~+ Internet of Things A.Y. 20-21
Prof. Chiara Petrioli

Dept. of Computer Science
Sapienza University of Rome

-

: : © | .
ducti

o 15

onto C++

Marco Bernardi - Georgia Koutsandria

|IOT Lab Classes

ns-3

NETWORK SIMULATOR

:::ROS

Compilers

Internet of Things A.Y. 20-21

How to compile a C++ program

Windows: Install an Integrated Development Interface (IDE), |
e Dev-C++ http://www.bloodshed.net/dev/index.html

Mac: Install Xcode with the gcc/clang compilers.

g++ -std=c++11 example.cpp -0 example_program OR
clang++ -std=c++11 -stdlib=libc++ example.cpp -0 example_program

Compilers

Linux: Compile your code directly from the terminal using the
following commad g++ -std=c++0x example.cpp -0 example_program

Internet of Things A.Y. 20-21

http://www.bloodshed.net/dev/index.html

Basic Input/Output

Internet of Things A.Y. 20-21

The Standard Library

e C++ uses convenient abstraction to perform input and
output operations in sequential media, e.g., screen,
keyboard or a file.

e Stream: Insert or extract characters to/from.

Basic Input/Output

{ #include <iostream> J

Internet of Things A.Y. 20-21

Standard input (cin)

e Default standarad input: keyboard

e |t is used together with the extraction operator (>>) and it
usually appears with the scope operator :: to indicate that cin
is in the namespace std.

Int age; -—
Extracts fromcina _~ cin >> age; =
value to be stored in
the variable age

Declares a variable
of type int called age

Basic Input/Output

e The characters introduced using the keyboard are only
transmitted to the program when the ENTER (or RETURN)

key is pressed.
yisp Internet of Things A.Y. 20-21 a

Standard output (cout)

e Default standarad output: screen

e |t is used together with the insertion operator (<<) and it
usually appears with the scope operator :: to indicate that cin
is in the namespace std.

// prints Output sentence on screen
cout << " Output sentence”,

/[prints number 2 on screen

cout << 2;

// prints the value of x on screen
cout << x;

Basic Input/Output

Internet of Things A.Y. 20-21

/O example

#include <iostream>

cout << "The value you entered is " << i;
cout << " and its doubleis " << I*2<<"\n";
return O;

using namespace std; =
Q.

Int main(){ a
inti=0; E

cout << "Please enter an integer value: “; =

cin >> i; =

'?

©

(a8

Internet of Things A.Y. 20-21 a

Statements and Flow Control

Internet of Things A.Y. 20-21 n

Conditional Statements

1. if statement: Tests a condition or a set of conditions.
sequentially. if (condition) {

Statement 1

2. switch statement: Evaluates an integral expression
and chooses one of several execution paths based on
the expression’s value.

switch (condition)
statement

Statements and Flow Control

Internet of Things A.Y. 20-21

Condition(s)

* The condition must be enclosed in parenthesis

* |t can be an expression or an initialized variable
declaration. It must have a type that is convertible to
bool.

— The statement is executed.

If (condition)
statement

Statements and Flow Control

— The statement is skipped.

Internet of Things A.Y. 20-21

The if Conditional Statement

* Conditionally executes another statement based on
whether a specified condition is true.

int number=0;
cout << "Enter an integer: ";
simple if cin >> number;
\ Il checks if the number is positive
if (number > 0) {
cout << "You entered a positive integer: " << number << endl;

}

Statements and Flow Control

Condition

Internet of Things A.Y. 20-21

The switch Conditional Statement

A convenient way of selecting among a (possible
large) number of fixed alternatives.

switch(x){

case 1.
cout << "xis 1™;
break;

case 2.
cout << "x Is 2";
break;

default:
cout << "value of x is unknown";

Statements and Flow Control

Internet of Things A.Y. 20-21

Iterative Statements (loops)

Repeated execution until a condition is true
Statements that test the condition before executing
the block: while, for

Statement that executes the body and then tests
the condition: do while

Statements and Flow Control

while (condition) for (initializer; condition; expression)
statement statement
do
statement

while (condition);

Internet of Things A.Y. 20-21

The for loop

* It repeats statement while condition is true.

#include <iostream>
using namespace std,
iInt main(){
for (int n=0; n<5; n++)
cout<<n<<""%
cout << endl;

Statements and Flow Control

Internet of Things A.Y. 20-21

The while loop

* It simply repeats statement while condition is true.
* The loop ends if, after any execution of statement,
expression is no longer true.

#include <iostream>
using namespace std,;
Int main(){
iInt n = 10;
while (n>0){
cout<<n<<" "
__n;
}

cout << "liftoff\n";

Statements and Flow Control

Internet of Things A.Y. 20-21

The do-while loop

* It behaves like the while loop, except that condition
is evaluated after the execution of the statement.

#include <iostream>
using namespace std,;
Int main(){
string str;
do {
cout << "Enter text: ";
getline(cin,str);
cout << "You entered: " << str << "\n";
} while(str!="ciao");

Statements and Flow Control

Internet of Things A.Y. 20-21

Functions

Internet of Things A.Y. 20-21

Functions Basics

e A function is a block of code with a name.

* |tis executed by calling the given name, and it can be
called from some point of the program.

Functions

* Common syntax:
type name(parameter1, parameter2, ...){statements}

. Internet of Things A.Y. 20-21

Functions: An example

/[[function example
#include <iostream>
using namespace std;
Int addition(int a, int b){

(7]
; [=
intr; 0
— . ofd
r=a+b: c
return r; 3
}
Int main(){
Int z;

z = addition(5,3);
cout<<"Theresultis" <<z <<"\n":

. Internet of Things A.Y. 20-21

Calling a Function

e A function call
* Initializes the parameters from the
arguments
* Transfers control to that function.
* Execution of the called function begins.

