
Introduction to C++
Marco Bernardi - Georgia Koutsandria

Internet of Things A.Y. 20-21
Prof. Chiara Petrioli
Dept. of Computer Science
Sapienza University of Rome

2

IOT Lab Classes

C
o

m
p

ile
rs

Internet of Things A.Y. 20-21

3

How to compile a C++ program

C
o

m
p

ile
rs

• Windows: Install an Integrated Development Interface (IDE).
• Dev-C++ http://www.bloodshed.net/dev/index.html

• Mac: Install Xcode with the gcc/clang compilers.

• Linux: Compile your code directly from the terminal using the
following commad g++ -std=c++0x example.cpp -o example_program

g++ -std=c++11 example.cpp -o example_program OR
clang++ -std=c++11 -stdlib=libc++ example.cpp -o example_program

Internet of Things A.Y. 20-21

http://www.bloodshed.net/dev/index.html

4Internet of Things A.Y. 20-21

Basic Input/Output

5

The Standard Library

Internet of Things A.Y. 20-21

• C++ uses convenient abstraction to perform input and
output operations in sequential media, e.g., screen,
keyboard or a file.

• Stream: Insert or extract characters to/from.

#include <iostream>

B
as

ic
 In

p
u

t/
O

u
tp

u
t

6

Standard input (cin)

Internet of Things A.Y. 20-21

• Default standarad input: keyboard
• It is used together with the extraction operator (>>) and it
usually appears with the scope operator :: to indicate that cin
is in the namespace std.

B
as

ic
 In

p
u

t/
O

u
tp

u
t

int age;

cin >> age;
Declares a variable
of type int called age

Extracts from cin a
value to be stored in
the variable age

• The characters introduced using the keyboard are only
transmitted to the program when the ENTER (or RETURN)
key is pressed.

7

Standard output (cout)

• Default standarad output: screen
• It is used together with the insertion operator (<<) and it
usually appears with the scope operator :: to indicate that cin
is in the namespace std.

B
as

ic
 In

p
u

t/
O

u
tp

u
t

// prints Output sentence on screen

cout << " Output sentence";

// prints number 2 on screen

cout << 2;

// prints the value of x on screen

cout << x;

Internet of Things A.Y. 20-21

8

I/O example

Internet of Things A.Y. 20-21

B
as

ic
 In

p
u

t/
O

u
tp

u
t

#include <iostream>

using namespace std;

int main(){

int i = 0;

cout << "Please enter an integer value: ";

cin >> i;
cout << "The value you entered is " << i ;
cout << " and its double is " << i*2 << ".\n " ;

return 0;

}

9

Statements and Flow Control

Internet of Things A.Y. 20-21

10

Conditional Statements

1. if statement: Tests a condition or a set of conditions.
sequentially. if (condition)

statement

2. switch statement: Evaluates an integral expression
and chooses one of several execution paths based on
the expression’s value.

switch (condition)

statement

St
at

e
m

e
n

ts
 a

n
d

 F
lo

w
 C

o
n

tr
o

l

Internet of Things A.Y. 20-21

11

Condition(s)

• The Condition must be enclosed in parenthesis
• It can be an expression or an initialized variable

declaration. It must have a type that is convertible to
bool.

if (condition)

statement

True

False

The statement is executed.

The statement is skipped.

St
at

e
m

e
n

ts
 a

n
d

 F
lo

w
 C

o
n

tr
o

l

Internet of Things A.Y. 20-21

12

The if Conditional Statement

• Conditionally executes another statement based on
whether a specified condition is true.

int number=0;

cout << "Enter an integer: ";

cin >> number;

// checks if the number is positive

if (number > 0) {

cout << "You entered a positive integer: " << number << endl;

}

simple if

Condition

St
at

e
m

e
n

ts
 a

n
d

 F
lo

w
 C

o
n

tr
o

l

Internet of Things A.Y. 20-21

13

The switch Conditional Statement

• A convenient way of selecting among a (possible
large) number of fixed alternatives.

St
at

e
m

e
n

ts
 a

n
d

 F
lo

w
 C

o
n

tr
o

l

switch(x){

case 1:

cout << "x is 1";

break;

case 2:

cout << "x is 2";

break;

default:

cout << "value of x is unknown";

}

Internet of Things A.Y. 20-21

14

Iterative Statements (loops)

• Repeated execution until a condition is true
• Statements that test the condition before executing

the block: while, for

• Statement that executes the body and then tests
the condition: do while

while (condition)

statement
for (initializer; condition; expression)

statement

do

statement

while (condition);

St
at

e
m

e
n

ts
 a

n
d

 F
lo

w
 C

o
n

tr
o

l

Internet of Things A.Y. 20-21

15

The for loop

• It repeats statement while condition is true.

