
Introduction to C++

Emanuele Giona
Department of Computer Science, Sapienza University of Rome

Internet of Things A.Y. 2021/22

Prof. Chiara Petrioli
Department of Computer, Control and Management Engineering, Sapienza University of Rome

➤ Bjarne Stroustrup invented C++ as “C with classes” in 1979, at Bell Labs

➤ Main focus: efficient and flexible language similar to C, while also providing high-level features for program

organization

➤ It was renamed to C++ in 1983

➤ Many standards: C++98, C++03, C++11, C++14, C++17, C++20, C++23

Brief History

1. Introduction to C++ Internet of Things Lab A.Y. 2021/22

2

TIOBE index

C++ is widely used in several applications such as desktop applications, video games, databases, web servers,

although its original scope was intended to be systems programming and embedded systems.

Its popularity can be attributed to its stability, solid performance, high compatibility and scalability, as well as the

many useful features provided by the language.

Main features comprise:

➤ Middle-level programming language (both high-level and low-level capabilities)

➤ Multi-paradigm programming
■ Imperative: programs expressed via statements that change the internal state

■ Object-oriented: programs expressed via concepts of classes, objects, polymorphism, inheritance, abstraction,

encapsulation

■ Functional: programs expressed via application and composition of functions (see Declarative Programming)

➤ Direct memory manipulation (explicit pointers, dynamic memory allocation, etc.)

3Applications of C++

1. Introduction to C++ Internet of Things Lab A.Y. 2021/22

Why C++ for the Internet of Things?

4

1. Introduction to C++ Internet of Things Lab A.Y. 2021/22

Why C++ for the Internet of Things?

➤ Internet of Things applications often make use of embedded systems

➤ Such devices usually are resource-constrained (processing power, memory limits, etc.)

➤ Access to low-level features of a device allows for full exploitation of its capabilities

5

1. Introduction to C++ Internet of Things Lab A.Y. 2021/22

2. Working with C++

6

C++ is a compiled programming language: what does this mean?

Computes can only execute programs expressed in machine language, in which instructions consist of 0s and 1s.

In order to obtain code in this way, programming languages can either be compiled or interpreted.

7Compilers

2. Working with C++ Internet of Things Lab A.Y. 2021/22

Compiled Languages

Programs are translated to machine language all at
once.

Compilation is only needed once, unless source
code has to be modified.

Capable of detecting some errors before execution
occurs.

RAM only contains program state and no source
code at all.

Compiled programs usually execute faster.

Interpreted Languages

Programs are translated to machine language one
instruction at a time.

Program execution occurs by loading and translating
instructions at the moment of execution, every time.

All errors can only be detected at execution time.

Part of the source code is stored in RAM for the
interpreter to translate.

Interpreted programs usually run slower.

Windows
Install an Integrated Development Environment (IDE), such as Dev-C++, C++Builder, Visual Studio Code, Codelite, etc.

Compile a program simply using the visual interface within the chosen IDE.

Mac
Install Xcode with gcc/clang compilers, or Visual Studio Code, etc. Compile a program by launching a Terminal and using

one of the following commands:

g++ -std=c++11 example.cpp -o example_exec
clang++ -std=c++11 -stdlib=libc++ example.cpp -o example_exec

Linux
Most Linux distributions ship with GNU Compiler Collection (gcc) already installed. Compile a program by launching a

Terminal and using the following command:

g++ -std=c++11 example.cpp -o example_exec

8Compilers and Operating Systems

2. Working with C++ Internet of Things Lab A.Y. 2021/22

3. Basic Syntax

9

➤ Source code is usually contained in files with .cpp extension

➤ Comments in C++ can either be single lines or span multiple lines

// This is a single-line comment
/* This comment spans
multiple lines instead */

➤ Each instruction must end in a semicolon ;

➤ Source code is case sensitive: hello ≠ hEllo

➤ An identifier is the name for variables, functions, classes, or any other user-defined item
■ Consists of a sequence of alphanumeric characters

■ Cannot start with a digit

■ Cannot contain punctuation, special characters, or spaces

■ Should not start with single or double underscore (_) characters

10Generic syntax

3. Basic Syntax Internet of Things Lab A.Y. 2021/22

Valid

Count
C0unt
c__

Error

0count
C@unt
count+

Additionally, there are some reserved keywords that cannot be used as identifiers, despite fulfilling the syntax rules.