Int main(){

z = addition(5,3);

cout<<"Theresultis"<<z<<"\n";

Functions

/

Int z;
. }
@

Internet of Things A.Y. 20-21

Functions with no type

e When a function does not need to return a value, the
type to be used is void.

 This is a special type to represent the absence of value.

Functions

 The void can also be used in the function’s parameter list to
specify that the function takes no actual parameters when called.

printmessage(); +«~—__ Note the use of the empty

.. pair of parentheses!
Internet of Things A.Y. 20-21

Declaring functions

* Functions cannot be called before they are declared.

* Functions should be declared before calling main.

 If the main is defined before an undeclared function is called, then
the compilation of the program will fail.

Functions

int fact(int a, int b); Cunct
void even(int x); ——_ runction
declaratio

. n
Internet of Things A.Y. 20-21

Passing arguments by value

e Arguments can be passed by value

Int x=5, y=3, z,
z = addition (x,y);

* Only copies of the variables values at that moment are passed to
the function.

Functions

e Modifications on the values of the variables have not effect on
the values of the variables outside the function.

. Internet of Things A.Y. 20-21

Passing arguments by reference

e Access an external variable from within a function.

 The variable itself is passed to the function.

 Any modification on the local variables within the function
are reflected in the variables passed as arguments in the call.

Functions

 References are indicated with an ampersand (&) following the
parameter type.

. Internet of Things A.Y. 20-21

Passing arguments by reference

//[passing parameters by reference
#include <iostream>

using hamespace std;

void duplicate(int& a, int& b){

a*=2; =

b*=3; .g

(@

} -

int main(){ e
Int x=1, y=3;

duplicate(x, y);
Cout << "X:" << X << ll’ y:" << y << ll\nll;
return O;

@'
. Internet of Things A.Y. 20-21

Exercise 1

Write a program that prompts the user to give two
integer numbers. Declare a function that compares the
two integers and returns the maximum one.

. Internet of Things A.Y. 20-21

Functions

Exercise 1-Solution

<l1o0stream>
std;

int returnMax(int a, int b);
int main(){

int numl, num2, maximum;

cout << "Enter two numbers:";

cin >> numl >> num2;

maximum = returnMax(numl,num2);

cout << "Max of " << numl << " and " << num2 << " is: " << maximum <<"\n";

Functions

0;

returnMax(int a, int b){

int maximumNumber;
(a>b)
maximumNumber = a;

maximumNumber = b;
maximumNumber;

Internet of Things A.Y. 20-21

Arrays

Internet of Things A.Y. 20-21

Arrays

A structure which stores many variables of the
same type, e.g., int, double, bool, etc..

e Uses an ‘index’ to access each variable or
‘element’ of the array.

Arrays

e C++includes static arrays, allocated arrays, and
standard library containers.

Internet of Things A.Y. 20-21

Array declaration

* Arrays are declared like normal variables.
e Square brackets [] indicate the number of
variables which the array can store.

, _ array can store
#include <iostream>

five
int main () int yariables
{ array_d can store

int array[5];

Arrays

double array d[2]={1.0,2.0}; — 2 .
double variables,
LI B initialized

Internet of Things A.Y. 20-21

Accessing array elements

* Array ‘index’ starts from zero
* (Can be used for arithmetic, copied to other
variables etc..

_ _ drray can store
#include <iostream>

five
int main() / int variables
{ set the first

int array[5]; —

Arrays

A — elemgnt to

array[1] = array[0]+5; —_—

return O set the second
} element to 8

Internet of Things A.Y. 20-21

Accessing Arrays using loops

#include <iostream>
Int main()
{

Int array[5];

for(int i=0; i<5; ++i)
array[i] = 0;

for(int i=0; I<5; ++i)
arrayfi] +=1;

return O;

loop over all
elements and set
— - to zero

Arrays

Add i to each

array

Internet of Things A.Y. 20-21

Pointers

Internet of Things A.Y. 20-21

Pointers

Variables: Locations in the computer’s memory which
can be accessed by their identifier (their name).

The address of a variable can be obtained by using the
ampersand sign(&).

Pointers

Pointer: The variable/object whose value is the address in
memory of another variable.

Internet of Things A.Y. 20-21

Pointers

Pointer: The variable/object whose value is the address in
memory of another variable.
Dereferencing: Acessing an object to which a pointer refers
 Use the indirection operator, i.e., " * "

e E.g., if foois a pointer, *foo is the object to which the

pointer refers

Pointers

myvar
25 myvar = 25;
1775 1776 1777 foo = &myvar;

£00 y \ bar bar = myvar;

Internet of Things A.Y. 20-21

Pointers

foo

1776

25
1775 1776 1777

25

baz

£

2
myvar = 25; c
foo = &myvar; s
baz = *foo;

Internet of Things A.Y. 19-20

Declaring Pointers

They have different properties when they point to a
char than when they point to an int or float.

Their declaration needs to include the data type are going to
point to.

Syntax: type * name;

The asterisk means that a pointer is declared which should not be
confused with the dereference operator.

Pointers

Internet of Things A.Y. 20-21

Pointers- An example

#include <iostream>
using namespace std;
Int main(){

int firstvalue = 0O;

Int * mypointer;

Pointers

mypointer = &firstvalue;

cout << "mypointer is " << mypointer << end];
cout << "firstvalue is " << *mypointer << endl];
*mypointer = 10;

cout << "firstvalue is " << firstvalue << end];

return O;

Internet of Things A.Y. 20-21

Pointers arithmetics

* Only addition/subtraction operations are allowed.
* Operations depend on the size of the data type to which

they point.
* E.g.:In agiven system, a char takes 1 byte, a short takes 2 bytes,

(7))
and long takes 4 bytes. 3 pointers that point to memory locations fé’.
'O
1000, 2000, and 3000. 1000 1001 1002 2000 2001 2002 2003 B
char * mychar;
short * myshort;
Ol iiiene) mychar — ** myshort —— ™

3000 3001 3002 3003 3004 3005 3006 3007

++

mylong Internet of Things A.Y. 20-21

Pointers arithmetics

 The increment/decrement operators can be used as
either prefix or suffix of an expression.