#include <iostream>

using namespace std;

int main(){

for (int n=0; n<5; n++)

cout << n << " ";

cout << endl;

}

St
at

e
m

e
n

ts
 a

n
d

 F
lo

w
 C

o
n

tr
o

l

Internet of Things A.Y. 20-21

16

The while loop

• It simply repeats statement while condition is true.
• The loop ends if, after any execution of statement,

expression is no longer true.

#include <iostream>

using namespace std;

int main(){

int n = 10;

while (n>0){

cout << n << ", ";

--n;

}

cout << "liftoff!\n";

}

St
at

e
m

e
n

ts
 a

n
d

 F
lo

w
 C

o
n

tr
o

l

Internet of Things A.Y. 20-21

17

The do-while loop

• It behaves like the while loop, except that condition
is evaluated after the execution of the statement.

#include <iostream>

using namespace std;

int main(){

string str;

do {

cout << "Enter text: ";

getline(cin,str);

cout << "You entered: " << str << "\n";

} while(str!="ciao");

}

St
at

e
m

e
n

ts
 a

n
d

 F
lo

w
 C

o
n

tr
o

l

Internet of Things A.Y. 20-21

18

Functions

Internet of Things A.Y. 20-21

19

Functions Basics

• A function is a block of code with a name.

• It is executed by calling the given name, and it can be
called from some point of the program.

• Common syntax:

Fu
n

ct
io

n
s

type name(parameter1, parameter2, …){statements}

Internet of Things A.Y. 20-21

20

Functions: An example

Fu
n

ct
io

n
s

//function example

#include <iostream>

using namespace std;

int addition(int a, int b){

int r;

r=a+b;

return r;

}

int main(){

int z;

z = addition(5,3);

cout << "The result is " << z << ".\n ";

}
Internet of Things A.Y. 20-21

21

Calling a Function

•A function call
• Initializes the parameters from the

arguments
• Transfers control to that function.

• Execution of the called function begins.

Fu
n

ct
io

n
s

int main(){

int z;

z = addition(5,3);

cout << "The result is " << z << ".\n ";

}

Internet of Things A.Y. 20-21

22

Functions with no type

• When a function does not need to return a value, the
type to be used is void.

• This is a special type to represent the absence of value.

• The void can also be used in the function’s parameter list to
specify that the function takes no actual parameters when called.

Fu
n

ct
io

n
s

printmessage(); Note the use of the empty
pair of parentheses!

Internet of Things A.Y. 20-21

23

Declaring functions

• Functions cannot be called before they are declared.

• Functions should be declared before calling main.

• If the main is defined before an undeclared function is called, then
the compilation of the program will fail. Fu

n
ct

io
n

s

int fact(int a, int b);

void even(int x); Function
declaratio
n

Internet of Things A.Y. 20-21

24

Passing arguments by value
• Arguments can be passed by value

• Only copies of the variables values at that moment are passed to
the function.

• Modifications on the values of the variables have not effect on
the values of the variables outside the function.

Fu
n

ct
io

n
s

int x=5, y=3, z;

z = addition (x,y);

Internet of Things A.Y. 20-21

25

Passing arguments by reference

• Access an external variable from within a function.

• The variable itself is passed to the function.

• Any modification on the local variables within the function
are reflected in the variables passed as arguments in the call.

• References are indicated with an ampersand (&) following the
parameter type.

Fu
n

ct
io

n
s

Internet of Things A.Y. 20-21

26

Passing arguments by reference

Fu
n

ct
io

n
s

//passing parameters by reference

#include <iostream>

using namespace std;

void duplicate(int& a, int& b){

a*=2;

b*=3;

}

int main(){

int x=1, y=3;

duplicate(x, y);

cout << "x=" << x << ", y=" << y << "\n";

return 0;

}

Internet of Things A.Y. 20-21

27

Exercise 1

Fu
n

ct
io

n
s

Write a program that prompts the user to give two
integer numbers. Declare a function that compares the
two integers and returns the maximum one.

Internet of Things A.Y. 20-21

28

Exercise 1-Solution

Fu
n

ct
io

n
s

Internet of Things A.Y. 20-21

29

Arrays

Internet of Things A.Y. 20-21

30

Arrays

• A structure which stores many variables of the
same type, e.g., int, double, bool, etc..

• Uses an ‘index’ to access each variable or
‘element’ of the array.

• C++ includes static arrays, allocated arrays, and
standard library containers.

A
rr

ay
s

Internet of Things A.Y. 20-21

31

Array declaration

• Arrays are declared like normal variables.
• Square brackets [] indicate the number of

variables which the array can store.

#include <iostream>

int main()

{

int array[5];

double array_d[2]={1.0,2.0};

return 0;

}

array can store
five

int variables
array_d can store

2

double variables,
initialized

A
rr

ay
s

Internet of Things A.Y. 20-21

32

Accessing array elements

• Array ‘index’ starts from zero
• Can be used for arithmetic, copied to other

variables etc..