11Generic syntax

3. Basic Syntax Internet of Things Lab A.Y. 2021/22

They have special meanings associated to them, indicating specific
behavior to the compiler.

A variable is a portion of memory to store a value, to which a name and a type are associated.

Names are used to distinguish among multiple variables, whereas types determine the meaning of the stored values

as well as operations performed on them.

Fundamental data types are basic types directly implemented by C++ that represent the lowest level storage units

natively supported by most systems and be classified into:

➤ Character types (e.g. char)

Can store a single character – ‘A’ or ‘f’
➤ Numerical integer types (e.g. int)

Can store a whole number – 42 or 65535
➤ Floating-point types (e.g. float)

Can store a single-precision real number – 3.14 or -2.71
➤ Boolean type (e.g. bool)

Can store a logical value – true or false

12Variables

3. Basic Syntax Internet of Things Lab A.Y. 2021/22

The type of a variable determines the size of the memory portion used to store the value of the variable itself.

13Types and size in memory

3. Basic Syntax Internet of Things Lab A.Y. 2021/22

Group Type Minimum size

Character char At least 8 bits

Numerical integer

short At least 16 bits

int At least 16 bits

long At least 32 bits

long long At least 64 bits

Floating point

float At least 32 bits, of which >6 significant

double At least 64 bits, of which >15 significant

long double At least 64 bits, of which 15/18/33
significant (depends on size)

Boolean bool N/A

Unless specified otherwise, numeric integer types are signed: this allows to store both negative and positive values in

variables of these types. By explicitly marking a variable unsigned, it will only be capable of representing positive

values (≥ 0).

This is simply done by preceding the type with the keyword (unsigned short, etc.).

Quick quiz

➤ Can you store -1 in a variable of type unsigned short?

➤ Can you store 65535 + 1 in a variable of type int?

➤ Can you store 65535 + 1 in a variable of type unsigned int?

➤ Can you define a variable of type unsigned float?

14Signed and unsigned types

3. Basic Syntax Internet of Things Lab A.Y. 2021/22

Unless specified otherwise, numeric integer types are signed: this allows to store both negative and positive values in

variables of these types. By explicitly marking a variable unsigned, it will only be capable of representing positive

values (≥ 0).

This is simply done by preceding the type with the keyword (unsigned short, etc.).

Quick quiz

➤ Can you store -1 in a variable of type unsigned short? → No, 65535 will be stored instead.

➤ Can you store 65535 + 1 in a variable of type int? → Theoretically no, but usually yes.

➤ Can you store 65535 + 1 in a variable of type unsigned int? → Yes.

➤ Can you define a variable of type unsigned float? → No, compile-time error!

Type-related errors may be spotted at compile time and others at runtime, but silent failures can happen too!

15Signed and unsigned types

3. Basic Syntax Internet of Things Lab A.Y. 2021/22

Literals are data used for representing fixed values, to which no other value can be assigned.

➤ Integer literals
Decimal: 7, -36, … | Octal: 021, 054, … | Hexadecimal: 0xff, 0x345, …

➤ Floating-point literals
42.72f, 0.000003435, -0.3E6

➤ Boolean literals

➤ Character literals
‘e’, ‘G’, ‘9’, ‘\n’, ‘\t’

➤ String literals
“hello world”, “x”, “input:\n”

Literals are used during variable assignments or instruction

evaluation.

16Literals

3. Basic Syntax Internet of Things Lab A.Y. 2021/22

A simple variable definition consists of:

int x, y, z = 5 ;
float dist ;
bool outcome = false ;
char newLine = ‘\n’ ;

Quick quiz

➤ What is stored in variables x, y, and z?

17Creating variables

3. Basic Syntax Internet of Things Lab A.Y. 2021/22

1+ names separated
by commas

Type specifier Ends with a semicolon

Assignment (optional)

A simple variable definition consists of:

int x, y, z = 5 ;
float dist ;
bool outcome = false ;
char newLine = ‘\n’ ;

Quick quiz

➤ What is stored in variables x, y, and z? → z contains 5, but values in x and y are compiler-dependant.