* The increment/decrement operator has a higher
precedence than the *.

Pointers

//incremement pointer, and dereference unincremented address

*p++;//[same as *(p++);

//incremement pointer, and dereference incremented address

*++p; //[same as *(++p);

//dereference pointer, and increment the value it points to ++*p; //same as ++(*p);
//dereference pointer, and post-increment the value it points to

(*p)++;

Internet of Things A.Y. 20-21

Pointers to Pointers

 The syntax requires an asterisk (*) for each level of
indirection in the declaration of the pointer.

a b C

char a; o . o g
char * b; E
char ** c; 7230 8092 10502 S
a='z; : : :

b= &a * Variable c can be used in three different levels of

c = &b; indirection
1. cis of type char** and has a value of 8092.
2. *cis of type char* and has a value of 7230.
3. **cis of type char and has a value of ‘z’.

Internet of Things A.Y. 20-21

Pointers and Arrays

An array can always be implicity converted to a pointe
of a proper typer.

Pointers and arrays support the same set of operations.
Exception: Pointers can be assigned a new address,

while arrays cannot.

The name of an array can be used like a pointer to its first
element.

Pointers

Internet of Things A.Y. 20-21

Pointers and Functions

C++ allows to pass a pointer to a function

The function parameter(s) should be declared as a pointer

Pointers

Changes on the value of the pointer inside the function
reflect back in the calling function.

Internet of Things A.Y. 20-21

Pointers and Functions— An example

#include <iostream>
using namespace std;
double calcAverage(int *arr, int size);

int main(){
iInt numbers[5] = {2, 8, 10, 20};
double avg; "
avg = calcAverage(numbers, 4); o
cout << "Average is: " << avg << endl; -lE
return O; I
} o
double calcAverage(int *arr, int size){
iInt sum = 0O;
double k;

for (int n=0;n<size;n++)

sum +=arr[n];
k = double(sum)/size;
return k;

} Internet of Things A.Y. 20-21

Exercise 1

What is the exact output of the following program?

#include <iostream>
using namespace std;

Int main(){ -
Int numbers[5]; T
int * p; =
p = numbers; *p = 10; E
p++; *p = 20;

p = &numbers[2]; *p = 30;
p = numbers + 3; *p = 40;
p--; *p = 100;
p = numbers; *(p+4) = 50;
cout << "Output: " << end];
for (int n=0;n<5;n++)
cout << numbers[n] << "\n";

return O; .
Internet of Things A.Y. 20-21

Exercise 1--Solution

#include <iostream>
using namespace std,;

Int main(){
iInt numbers[5]; Output:
Int * p; o
p = numbers; *p = 10; 10 o
p++; *p = 20; 20 =
p = &numbers[2]; *p = 30; s
p = numbers + 3; *p = 40; 100
p--; *p = 100; 40
p = numbers; *(p+4) = 50;
cout << "Output: " << endl; 50
for (int n=0;n<5;n++)

cout << numbers[n] << "\n";
return O;

Internet of Things A.Y. 20-21

Exercise 2

What is the exact output of the following program?

#include <iostream>
using hamespace std,;
Int main(){
int array[3]={3, 6, 9};
Int * p = array,
cout << "Print a: " << endl;
for (int n=0;n<3;n++)
cout << *(p+n)+2 << endl;
cout << "Print b: " << endl;
for (int k=0;k<3;k++)
cout << *p+k+2 << endl;

Pointers

return O;
} Internet of Things A.Y. 20-21

Exercise 2--Solution

#include <iostream>

using namespace std,;
Int main(1 Print a:
int array[3]={3, 6, 9}, v
Int * p = array;, 5 9
cout << "Print a: " << endl; 8 c
for (int n=0;n<3;n++) s
cout << *(p+n)+2 << end]; 11
cout << "Print b: " << endl; Print b:
for (int k=0;k<3;k++)
cout << *p+k+2 << endl; 5
6
return O;
} 7/

Internet of Things A.Y. 20-21

Containers in the C++ standard
library

Internet of Things A.Y. 20-21

Containers

 Container: stores a collection of other objects (elements).
 Containers library: a collection of class templates and
algorithms; allows flexibility to the programmer.
* Two main categories of containers
 Sequential

* Associative: Ordered; Unordered (c++11)

Containers

* Q: Which container to choose?
* A:-Functionality offered by the container.
- Efficiency/complexity of its members.

Internet of Things A.Y. 20-21

Sequential Containers in the C++
standard library

Internet of Things A.Y. 20-21

Sequential Containers

Standard library includes several container types

* E.g., array(c++11), vector, list, forward_list(c++11), deque.
The order of the elements corresponds to the positions in
which the elements are added to the container (they can be
accessed sequentially).

Built-in functions, e.g., sorting and ordering.

Sequential containers

Internet of Things A.Y. 20-21

Which sequential container to use?

 Unless you have a reason to use another
container, use a vector.

* Lots of small elements and space overhead
matters, don’t use list or forward_list.

e Random access to elements: vector or deque.

* Insert/delete elements in the middle of the
container: list or forward_list.

* Insert/delete elements at the front and the back
(not in the middle): deque.

Sequential containers

Internet of Things A.Y. 20-21

Which sequential container to use?

4 N

The predominant operation of the application
(whether it does more access or more insertion
or deletion) will determine the choice of the
container type.