#include <iostream>

int main()

{

int array[5];

array[0] = 3;

array[1] = array[0]+5;

return 0;

}

array can store
five

int variables
set the first
element to

3
set the second
element to 8

A
rr

ay
s

Internet of Things A.Y. 20-21

33

Accessing Arrays using loops

A
rr

ay
s

#include <iostream>

int main()

{

int array[5];

for(int i=0; i<5; ++i)

array[i] = 0;

for(int i=0; i<5; ++i)

array[i] += i;

return 0;

}

loop over all
elements and set

to zero

Add i to each
element of the

array

Internet of Things A.Y. 20-21

34Internet of Things A.Y. 20-21

Pointers

35

Pointers

• Variables: Locations in the computer’s memory which
can be accessed by their identifier (their name).

• The address of a variable can be obtained by using the
ampersand sign(&).

• Pointer: The variable/object whose value is the address in
memory of another variable.

P
o

in
te

rs

Internet of Things A.Y. 20-21

36

Pointers

• Pointer: The variable/object whose value is the address in
memory of another variable.

• Dereferencing: Acessing an object to which a pointer refers
• Use the indirection operator, i.e., " * "
• E.g., if foo is a pointer, *foo is the object to which the

pointer refers

•

P
o

in
te

rs

25
1775 1776 1777

1776 25

foo bar
&

myvar = 25;

foo = &myvar;

bar = myvar;

myvar

Internet of Things A.Y. 20-21

2002

37

Pointers

Internet of Things A.Y. 19-20

P
o

in
te

rs

25
1775 1776 1777

1776

25

foo

baz

myvar = 25;

foo = &myvar;

baz = *foo;

38

Declaring Pointers

Internet of Things A.Y. 20-21

• They have different properties when they point to a
char than when they point to an int or float.

• Their declaration needs to include the data type are going to

point to.
• Syntax: type * name;

• The asterisk means that a pointer is declared which should not be
confused with the dereference operator.

P
o

in
te

rs

39

Pointers- An example

Internet of Things A.Y. 20-21

P
o

in
te

rs

#include <iostream>

using namespace std;

int main(){

int firstvalue = 0;

int * mypointer;

mypointer = &firstvalue;

cout << "mypointer is " << mypointer << endl;

cout << "firstvalue is " << *mypointer << endl;

*mypointer = 10;

cout << "firstvalue is " << firstvalue << endl;

return 0;
}

40

Pointers arithmetics

Internet of Things A.Y. 20-21

P
o

in
te

rs

• Only addition/subtraction operations are allowed.
• Operations depend on the size of the data type to which

they point.
• E.g.: In a given system, a char takes 1 byte, a short takes 2 bytes,

and long takes 4 bytes. 3 pointers that point to memory locations
1000, 2000, and 3000.

char * mychar;

short * myshort;

long * mylong;
mychar

1000 1001 1002

++
myshort

2000 2001 2002

++

2003

mylong

3000 3001 3002

++

3003 3004 3005 3006 3007

41

Pointers arithmetics

Internet of Things A.Y. 20-21

P
o

in
te

rs

• The increment/decrement operators can be used as
either prefix or suffix of an expression.

• The increment/decrement operator has a higher
precedence than the *.

//incremement pointer, and dereference unincremented address

*p++;//same as *(p++);

//incremement pointer, and dereference incremented address

*++p; //same as *(++p);

//dereference pointer, and increment the value it points to ++*p; //same as ++(*p);

//dereference pointer, and post-increment the value it points to

(*p)++;

42

Pointers to Pointers

Internet of Things A.Y. 20-21

P
o

in
te

rs

• The syntax requires an asterisk (*) for each level of
indirection in the declaration of the pointer.

char a;

char * b;

char ** c;

a = ‘z’;

b = &a;

c = &b;

‘z’

a

7230

b

8092

c

7230 8092 10502

• Variable c can be used in three different levels of
indirection

1. c is of type char** and has a value of 8092.
2. *c is of type char* and has a value of 7230.
3. **c is of type char and has a value of ‘z’.

43

Pointers and Arrays

Internet of Things A.Y. 20-21

P
o

in
te

rs

• An array can always be implicity converted to a pointer
of a proper typer.

• Pointers and arrays support the same set of operations.
• Exception: Pointers can be assigned a new address,

while arrays cannot.
• The name of an array can be used like a pointer to its first

element.

44

Pointers and Functions

Internet of Things A.Y. 20-21

P
o

in
te

rs

• C++ allows to pass a pointer to a function

• The function parameter(s) should be declared as a pointer

• Changes on the value of the pointer inside the function
reflect back in the calling function.