In order to avoid undefined behavior, make sure to initialize variables before using them!

18Creating variables

3. Basic Syntax Internet of Things Lab A.Y. 2021/22

1+ names separated
by commas

Type specifier Ends with a semicolon

Assignment (optional)

19

Constant variables are used whenever the value stored in a variable must not be changed after definition, and creating

them is simply done by preceding the type specifier with the const keyword:

const double pi = 3.14f;

Declaration, definition, and initialization

These concepts are distinct in C++ and they refer to variables as well as functions, classes, and more.

In the scope of variables initialization is equivalent to a value assignment through the = operator, while definition has

no real meaning. Declaration of a variable instead refers to the introduction of a new name in the program, without

necessarily specifying a value in the same instruction.

Unless particular cases, constant variables must be declared and initialized otherwise a compile error will be raised.

Differences between declaring and defining something are more important in the case of functions and classes.

Constants and details on variables creation

3. Basic Syntax Internet of Things Lab A.Y. 2021/22

Starting from C++11, the language supports the creation of variables without explicitly using a type specifier. This is

done through type deduction and the auto keyword has been introduced to use as a type placeholder.

int counter = 0;
auto missing = counter;
auto next;

Variable missing will be created of the same type of its initialization value, in this case int, and will be assigned the

value stored in counter.

However this program will not compile: variable next is declared as auto but no initialization has taken place and

thus the compiler does not know how much memory it should allocate for it.

20Variables of unknown type?

3. Basic Syntax Internet of Things Lab A.Y. 2021/22

4. Basic Input/Output

21

In C++, a stream is a flow of data into or out of a program in a sequential fashion: operations regarding screen output,

keyboard input, or I/O from/to files are implemented by means of streams.

The standard iostream library is needed to leverage such features:

#include <iostream>

This library provides classes and operators to effectively implement the necessary I/O operations.

22Streams

4. Basic Input/Output Internet of Things Lab 2021/22

By default, the standard output provides data to the screen:

std::cout << “This string literal will be printed on screen”;

All kinds of literals and variables can be passed to the standard output. The insertion operator << can be used with all

kinds of streams: writing to a file is done in the same way as printing characters to screen.

Multiple insertions are allowed too:

std::cout << “X: “ << x << “\nY: “ << y;
std::cout << std::endl;

Potential output:

X: 4.5
Y: 2

23Standard output

4. Basic Input/Output Internet of Things Lab 2021/22

Standard output Insertion
operator

String that will be printed on screen

Both the ‘\n’ literal and std::endl add new line
characters, but std::endl should be used carefully

By default, the standard input retrieves data from the keyboard:

int counter;
std::cin >> counter;

The program execution will be stopped until the user presses on the Enter / Return key; when execution starts again,

data will be transferred to the program.

Data coming from user input should be used carefully and only after an appropriate data validation phase.

24Standard input

4. Basic Input/Output Internet of Things Lab 2021/22

Extraction
operator

Standard
input

Variable storing the
extracted value

5. Program Structure

25

Copy-pasting a C++ Hello World example in your favorite IDE will probably look like this:

#include <iostream>

int main(){
std::cout << “Hello World!” << std::endl;
return 0;

}

26Hello World in C++

5. Program Structure Internet of Things Lab 2021/22

#include <iostream>

int main(){
std::cout << “Hello World!” << std::endl;
return 0;

}

27Hello World in C++

5. Program Structure Internet of Things Lab 2021/22

Library/file include directives section: the
I/O library is needed to print Hello World!

Function called
main returning

values of type
int

Return value of the program:
the integer literal 0 as return value
represents a successful execution

#include <iostream>

int main(){
std::cout << “Hello World!” << std::endl;
return 0;

}

28Hello World in C++

5. Program Structure Internet of Things Lab 2021/22

std is a namespace for the
standard library, and :: is the
scope resolution operator

Adds a new line character
and flushes the buffer

Standard output stream String literal to be printed on screen

#include <iostream>

int main(){
std::cout << “Hello World!” << std::endl;
return 0;

}

29Hello World in C++

5. Program Structure Internet of Things Lab 2021/22

This function contains 2
statements, one per line

A semicolon in placed at the
end of each statement

#include <iostream>

int main(){
std::cout << “Hello World!” << std::endl;
return 0;

}

#include <iostream>
int main() { std::cout << “Hello World” << std::endl; return 0; }

Include directives must be one per line and each statement must be succeeded by a semicolon.