_ /

Sequential containers

Internet of Things A.Y. 20-21

Array

A fixed-size sequence container; No memory
management.

Holds a specific number of elements ordered in a
strict linear sequence.

Appropriate header: #include <array>

//array holds 2 objects of type int; initialized
array<int, 2> myarray = {2, 8},

//array holds 2 objects of type int; initialized
array<int, 2> myarray{2, 8},

//10 objects of type int

array<int, 10 > myarray;

Sequential containers

Internet of Things A.Y. 20-21

Arrays: An example

#include <iostream>
#include <array>
using namespace std;

Int main(){
array<int,4> myarray = {1, 2, 3, 4};
cout << "Element of myarray at position 1 is: "
<< myarray[l] << end];
return O;

Sequential containers

Internet of Things A.Y. 20-21

Built-in vs. Library Arrays

#include <iostream> #include <iostream> g
using namespace std: i #include <array> c
| using namespace std; o
int main(){ ; _ _ g
int myarray[3] = {10,20,30}; i int main(){ | o
for(int i=0;i<3;i++) § array<int,3> myarray{10, 20, 30}; “©
++myarray[il; § for(int i=0;i<myarray.size();i++) "F:'
for(int elem:myarray) § ++myarray[i]; o
cout<<elem<<end!: i for(int elem:myarray) o
return O: | cout<<elem<<endl|; g

} § return 0;

| }

Internet of Things A.Y. 20-21

Vectors

A collection of objects which have the same type.
Every object has an associated index which allows
access to that object.

Efficient and flexible memory management.
Appropriate header:

Sequential containers

#include <vector>

Internet of Things A.Y. 20-21

Using vectors

#include <vector>

using namespace std,; %
: : c
Int main(){ | 'S
vector<float> ivec(10); =
i 6 26(); ++i) — Built-in function to §
or(int 1=0; I<ivec.size(); ++I . @©
ivec.at(i) = 5.0f*float(i): get the size of a £
\ vector g
return O; o
(Vg

} access element of

vector ivec at
position i

Internet of Things A.Y. 20-21 m

(Iterators in C++ STL)

Internet of Things A.Y. 20-21

Iterators

Objects, like pointers, that point to the memory address of
STL containers
Allow iteration over a collection of elements

Reduced complexity and execution time g
Types: ©
* Input / \ £
* Qutput

e Forward Not all iterators are supported by all the

containers in STL

_ /

Internet of Things A.Y. 20-21

* Bidirectional
e _Random-access

Why use iterators?

Convenience in programming: Use iterators to iterate
through the contents of containers.

Reusability: Access elements of any container

Iterators

Dynamic processing of container: Dynamically add or remove elements

Internet of Things A.Y. 20-21

Iterators -- Operations

begin (): returns the beginning position of the container
end (): returns the after-end position of the container
advance (): increments the iterator position till the specified number
next (): returns the new iterator that the iterator would point after
advancing the positions mentioned in the arguments

prev ():returns the new iterator that the iterator would point after
decrementing the positions mentioned in the arguments.

inserter (): inserts the elements at any position in the container;
accepts 2 arguments: 1) the container; 2) the iterator to position where
the elements should be inserted.

Iterators

Internet of Things A.Y. 20-21

Iterators — An example

#include <iostream> #include <iostream>
#include <vector> . #include <vector> "
using namespace std; using namespace std; E
int main(){ i int main(){ o+
vector<int> ivec(5,20); vector<int> ivec(5,20); o
! vector<int>::iterator it; .8

for(int i=0; i<ivec.size(); ++i) ,
cout << ivec.at(i) << "\n"; for(it=ivec.begin();it<ivec.end();it++)
' cout << *it << "\n";

return O; |
} return O:
Accessing the Accessing the elements of a
elements of a vector vector using iterators

Internet of Things A.Y. 20-21

Lists

Are implemented as doubly-linked lists; Each element i
stored in different and unrelated storage locations.
Allow constant time insertion and delete operations from
anywhere in the container; iteration in both directions.
No fast random access; Lack of direct access to the
elements by their position.

Appropriate header:

Sequential containers

#include <list>

Internet of Things A.Y. 20-21 m

Lists — An example

#include <iostream>
#include <list>
using namespace std;

Int main(){
list<int> mylist = {1, 2, 3, 4},
for (int n : mylist)
cout << "Elements of mylist: " << n << "\n";

Sequential containers

return O;

Internet of Things A.Y. 20-21

Associative Containers in the
C++ standard library

Internet of Things A.Y. 20-21 m

Associative Containers

 Elements are stored and retrieved by a key.
 Two primary associative container types: map and set.

e The C++ library provides eight associative containers.

Associative containers

Internet of Things A.Y. 20-21 @

Associative Container Types

Container Type

map Holds key-value pairs

v
set The key is the value E
multimap A key can appear multiple times .‘E
multiset A key can appear multiple times o
unordered_map (c++11) Organized by a hash function .g
unordered_set (c++11) Organized by a hash function .§
unordered_multimap(c++11) Hashed map; keys can appear multiple §
times <
unordered_multiset(c++11) Hashed set; keys can appear multiple
times

Internet of Things A.Y. 20-21

Ordered vs. unordered containers

If you want guaranteed performance prefer an ordered.

If you don’t have memory for a hash table prefer an ordered
container.

If you are using string data as a key prefer an unordered
container.

map/set containers are generally slower than unordered_map/
unordered_set containers to access individual elements by their
key.

map/set containers allow direct iteration on subsets based on
their orders.

Associative containers

Internet of Things A.Y. 20-21

The map associative container

* A collection of (key, value) pairs; often referred to as a
associative array.
* Values are found by a key rather than by their position (as in

arrays).

 E.g.: Mapping names to phone numbers; Each pair contains
a person’s name as a key and a phone number as its value.