45

Pointers and Functions– An example

Internet of Things A.Y. 20-21

P
o

in
te

rs

#include <iostream>

using namespace std;

double calcAverage(int *arr, int size);

int main(){

int numbers[5] = {2, 8, 10, 20};

double avg;

avg = calcAverage(numbers, 4);

cout << "Average is: " << avg << endl;

return 0;

}

double calcAverage(int *arr, int size){

int sum = 0;

double k;

for (int n=0;n<size;n++)

sum +=arr[n];

k = double(sum)/size;

return k;

}

46

Exercise 1

Internet of Things A.Y. 20-21

P
o

in
te

rs

What is the exact output of the following program?

#include <iostream>

using namespace std;

int main(){

int numbers[5];

int * p;

p = numbers; *p = 10;

p++; *p = 20;

p = &numbers[2]; *p = 30;

p = numbers + 3; *p = 40;

p--; *p = 100;

p = numbers; *(p+4) = 50;

cout << "Output: " << endl;

for (int n=0;n<5;n++)

cout << numbers[n] << "\n";

return 0;

}

47

Exercise 1--Solution

Internet of Things A.Y. 20-21

P
o

in
te

rs

Output:
10
20
100
40
50

#include <iostream>

using namespace std;

int main(){

int numbers[5];

int * p;

p = numbers; *p = 10;

p++; *p = 20;

p = &numbers[2]; *p = 30;

p = numbers + 3; *p = 40;

p--; *p = 100;

p = numbers; *(p+4) = 50;

cout << "Output: " << endl;

for (int n=0;n<5;n++)

cout << numbers[n] << "\n";

return 0;

}

48

Exercise 2

Internet of Things A.Y. 20-21

P
o

in
te

rs

What is the exact output of the following program?

#include <iostream>

using namespace std;

int main(){

int array[3]={3, 6, 9};

int * p = array;

cout << "Print a: " << endl;

for (int n=0;n<3;n++)

cout << *(p+n)+2 << endl;

cout << "Print b: " << endl;

for (int k=0;k<3;k++)

cout << *p+k+2 << endl;

return 0;

}

49

Exercise 2--Solution

Internet of Things A.Y. 20-21

P
o

in
te

rs

Print a:
5
8
11
Print b:
5
6
7

#include <iostream>

using namespace std;

int main(){

int array[3]={3, 6, 9};

int * p = array;

cout << "Print a: " << endl;

for (int n=0;n<3;n++)

cout << *(p+n)+2 << endl;

cout << "Print b: " << endl;

for (int k=0;k<3;k++)

cout << *p+k+2 << endl;

return 0;

}

50Internet of Things A.Y. 20-21

Containers in the C++ standard
library

51

Containers

Internet of Things A.Y. 20-21

• Container: stores a collection of other objects (elements).
• Containers library: a collection of class templates and

algorithms; allows flexibility to the programmer.
• Two main categories of containers

• Sequential
• Associative: Ordered; Unordered (c++11)

• Q: Which container to choose?
• A: - Functionality offered by the container.

- Efficiency/complexity of its members.

C
o

n
ta

in
e

rs

52Internet of Things A.Y. 20-21

Sequential Containers in the C++
standard library

53

Sequential Containers

Internet of Things A.Y. 20-21

• Standard library includes several container types
• E.g., array(c++11), vector, list, forward_list(c++11), deque.

• The order of the elements corresponds to the positions in
which the elements are added to the container (they can be
accessed sequentially).

• Built-in functions, e.g., sorting and ordering.

Se
q

u
e

n
ti

al
 c

o
n

ta
in

e
rs

54

Which sequential container to use?

Internet of Things A.Y. 20-21

• Unless you have a reason to use another
container, use a vector.

• Lots of small elements and space overhead
matters, don’t use list or forward_list.

• Random access to elements: vector or deque.
• Insert/delete elements in the middle of the

container: list or forward_list.
• Insert/delete elements at the front and the back

(not in the middle): deque.

Se
q

u
e

n
ti

al
 c

o
n

ta
in

e
rs

55

Which sequential container to use?

Internet of Things A.Y. 20-21

The predominant operation of the application
(whether it does more access or more insertion
or deletion) will determine the choice of the
container type.

Se
q

u
e

n
ti

al
 c

o
n

ta
in

e
rs

56

Array

Internet of Things A.Y. 20-21

• A fixed-size sequence container; No memory
management.

• Holds a specific number of elements ordered in a
strict linear sequence.