30Hello World in C++

5. Program Structure Internet of Things Lab 2021/22

Equivalent!

Since the std namespace has many functions implemented in itself, in order to avoid repeating it at every invocation

of such functions and objects the using directive can come in handy:

#include <iostream>
using namespace std;

int main(){
cout << “Hello World!” << endl;
return 0;

}

As a result of this, name collisions may arise and a compile-time error will be raised: be careful with names when

declaring functions and variables in conjunction with the using directive.

31The using directive

5. Program Structure Internet of Things Lab 2021/22

Every name declared in the target
namespace (std) is introduced into the
nearest namespace containing both std
and user-declared namespace, or the
global namespace

Header files (extensions: .h, .hpp)

✓ New namespaces

✓ Function, class declarations

✓ Macros

✓ Global variables

✓ include directives

✓ Include guards

✓ Default arguments for functions

⨯ using directives

⨯ Non-const variables

⨯ Unnamed namespaces

32Header and implementation files

Implementation files (extensions: .cpp)

✓ Function definitions

✓ const variables initialization

✓ include directives

✓ using directives

⨯ Function, class declarations

⨯ Macros

⨯ Global variables

5. Program Structure Internet of Things Lab A.Y. 2021/22

C++ programs may be split in two separate files for organization purposes: header and implementation files.

This split allows to distribute libraries without the need of releasing the full source code, as compilers only need

declarations in header files and implementations can be provided as pre-compiled objects.

example.h

#ifndef HELLO_WORLD_H
#define HELLO_WORLD_H

#include <iostream>

int main();

#endif

33Hello World over two files

example.cpp

#include “example.h”

using namespace std;

int main(){
cout << “Hello World!” << endl;
return 0;

}

5. Program Structure Internet of Things Lab A.Y. 2021/22

example.h

#ifndef HELLO_WORLD_H
#define HELLO_WORLD_H

#include <iostream>

int main();

#endif

34Hello World over two files

example.cpp

#include “example.h”

using namespace std;

int main(){
cout << “Hello World!” << endl;
return 0;

}

5. Program Structure Internet of Things Lab A.Y. 2021/22

Preprocessor directives
that act as include guards,
preventing circular includes
from causing issues during
compilation

Double quotes (“)
are used for
user-defined header
files

This directive can be used to
define macros: the
preprocessor simply replaces
all occurrences of a macro
with the code that is
associated with it

In this case, it is only used to
check whether this file has
been included before, thus
avoiding double declarations

example.h

#ifndef HELLO_WORLD_H
#define HELLO_WORLD_H

#include <iostream>

int main();

#endif

35Hello World over two files

example.cpp

#include “example.h”

using namespace std;

int main(){
cout << “Hello World!” << endl;
return 0;

}

5. Program Structure Internet of Things Lab A.Y. 2021/22

example.h

#ifndef HELLO_WORLD_H
#define HELLO_WORLD_H

#include <iostream>

int main();

#endif

36Hello World over two files

example.cpp

#include “example.h”

using namespace std;

int main(){
cout << “Hello World!” << endl;
return 0;

}

5. Program Structure Internet of Things Lab A.Y. 2021/22

The main function has its
signature declared in the

header file, and its definition
is contained in the

implementation file

example.h

#ifndef HELLO_WORLD_H
#define HELLO_WORLD_H

#include <iostream>

int main();

#endif

37Hello World over two files

example.cpp

#include “example.h”

using namespace std;

int main(){
cout << “Hello World!” << endl;
return 0;

}

5. Program Structure Internet of Things Lab A.Y. 2021/22

Compiling a program split over two files is simple: the implementation file containing the definition of the main()

function should be passed to the compiler, which will look for the required headers on its configured include path.

However, the main() function implementation is usually not split across two files and is often the only function

present in its file.

For a Linux OS:

g++ -std=c++11 example.cpp -o example_exec

6. Manipulating Strings

38

Strings are objects representing a sequence of characters, supporting multi-byte characters and variable-length

sequences regardless of the encoding used.