Vs

-

#include <map>

~N

J

Ve

map<key, value> name,;

~

Associative containers

Internet of Things A.Y. 20-21

map : An example

<iostream>

<map>

<string>
std;

» W IN =

-
-

int main (){
map<string,string> car{{"Gabriele","Fiat"}, {"Georgia", "Audi"}};
map<string,string> car_new;
map<string,string>::iterator i, iter;
(i=car.begin();i'=car.end();i++)
cout << "Name: " << i->first << ", car: " << i->second
car.insert(pair<string,string>("Daniele","Renault"));
cout << "Name: Daniele" << ", car: " << car["Daniele"] <<
iter = car.find("Georgia");
(iter!=car.end())
car.erase(iter);
cout << "Elements in car:" << endl;
(i=car.begin();i'=car.end();i++)
cout << "Name: " << i->first << ", car:
cout << "Size of car: " << car.size() << endl;
car_new = car;
cout << "Size of car new: " << car_new.size() << endl;
car_new.at("Gabriele") = "Ford";
(i=car_new.begin();i!=car_new.end();i++)
cout << "Name: " << i->first << ", car: " << i->second << endl;
(!car.empty()){
cout << car.begin()->first << " => " << car.begin()->second << endl;
car.erase(car.begin());}
cout << "Size of car: " << car.size() << endl;}

oy Uin

0 00~

[
(S

11
12
13
b

4

|
]
|

oy un

[I

<< i->second

Associative containers

S W

NNNNNNNNN
oL WN =

0~

Internet of Things A.Y. 20-21

The set associative container

It store unique elements following a specific order.
The value of an element is its key; it must be unique.
The value of the elements cannot be modified once in the
container.

The value of the elements can be either inserted or removed
from the container.

Associative containers

4)

#include <set>

- J

e A

set<key> name,;

(N J

Internet of Things A.Y. 20-21

set : An example

#include <iostream>
#include <set>
using namespace std;
iInt main(){
int myints[4] = {1, 2, 3, 4},
set<int> myset(myints, myints+4);
set<int>::iterator it;
cout << "myset containts: ";
for (it= myset.begin();it!= myset.end();it++)
cout << *it<<" "
cout << "\n";
return O;

Associative containers

Internet of Things A.Y. 20-21

Range-based Loop

Internet of Things A.Y. 20-21

Range-based loop

* A more readable equivalent to the traditional for loop
operating over a range of values, such as all elements in
container (array, vector, map, set, etc.).

* For observing elements in a container. i.e., read-only:
1. If the objects are cheap to copy (capture by value)
for (auto elem : container_name)

2. Capture by const reference
for (const auto& elem : container_name)
* When modifying the elements in the container:
* Capture by non-const reference

Associative containers

for (auto& elem : container_name)

Internet of Things A.Y. 20-21

Functions
(Cont.)

Internet of Things A.Y. 20-21

Passing arguments to a function

e Arguments can be passed by value; Only copies of the
variables values at that moment are passed to thefunction;
Modifications on the values of the variables have not effect on the
values of the variables outside the function.

Functions

 Arguments can be passed by reference; The variable itself is passed
to the function; Any modifications on the local variables within the
function are reflected in the variables passed as arguments in the call

. Internet of Things A.Y. 20-21

Passing arguments to a function

(Cont.)
 Passing arguments by const reference. Why?
 Passing by value requires that all arguments are copied i =

function parameters.->time consuming when handling large structs,
classes, etc.
e Solution: arguments are passed by reference.
* Problem: Undesirable when we want read-only arguments.
 (More appropriate) solution: pass by const reference
* Minimum performance penalty (not copying
arguments)

.. * Function cannot change the value of the

arguments.

Functions

Internet of Things A.Y. 20-21 @

Passing arguments by const reference:
An (wrong)Jexample

//[passing parameters by const reference

#include <iostream> c
using namespace std,; -.%
void foo(const int &a){ s

a=2 . ! Compiler will complain! =
J A const reference cannot

have its value changed!

. Internet of Things A.Y. 20-21

Passing arguments to a function

Q: Can we pass an entire array as an argument to a function?

Functions

. Internet of Things A.Y. 20-21

Passing arguments to a function

Q: Can we pass an entire array as an argument to a function?

Functions

A: Not directly but «indirectly!»

. Internet of Things A.Y. 20-21

Passing arguments to a function

 While an entire array cannot be passed as an argument to a
function, pointers to an array can.
* There are different ways to do so:
1. Formal parameter as a pointer:
void function_name(type *param){}
1. Formal parameter as a sized array:
void function_name(type param[n]){}

1. Formal parameter as an unsized array:

Functions

void function_name(type param|]){}

. Internet of Things A.Y. 20-21

Passing arguments to a function
An example (Case 1)

#include <iostream>
using namespace std;
double calcAverage(int *arr, int size);
int main(){
int numbers[5] = {2, 4, 6, 8};
double avg;
/[int * p = numbers;
avg = calcAverage(numbers, 4);
cout << "Average Is: " << avg << end];
return O;

Functions

} double calcAverage(int *arr, int size){
Int sum = 0;

double k;

for (int n=0;n<size;n++)

. sum +=arr[n];
k = double(sum)/size;

return k;

) Internet of Things A.Y. 20-21

Data Structures

Internet of Things A.Y. 20-21 m

Data Structures

A group of data elements of different kinds grouped
together under a single name.