• Appropriate header: #include <array>

Se
q

u
e

n
ti

al
 c

o
n

ta
in

e
rs

//array holds 2 objects of type int; initialized

array<int, 2> myarray = {2, 8};

//array holds 2 objects of type int; initialized

array<int, 2> myarray{2, 8};

//10 objects of type int

array<int, 10 > myarray;

57

Arrays: An example

Internet of Things A.Y. 20-21

#include <iostream>

#include <array>

using namespace std;

int main(){

array<int,4> myarray = {1, 2, 3, 4};

cout << "Element of myarray at position 1 is: "

<< myarray[1] << endl;

return 0;

}

Se
q

u
e

n
ti

al
 c

o
n

ta
in

e
rs

58

Built-in vs. Library Arrays

Internet of Things A.Y. 20-21

#include <iostream>

using namespace std;

int main(){

int myarray[3] = {10,20,30};

for(int i=0;i<3;i++)

++myarray[i];

for(int elem:myarray)

cout<<elem<<endl;

return 0;

}

Se
q

u
e

n
ti

al
 c

o
n

ta
in

e
rs#include <iostream>

#include <array>

using namespace std;

int main(){

array<int,3> myarray{10, 20, 30};

for(int i=0;i<myarray.size();i++)

++myarray[i];

for(int elem:myarray)

cout<<elem<<endl;

return 0;

}

59

Vectors

Internet of Things A.Y. 20-21

• A collection of objects which have the same type.
• Every object has an associated index which allows

access to that object.
• Efficient and flexible memory management.
• Appropriate header:

#include <vector>

Se
q

u
e

n
ti

al
 c

o
n

ta
in

e
rs

60

Using vectors

Internet of Things A.Y. 20-21

#include <vector>

using namespace std;

int main(){

vector<float> ivec(10);

for(int i=0; i<ivec.size(); ++i)

ivec.at(i) = 5.0f*float(i);

return 0;

} access element of
vector ivec at

position i

Built-in function to
get the size of a

vector

Se
q

u
e

n
ti

al
 c

o
n

ta
in

e
rs

61Internet of Things A.Y. 20-21

(Iterators in C++ STL)

62

Iterators

Internet of Things A.Y. 20-21

It
e

ra
to

rs

• Objects, like pointers, that point to the memory address of
STL containers

• Allow iteration over a collection of elements
• Reduced complexity and execution time
• Types:

• Input
• Output
• Forward
• Bidirectional
• Random-access

Not all iterators are supported by all the
containers in STL

63

Why use iterators?

Internet of Things A.Y. 20-21

It
e

ra
to

rs

• Convenience in programming: Use iterators to iterate
through the contents of containers.

• Reusability: Access elements of any container

• Dynamic processing of container: Dynamically add or remove elements

64

Iterators -- Operations

Internet of Things A.Y. 20-21

It
e

ra
to

rs

• begin (): returns the beginning position of the container
• end (): returns the after-end position of the container
• advance (): increments the iterator position till the specified number
• next (): returns the new iterator that the iterator would point after

advancing the positions mentioned in the arguments
• prev ():returns the new iterator that the iterator would point after

decrementing the positions mentioned in the arguments.
• inserter (): inserts the elements at any position in the container;

accepts 2 arguments: 1) the container; 2) the iterator to position where
the elements should be inserted.

65

Iterators – An example

Internet of Things A.Y. 20-21

It
e

ra
to

rs

#include <iostream>

#include <vector>

using namespace std;

int main(){

vector<int> ivec(5,20);

vector<int>::iterator it;

for(it=ivec.begin();it<ivec.end();it++)

cout << *it << "\n";

return 0;

}

#include <iostream>

#include <vector>

using namespace std;

int main(){

vector<int> ivec(5,20);

for(int i=0; i<ivec.size(); ++i)

cout << ivec.at(i) << "\n";

return 0;

}

Accessing the
elements of a vector

Accessing the elements of a
vector using iterators

66

Lists

Internet of Things A.Y. 20-21

• Are implemented as doubly-linked lists; Each element is
stored in different and unrelated storage locations.

• Allow constant time insertion and delete operations from
anywhere in the container; iteration in both directions.

• No fast random access; Lack of direct access to the
elements by their position.

• Appropriate header:

#include <list>

Se
q

u
e

n
ti

al
 c

o
n

ta
in

e
rs

67

Lists – An example

Internet of Things A.Y. 20-21

Se
q

u
e

n
ti

al
 c

o
n

ta
in

e
rs

#include <iostream>

#include <list>

using namespace std;

int main(){

list<int> mylist = {1, 2, 3, 4};

for (int n : mylist)

cout << "Elements of mylist: " << n << "\n";

return 0;

}

68Internet of Things A.Y. 20-21

Associative Containers in the
C++ standard library

69

Associative Containers

Internet of Things A.Y. 20-21

• Elements are stored and retrieved by a key.

• Two primary associative container types: map and set.

• The C++ library provides eight associative containers.

