lab A.Y. 2021/22

➤ https://www.cplusplus.com/doc/tutorial/operators/

➤ https://en.cppreference.com/w/cpp/language/statements

➤ https://en.cppreference.com/w/cpp/language/if

➤ https://en.cppreference.com/w/cpp/language/switch

➤ https://en.cppreference.com/w/cpp/language/while

➤ https://en.cppreference.com/w/cpp/language/do

➤ https://en.cppreference.com/w/cpp/language/for

➤ https://en.cppreference.com/w/cpp/language/range-for

➤ https://en.cppreference.com/w/cpp/language/goto

➤ https://www.cplusplus.com/doc/tutorial/functions/

References

Internet of Things Lab A.Y. 2021/22

27

https://www.cplusplus.com/doc/tutorial/operators/
https://en.cppreference.com/w/cpp/language/statements
https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/switch
https://en.cppreference.com/w/cpp/language/while
https://en.cppreference.com/w/cpp/language/do
https://en.cppreference.com/w/cpp/language/for
https://en.cppreference.com/w/cpp/language/range-for
https://en.cppreference.com/w/cpp/language/goto
https://www.cplusplus.com/doc/tutorial/functions/