Data elements (members) can be of different types
and lengths.

struct type_name{
member_typel member_namel,;
member_type2 member_name2;
member_type3 member_name3;

Data Structures

}object_names;

Internet of Things A.Y. 20-21

Defining data structures

Keyword "struct” is used to create the structure.
type_name: The name of the structure type.
member_name: The name of the data member.
object_names: A set of valid identifiers for objects that have
the type of this structure.

struct type_name{
member_typel member_namel,;
member_type2 member_name2;
member_type3 member_name3;

Data Structures

}object_names;

Internet of Things A.Y. 20-21

Defining data structures: An example
(Alternative option)

structure type name

\

struct product{
Int weight;
double price;

%

product apple;
product melon,orange;

/

Objects of type product

structure type name

struct product{
Int weight;
double price;
} apple, melon, orange;

l

Name objects can be used to
directly declare objects of
the structure type.

Data Structures

Internet of Things A.Y. 20-21 m

Once a member is declared, it can be accessed directly.
Syntax: Insert a dot (.) between the object name and the

Accessing the members

member name.

E.g.: Each of the objects has a data type corresponds to the

member it refers to.

apple.weight
apple.price
melon.weight
melon.price
orange.weight
orange.price

—_

Data Structures

* weight are of type int

— * price are of type double

Internet of Things A.Y. 20-21 @

Initializing structure members

Structure members can be initialized using curly brace

l.e., {} 2
p S
#include <iostream> =
using namespace std,; §
struct point{ S
Int X, y; ©
I i
Int main (){
point pl1 = {0,1};
cout << "Printing x coordinate of pl1: " << pl.x << "\n";
cout << "Printing y coordinate of pl: " << pl.y << "\n";
return O;
}

Internet of Things A.Y. 20-21

Initializing structure members

e Structure members can be initialized using curly braces,
i.e., {}, or with declaration.

#include <iostream>
using namespace std,;
struct point{
Int x = 0;
Inty =1,
b
Int main (){
point p1;
cout << "Printing x coordinate of pl1: " << pl.x << "\n";
cout << "Printing y coordinate of pl: " << pl.y << "\n";
return O;

Data Structures

¥ Internet of Things A.Y. 20-21

Array of structures

We can create an array of structures. Each array will have

the same structure members.

#include <iostream>
using namespace std;
struct studentf
int studentld;
string firstName, lastName;

¥
int main (){
student stud[2];
for(int i=0;i<2;i++){
cout << "Enter the id of the student:";
cin >> stud(i].studentld;
cout << "Enter the first name of the student :";
cin >> stud[i].firstName;
cout << "Enter the last name of the student :" << endl;
cin >> stud(i]. lastName;}

return O; Internet of Things A.Y. 20-21

Data Structures

Data structures and functions

e Structure elements can be passed to a function as
normal agruments.
1. by value
* The values of the elements are passed to the function.
 The entire structure can be passed to a function.
2. by reference
 The address of the structure element is passed to the
function.
e Structure elements can be returned from a function as normal
arguments.

Data Structures

Internet of Things A.Y. 20-21

Data structures and functions

n

. Individual elements are §

struct product{ passed in a function S
int weight; g \ s
double price; p

} apple; § void funcl(apple.weight, apple.price){} o
| @]

Internet of Things A.Y. 20-21

Data structures and functions

 The entire structure can be passed to a function by value!

 Any changes to the contents of the structure inside the 4
function, do not affect the structure itself. 2
-
. Entire structue is passed to a &
struct product{ function 2
Int weight; \)
double price;
} apple; g void funcl(product fruit){}

Internet of Things A.Y. 20-21 @

Data structures and functions:

An example
#include <iostream>
#include <string> int main(){
#include <sstream> string mystr, n
using namespace std; mine.title = "Goodbye Bafana", v
struct movies_t{ mine.year = 2007, 3
int year; cout << "Enter a title: "; S
string title; getline(cin, yours.title); 5
lmine, yours; cout << "Enter year: ", ol
getline(cin, mystr); 8
void printmovie (movies_t movie){ stringstream(mystr) >> yours.year; a
cout << movie.title; cout << "My favorite movie is: ";
cout << " (" << movie.year << ")" printmovie(mine);
<< endl: cout << "Your favorite movie is: ";
} printmovie(yours);
return O;
}

Internet of Things A.Y. 20-21

Pointers to Structures

Internet of Things A.Y. 20-21 m

Pointers to Structures

e A structure can be pointed to by its own type of pointers.

struct movies_Y{ An object of structure
int year;

string title; type movies_t
g A pointer that points to
movies_t amovie; objects of structure type
/__________-——P

movies_t * pmovie;
pmovie = &amovie,

Data Structures

movies t

T The value of the pointer
pmovie is assigned the
address of object amovie.

Internet of Things A.Y. 20-21 @

Pointers to Structures

The arrow operator (->) is a dereference operator that is used

exclusiveley with pointers to objects that have members; It 4
allows access to the member of an object directly from its 2
O
address. =
od
(Vg
8
(C
a
a.b Member b of object a
a->b Member b of object pointed to by a (*a).b
*a.b Value pointed to by member b of object a *(a.b)

Internet of Things A.Y. 20-21 e

Pointers to Structures: An example

#include <iostream>
using namespace std;

struct movies_t{ O
int year; =
string title; 3]

tmine; o

void printmovie (movies_t *movie){ A

cout << movie->title; o
cout << " (" << movie->year << ")" << endl; 8
}
int main(){

mine.title = "Goodbye Bafana",
mine.year = 2007,

cout << "My favorite movie is: ";
printmovie(&mine);

return O;

}
Internet of Things A.Y. 20-21 [kl

Nesting Structures

Internet of Things A.Y. 20-21 ¥

Nesting Structures

Structures can be nested in such a way that an element o
a structure is itself another structure.

v

o)

c p S

struct movies_t{ — 3

) _ >

mt_year, | =

string title; gina.name e

} gabriele.favorite_movie.title ‘g

gina.favorite_movie.year =

struct friends_t{ pfriends->favorite_movie.year ()

int year,

string name;
string email;

movies_t favorite_movie;

}gina, gabriele;

friends_t * pfriends = &gina; == Internet of Things A.Y. 20-21 g

Classes

Internet of Things A.Y. 20-21

Classes

class name: A valid identifier for the class.
object_names: An optional list of names for objects;
An object is an instantiation of a class.

members: Contained in the body of the declaration; can be data or
function declarations.

access_specifiers: Modify the access rights for the members of the class
(optional).