A
ss

o
ci

at
iv

e
 c

o
n

ta
in

e
rs

70

Associative Container Types

Internet of Things A.Y. 20-21

A
ss

o
ci

at
iv

e
 c

o
n

ta
in

e
rs

Container Type

map Holds key-value pairs

set The key is the value

multimap A key can appear multiple times

multiset A key can appear multiple times

unordered_map (c++11) Organized by a hash function

unordered_set (c++11) Organized by a hash function

unordered_multimap(c++11) Hashed map; keys can appear multiple
times

unordered_multiset(c++11) Hashed set; keys can appear multiple
times

71

Ordered vs. unordered containers

Internet of Things A.Y. 20-21

• If you want guaranteed performance prefer an ordered.
• If you don’t have memory for a hash table prefer an ordered

container.
• If you are using string data as a key prefer an unordered

container.
• map/set containers are generally slower than unordered_map/

unordered_set containers to access individual elements by their
key.

• map/set containers allow direct iteration on subsets based on
their orders.

A
ss

o
ci

at
iv

e
 c

o
n

ta
in

e
rs

72

The map associative container

Internet of Things A.Y. 20-21

• A collection of (key, value) pairs; often referred to as an
associative array.

• Values are found by a key rather than by their position (as in
arrays).

• E.g.: Mapping names to phone numbers; Each pair contains
a person’s name as a key and a phone number as its value.

A
ss

o
ci

at
iv

e
 c

o
n

ta
in

e
rs

#include <map>

map<key, value> name;

73

map : An example

Internet of Things A.Y. 20-21

A
ss

o
ci

at
iv

e
 c

o
n

ta
in

e
rs

74

The set associative container

Internet of Things A.Y. 20-21

• It store unique elements following a specific order.
• The value of an element is its key; it must be unique.
• The value of the elements cannot be modified once in the

container.
• The value of the elements can be either inserted or removed

from the container.

A
ss

o
ci

at
iv

e
 c

o
n

ta
in

e
rs

#include <set>

set<key> name;

75

set : An example

Internet of Things A.Y. 20-21

A
ss

o
ci

at
iv

e
 c

o
n

ta
in

e
rs

#include <iostream>

#include <set>

using namespace std;

int main(){

int myints[4] = {1, 2, 3, 4};

set<int> myset(myints, myints+4);

set<int>::iterator it;

cout << "myset containts: ";

for (it= myset.begin();it!= myset.end();it++)

cout << *it << " ";

cout << "\n";

return 0;

}

76Internet of Things A.Y. 20-21

Range-based Loop

77

Range-based loop

Internet of Things A.Y. 20-21

A
ss

o
ci

at
iv

e
 c

o
n

ta
in

e
rs

• A more readable equivalent to the traditional for loop
operating over a range of values, such as all elements in a
container (array, vector, map, set, etc.).

• For observing elements in a container. i.e., read-only:
1. If the objects are cheap to copy (capture by value)

2. Capture by const reference

• When modifying the elements in the container:
• Capture by non-const reference

for (auto elem : container_name)

for (const auto& elem : container_name)

for (auto& elem : container_name)

78Internet of Things A.Y. 20-21

Functions
(Cont.)

79

Passing arguments to a function

• Arguments can be passed by value; Only copies of the
variables values at that moment are passed to thefunction;
Modifications on the values of the variables have not effect on the
values of the variables outside the function.

• Arguments can be passed by reference; The variable itself is passed
to the function; Any modifications on the local variables within the
function are reflected in the variables passed as arguments in the call

Fu
n

ct
io

n
s

Internet of Things A.Y. 20-21

80

Passing arguments to a function
(Cont.)

• Passing arguments by const reference. Why?
• Passing by value requires that all arguments are copied into the

function parameters.->time consuming when handling large structs,
classes, etc.

• Solution: arguments are passed by reference.
• Problem: Undesirable when we want read-only arguments.

• (More appropriate) solution: pass by const reference
• Minimum performance penalty (not copying

arguments)
• Function cannot change the value of the

arguments.

Fu
n

ct
io

n
s

Internet of Things A.Y. 20-21

81

Passing arguments by const reference:
An (wrong)example

Fu
n

ct
io

n
s

Internet of Things A.Y. 20-21

//passing parameters by const reference

#include <iostream>

using namespace std;

void foo(const int &a){

a = 2;

}
Compiler will complain!

A const reference cannot
have its value changed!

!

82

Passing arguments to a function

Q: Can we pass an entire array as an argument to a function?

Fu
n

ct
io

n
s

Internet of Things A.Y. 20-21

83

Passing arguments to a function

A: Not directly but «indirectly!»

Fu
n

ct
io

n
s

Internet of Things A.Y. 20-21

Q: Can we pass an entire array as an argument to a function?

84

Passing arguments to a function

• While an entire array cannot be passed as an argument to a
function, pointers to an array can.