#include <string>
...
std::string message = “What is your name?”;

Strings act more than just a simple storage for character sequences, providing specialized functions too. For example:

➤ message.copy() → Copies contents of message elsewhere

➤ message.find() → Searches contents of message for the first occurrence of a string or character

➤ message.substr() → Creates a new string with a portion of the contents of message
➤ message.compare() → Compares message to another string lexicographically

39Strings

6. Manipulating Strings Internet of Things Lab A.Y. 2021/22

Output
Printing a string is straightforward: simply use the std::cout stream and pass the string via the insertion operator.

Input
When using std::cin only the first token is extracted: whitespaces, tab characters, new-line characters, etc. all

terminate the value being extracted, acting as delimiters.

In case of needing an input string containing such characters, the getline() function can be used. This function

parses an input stream and stores its values in a string object, specifying the delimiter wanted (default: ‘\n’).

40Strings and standard I/O

6. Manipulating Strings Internet of Things Lab A.Y. 2021/22

...
std::string msg = “”;
std::cin >> msg;
std::cout << msg << std::endl;
...

Input: I’m testing strings in C++

Output: I’m

...
str::string msg = “”;
std::getline(std::cin, msg);
std::cout << msg << std::endl;
...

Input: I’m testing strings in C++

Output: I’m testing strings in C++

A special stream explicitly operating on string objects is implemented in the sstream header, in the stringstream

class.

It can be used to convert strings back and forth to other types, such as ints, floats, etc.

This is not the only way to convert values between these two types, instead it is a display of the flexibility of the

stream paradigm in C++.

41Strings and standard I/O

6. Manipulating Strings Internet of Things Lab A.Y. 2021/22

From string to int
...
int num = 0;
std::string msg = “”;
std::cin >> msg;
std::stringstream ss;
ss << msg;
ss >> num;
std::cout << num << std::endl;

From int to string
...
str::string msg = “”;
int num = 0;
std::cin >> num;
std::stringstream ss;
ss << num;
ss >> msg;
std::cout << msg << std::endl;

7. Exercises

42

1. Write a program that prompts the user to insert an integer and a floating-point number, then performs and

outputs their sum.

2. Write a program that reads a string containing a number, then converts it into an integer, adds 5 to such value,

and prints the result as a string.

43Exercises

7. Exercises Internet of Things Lab A.Y. 2021/22

➤ https://en.wikipedia.org/wiki/C%2B%2B

➤ https://www.tiobe.com/tiobe-index/

➤ https://www.baeldung.com/cs/compiled-vs-interpreted-languages

➤ https://en.cppreference.com/w/cpp/keyword

➤ https://www.cplusplus.com/doc/tutorial/variables/

➤ https://www.programiz.com/cpp-programming/variables-literals

➤ https://en.cppreference.com/w/cpp/language/namespace

➤ https://www.learncpp.com/cpp-tutorial/class-code-and-header-files/

➤ https://docs.microsoft.com/en-us/cpp/cpp/header-files-cpp

➤ https://www.cplusplus.com/doc/tutorial/preprocessor/

➤ https://www.cplusplus.com/reference/string/string/

➤ https://www.cplusplus.com/reference/string/string/getline/

➤ https://www.cplusplus.com/reference/sstream/

44References

Internet of Things Lab A.Y. 2021/22

https://en.wikipedia.org/wiki/C%2B%2B
https://www.tiobe.com/tiobe-index/
https://www.baeldung.com/cs/compiled-vs-interpreted-languages
https://en.cppreference.com/w/cpp/keyword
https://www.cplusplus.com/doc/tutorial/variables/
https://www.programiz.com/cpp-programming/variables-literals
https://en.cppreference.com/w/cpp/language/namespace
https://www.learncpp.com/cpp-tutorial/class-code-and-header-files/
https://docs.microsoft.com/en-us/cpp/cpp/header-files-cpp
https://www.cplusplus.com/doc/tutorial/preprocessor/
https://www.cplusplus.com/reference/string/string/
https://www.cplusplus.com/reference/string/string/getline/
https://www.cplusplus.com/reference/sstream/