Classes

class class_name{
access_specifier_1.:
memberl;
access_specifier_2:
member2;

}object_names;
Internet of Things A.Y. 20-21

Access specifier

Private: Accessible only from within other members of
the same class (default).

Protected: Accessible from other members of the same
class and also from members of their derived classes.

n
v
n
n
o
O

Public: Accessible from anywherhe where the object is
visible.

Internet of Things A.Y. 20-21 8

Classes: An example

Class Name of class

declaration T —

class Rectangle{

Two data members of

— int width, height; _ , "
Class contains | public: type Int; private &
four members void set_values(int,int); access 8
_ Iint area(void);
Yrect; \\
\ Two member functions;
public access. Only the

An object, i.e., a variable,
of the class

declaration is included.

Internet of Things A.Y. 20-21

Class vs. Object name

* Rectangle: The class name
* rect: An object of type Rectangle
* Analogy: inta

/ \ class Réctangle{]
Int width, height;

The type name The variable name pubiic:

(the class) (the object) void set_values(int,int);
Int area(void);

Ject;]

Classes

Internet of Things A.Y. 20-21]

Accessing public members of a class

* Public objects can be accessed as if they were normal
functions or variables.

 Use of dot (.) between object name and member
name.

Classes

class Rectangle{

o : . int width, height;
E.g.: rect.set values(3,4); oublic:

myarea = rect.area(); void set_values(int,int);
int area(void);
rect;

Internet of Things A.Y. 20-21 g

Accessing members of a class

class Rectangle{ !

0 . c 1 1 nn
int width, height: ~Members with private access cannot be

accessed from outside of the class.

public: §

void set_values(int,int): They can only be referred to from a

int area(void); within O
}rect; other members of the same class.

Internet of Things A.Y. 20-21 ¥

Defining a member function

1. Within the class definition: Function is automatically
considered an inline member function by the
compiler.

Classes

1. Include declaration and define it later outside the
class: A normal (not-inline) class member function.

Internet of Things A.Y. 20-21 NN

An example

#include <iostream>
using namespace std,;
class Rectangle{

The scope operator (::) is int width, height:
used in the definition of a public: -
. void set_values(int,int);
class member to define a int area(){return width*height;}

Classes

member of class outside™_ b o
] void Rectangle::set values(int X, int y){
the class itself.

width = x;
height = v;
}
int main(){

Rectangle rect;

rect.set_values(3,4);

cout << "area: " << rect.area() << endl;
return O;

}
Internet of Things A.Y. 20-21 NV

Multiple object declaration

#include <iostream>
using namespace std;
class Rectangle{
int width, height;
public:
void set_values(int,int);
int area(){return width*height;}
I
void Rectangle::set_values(int x, int y){
width = x;
height =y} :
int main(){ Two Instances

Rectangle rect, rectb; / .
rect.set values(3,4); / (Ob J ECtS)
rectb.set_values(5,6);

cout << "area: " <<rect.area() << endl;
cout << "areab: " << rectb.area() << endl;
return O;

Classes

Internet of Things A.Y. 20-21 JNE

Q: What would happen in the previous example if we called
the member function area before having called set values?

Classes

Internet of Things A.Y. 20-21

Q: What would happen in the previous example
if we called the member function area before
having called set_values?

Classes

A: An undetermined result, since the members
width and height had never been assigned a value.

Internet of Things A.Y. 20-21 ¥

Q: What would happen in the previous example if we called
the member function area before having called set values?

#include <iostream>
using namespace std;
class Rectangle{
int width, height;
public:
void set_values(int,int);
int area(){return width*height;}
I
void Rectangle::set values(int X, int y){
width = x;
height = y;}
iInt main(){
Rectangle rect, rectb;
cout << "area: " <<rect.area() << endi;
rect.set values(3,4);
rectb.set_values(5,6);
cout << "areab: " << rectb.area() << endl;
return O;

} Internet of Things A.Y. 20-21 K8

Classes

Q: What would happen in the previous example
if we called the member function area before
having called set_values?

A: An undetermined result, since the members width
and height had never been assigned a value.

Classes

Georgias—MacBook-Pro:C++ examples gina$ g++ -std=c++11 rectangleError.cpp -o rectangleError
Georgias—MacBook-Pro:C++ examples gina$./rectangleError

area: 1718552992

areab: 30

Internet of Things A.Y. 20-21 MY

Constructor

A special member function of a class which is
automatically called whenever a new object of a class is
created.

It allows the class to initialize member variables or allocate
storage.

They are only executed once, when a new object is
created.

Declaration: like a regular member function; the name
matches the class name; no return type (they initialize an
object)

Classes

Internet of Things A.Y. 20-21 [Nk

Constructor - An example

#include <iostream>
using namespace std,;
class Rectangle{
int width, height;
public:
Rectangle(int, int);

» Constructor prototype

int area(){return width*height; } declaration @
¥ 7))
Rectangle::Rectangle(int a, int b){ 8
width = a; Constructor
height = b; definition
}
iInt main(){

Rectangle rect(3,4);

Rectangle rect_b(5,6);

cout << " rect area: " << rect.area() << endi;
cout << "rect b area: " <<rect_b.area() << endl;
return O;

} Internet of Things A.Y. 20-21 N

Overloading constructors

Internet of Things A.Y. 20-21

Overloading constructors

A constructor can be overloaded with different versions
taking different parameters.