• There are different ways to do so:
1. Formal parameter as a pointer:

1. Formal parameter as a sized array:

1. Formal parameter as an unsized array:

Fu
n

ct
io

n
s

Internet of Things A.Y. 20-21

void function_name(type *param){}

void function_name(type param[n]){}

void function_name(type param[]){}

85

Passing arguments to a function
An example (Case 1)

Fu
n

ct
io

n
s

Internet of Things A.Y. 20-21

#include <iostream>

using namespace std;

double calcAverage(int *arr, int size);

int main(){

int numbers[5] = {2, 4, 6, 8};

double avg;

// int * p = numbers;

avg = calcAverage(numbers, 4);

cout << "Average is: " << avg << endl;

return 0;

} double calcAverage(int *arr, int size){

int sum = 0;

double k;

for (int n=0;n<size;n++)

sum +=arr[n];

k = double(sum)/size;

return k;

}

86Internet of Things A.Y. 20-21

Data Structures

87

Data Structures

Internet of Things A.Y. 20-21

• A group of data elements of different kinds grouped
together under a single name.

• Data elements (members) can be of different types
and lengths.

D
at

a
St

ru
ct

u
re

s

struct type_name{

member_type1 member_name1;

member_type2 member_name2;

member_type3 member_name3;

.

.

.

}object_names;

88

Defining data structures

Internet of Things A.Y. 20-21

• Keyword "struct" is used to create the structure.
• type_name: The name of the structure type.
• member_name: The name of the data member.
• object_names: A set of valid identifiers for objects that have

the type of this structure.

D
at

a
St

ru
ct

u
re

s

struct type_name{

member_type1 member_name1;

member_type2 member_name2;

member_type3 member_name3;

.

.

.

}object_names;

89

Defining data structures: An example
(Alternative option)

Internet of Things A.Y. 20-21

struct product{

int weight;

double price;

} apple, melon, orange;

Name objects can be used to
directly declare objects of

the structure type.

D
at

a
St

ru
ct

u
re

s

struct product{

int weight;

double price;

};

product apple;

product melon,orange;

Objects of type product

structure type namestructure type name

90

Accessing the members

Internet of Things A.Y. 20-21

D
at

a
St

ru
ct

u
re

s

• Once a member is declared, it can be accessed directly.
• Syntax: Insert a dot (.) between the object name and the

member name.
• E.g.: Each of the objects has a data type corresponds to the

member it refers to.

• apple.weight
• apple.price
• melon.weight
• melon.price
• orange.weight
• orange.price

*.weight are of type int

*.price are of type double

91

Initializing structure members

Internet of Things A.Y. 20-21

D
at

a
St

ru
ct

u
re

s

• Structure members can be initialized using curly braces,
i.e., {}.

#include <iostream>

using namespace std;

struct point{

int x, y;

};

int main (){

point p1 = {0,1};

cout << "Printing x coordinate of p1: " << p1.x << "\n";

cout << "Printing y coordinate of p1: " << p1.y << "\n";

return 0;

}

92

Initializing structure members

Internet of Things A.Y. 20-21

D
at

a
St

ru
ct

u
re

s

• Structure members can be initialized using curly braces,
i.e., {}, or with declaration.

#include <iostream>

using namespace std;

struct point{

int x = 0;

int y = 1;

};

int main (){

point p1;

cout << "Printing x coordinate of p1: " << p1.x << "\n";

cout << "Printing y coordinate of p1: " << p1.y << "\n";

return 0;

}

93

Array of structures

Internet of Things A.Y. 20-21

D
at

a
St

ru
ct

u
re

s

• We can create an array of structures. Each array will have
the same structure members.
#include <iostream>

using namespace std;

struct student{

int studentId;

string firstName, lastName;

};

int main (){

student stud[2];

for(int i=0;i<2;i++){

cout << "Enter the id of the student:";

cin >> stud[i].studentId;

cout << "Enter the first name of the student :";

cin >> stud[i].firstName;

cout << "Enter the last name of the student :" << endl;

cin >> stud[i]. lastName;}

return 0;

}

94

Data structures and functions

Internet of Things A.Y. 20-21

D
at

a
St

ru
ct

u
re

s

• Structure elements can be passed to a function as
normal agruments.

1. by value
• The values of the elements are passed to the function.
• The entire structure can be passed to a function.

2. by reference
• The address of the structure element is passed to the

function.
• Structure elements can be returned from a function as normal

arguments.

95

Data structures and functions

Internet of Things A.Y. 20-21

D
at

a
St

ru
ct

u
re

s

struct product{

int weight;

double price;

} apple; void func1(apple.weight, apple.price){}

Individual elements are
passed in a function

96

Data structures and functions

Internet of Things A.Y. 20-21

D
at

a
St

ru
ct

u
re

s

struct product{

int weight;

double price;

} apple; void func1(product fruit){}

Entire structue is passed to a
function

• The entire structure can be passed to a function by value.
• Any changes to the contents of the structure inside the

function, do not affect the structure itself.