* The compiler will automatically call the one whose parameters match
the arguments.

 The default constructor: A special kind constructor that takes no
parameters. It is called when an object is declared but is not initialized
with any arguments.

Classes

Rectangle rectb; // ok, default constructor called
Rectangle rectc(); // Oops!

Internet of Things A.Y. 20-21 ¥

Constructors: An example

#include <iostream>
using namespace std;
class Rectangle{

int width, height;

public:
Rectangle(); "
Rectangle(int, int); int main(}{ Q
int area(){return width*height; } Rectangle rect(3,4);)
1 Rectangle rect_b; C
Rectangle::Rectangle(){ cout << "rect area:" << rect.area() O
width = 5; << endl;
height = 5; cout << " ect_b area: " << rect_b.area()
} << endl;
Rectangle::Rectangle(int a, int b){ return O;
width = a; }
height = b;
}

Internet of Things A.Y. 20-21

Calling constructors

Internet of Things A.Y. 19-20 W&

Calling constructors

* functional form: Enclose the arguments of the constructori
parentheses.
class_name object_name (value1, value2, values, ...)
 Single parameter:
class_name object_name = initialization_value;
* Uniform initialization: Same as the functional form but using braces
instead of parentheses. (Optional: an equal sign before the braces.)

Classes

class_name object_name { value1, value2, valueg, ... }
class_name object_name = { value1, value2, values, ... }

Internet of Things A.Y. 20-21

An example

#include <iostream>
using namespace std;
class Circle{
double radius;
public:
Circle(double r){radius =r;};
double circum(){return 2*radius*3.14159265; }

I

Classes

int main(){
Circle foo(10.0); //functional form
Circle bar = 20.00; // assignment init.
Circle baz {30.00}; // uniform init.
Circle qux = {40.00}; /funiform Init.

return O;

Internet of Things A.Y. 20-21 V4]

Constructors: Initialization

* Itis mainly a matter of programming style!

e Uniform vs. functional: Braces cannot be confused with
function delcarations.

Classes

Rectangle rectb; // default constructor called
Rectangle rectc(); // function declaration
Rectangle rectd{}; // default constructor called

Internet of Things A.Y. 20-21 WS

Member initialization in
constructors

Internet of Things A.Y. 20-21

Member initialization

When a constructor is used to initialize other members,
these members can be initialized directly.
Initialization is done by inserting, before the contructor’s body, a

colon (:) and a list of initializations for class members.

class Rectangle{
int width, height;
public:
Rectangle(int, int);
int area(){return width*height; }

Classes

1. Rectangle::Rectangle(int a, int b){ width = a; height = b; }
2. Rectangle::Rectangle(int a, int b) : width(a) { height = b; }
3. Rectangle::Rectangle(int a, int b) : width(a), height(b) { }
Internet of Things A.Y. 20-21 W&

Member initialization

class Rectangle{
int width, height;
public:
Rectangle(int, int);
int area(){return width*height; }

Classes

1. Rectangle::Rectangle(int a, int b){ width = a; height = b; } Classic constructor
definition
2. Rectangle::Rectangle(int a, int b) : width(a) { height = b; } Constructor definition

3. Rectangle::Rectangle(int a, int b) : width(a), height(b) { } with member
initialization

Internet of Things A.Y. 20-21 WA

Destructor

A member function of a class that deletes an object

It helps deallocate the memory of an object

It does not take any arguments and does not return anything

There cannot be more than one destructor in a class

Syntax: ~className

The compiler creates a default desctructor

* Problem: Dynamically allocated memory or pointer in a class.
* Solution: Write a destructor to release memory and avoid

memory leak (using delete object).

Classes

Internet of Things A.Y. 20-21 &l

Pointers to classes

Internet of Things A.Y. 20-21 KM

Pointers to classes

Objects can be pointed to by pointers.

The members of an object can be accessed directly
from a pointer by using the arrow operator(->).

Classes

Syntax:
class _name * pointer_name;

Internet of Things A.Y. 20-21

Expression

*X

Operators

Pointed to by x

Address of x

Member y of object x

Member y of object pointed to by x
Member y of object pointed to by x
First object pointed to by x

Second object pointed to by x
(n+1)th object pointed to by x

Internet of Things A.Y. 20-21

Classes

133

Pointers to classes: An example

#include <iostream>
using namespace std;
class Rectangle{
int width, height;
public:
Rectangle(int x, int y): width(x), height(y){};
int area(void){return width*height; }

: 7,
I3 5
int main(){ A

Rectangle rect(3,4); @

Rectangle * foo, * bar, * baz; O

foo = ▭

bar = new Rectangle (5,6);

baz = new Rectangle[2]{{2,5},{3,6}};

cout << "rect’s area: " << rect.area() << endl;

cout << " *foo’s area: " << foo->area() << endl;

cout << " *bar’s area: " << bar->area() << endl;

cout << " baz[0] area: " << baz[0].area() << endl;

cout << " baz[1] area: " << baz[1].area() << endl;

delete bar;

delete[] baz;

) return 0; Internet of Things A.Y. 20-21

Classes- Alternative definitions

e C(Classes can be defined also with keywords struct
and union.

 Keyword struct: Plain data structures; public access by
default.

 Keyword union: Store only one data member at a
time; public access by default.

Classes

Internet of Things A.Y. 20-21

Additional Resources

http://www.cplusplus.com/doc/tutorial/
https://en.cppreference.com/w/
Programming: Principles and Practice Using C++, Bjarne
Stroustrup (Updated for C++11/C++14)

C++ Primer, Stanley Lippman, Josée Lajoie, and Barbara E.
Moo (Updated for C++11)

Internet of Things A.Y. 20-21 K}

http://www.cplusplus.com/doc/tutorial/