97

Data structures and functions:
An example

Internet of Things A.Y. 20-21

D
at

a
St

ru
ct

u
re

s

#include <iostream>

#include <string>

#include <sstream>

using namespace std;

struct movies_t{

int year;

string title;

}mine, yours;

void printmovie (movies_t movie){

cout << movie.title;

cout << " (" << movie.year << ")"

<< endl;

}

int main(){

string mystr;

mine.title = "Goodbye Bafana";

mine.year = 2007;

cout << "Enter a title: ";

getline(cin, yours.title);

cout << "Enter year: ";

getline(cin, mystr);

stringstream(mystr) >> yours.year;

cout << "My favorite movie is: ";

printmovie(mine);

cout << "Your favorite movie is: ";

printmovie(yours);

return 0;

}

98Internet of Things A.Y. 20-21

Pointers to Structures

99

Pointers to Structures

Internet of Things A.Y. 20-21

D
at

a
St

ru
ct

u
re

s

• A structure can be pointed to by its own type of pointers.

struct movies_t{

int year;

string title;

};

movies_t amovie;

movies_t * pmovie;

pmovie = &amovie;

An object of structure
type movies_t

A pointer that points to
objects of structure type

movies_t

The value of the pointer
pmovie is assigned the

address of object amovie.

100

Pointers to Structures

Internet of Things A.Y. 20-21

D
at

a
St

ru
ct

u
re

s

Expression What is evaluated Equivalent

a.b Member b of object a

a->b Member b of object pointed to by a (*a).b

*a.b Value pointed to by member b of object a *(a.b)

• The arrow operator (->) is a dereference operator that is used
exclusiveley with pointers to objects that have members; It
allows access to the member of an object directly from its
address.

101

Pointers to Structures: An example

Internet of Things A.Y. 20-21

D
at

a
St

ru
ct

u
re

s

#include <iostream>

using namespace std;

struct movies_t{

int year;

string title;

}mine;

void printmovie (movies_t *movie){

cout << movie->title;

cout << " (" << movie->year << ")" << endl;

}

int main(){

mine.title = "Goodbye Bafana";

mine.year = 2007;

cout << "My favorite movie is: ";

printmovie(&mine);

return 0;

}

102Internet of Things A.Y. 20-21

Nesting Structures

103

Nesting Structures

Internet of Things A.Y. 20-21

D
at

a
St

ru
ct

u
re

s

• Structures can be nested in such a way that an element of
a structure is itself another structure.

struct movies_t{

int year;

string title;

};

struct friends_t{

int year;

string name;

string email;

movies_t favorite_movie;

}gina, gabriele;

friends_t * pfriends = &gina;

gina.name

gabriele.favorite_movie.title

gina.favorite_movie.year

pfriends->favorite_movie.year

104Internet of Things A.Y. 20-21

Classes

105

Classes

Internet of Things A.Y. 20-21

• class_name: A valid identifier for the class.
• object_names: An optional list of names for objects;

An object is an instantiation of a class.
• members: Contained in the body of the declaration; can be data or

function declarations.
• access_specifiers: Modify the access rights for the members of the class

(optional).

C
la

ss
e

s

class class_name{

access_specifier_1:

member1;

access_specifier_2:

member2;

. . .

}object_names;

106

Access specifier

Internet of Things A.Y. 20-21

• Private: Accessible only from within other members of
the same class (default).

• Protected: Accessible from other members of the same
class and also from members of their derived classes.

• Public: Accessible from anywherhe where the object is
visible.

C
la

ss
e

s

107

Classes: An example

Internet of Things A.Y. 20-21

C
la

ss
e

s

class Rectangle{

int width, height;

public:

void set_values(int,int);

int area(void);

}rect;

Class
declaration

Name of class

An object, i.e., a variable,
of the class

Class contains
four members

Two data members of
type int; private
access

Two member functions;
public access. Only the
declaration is included.

108

Class vs. Object name

Internet of Things A.Y. 20-21

C
la

ss
e

s

class Rectangle{

int width, height;

public:

void set_values(int,int);

int area(void);

}rect;

• Rectangle: The class name
• rect: An object of type Rectangle
• Analogy: int a;

The type name
(the class)

The variable name
(the object)

109

Accessing public members of a class

Internet of Things A.Y. 20-21

C
la

ss
e

s

class Rectangle{

int width, height;

public:

void set_values(int,int);

int area(void);

}rect;

• Public objects can be accessed as if they were normal
functions or variables.

• Use of dot (.) between object name and member
name.

• E.g.: rect.set_values(3,4);

myarea = rect.area();

110

Accessing members of a class

Internet of Things A.Y. 20-21

C
la

ss
e

s

class Rectangle{

int width, height;

public:

void set_values(int,int);

int area(void);

}rect;

Members with private access cannot be
accessed from outside of the class.
They can only be referred to from
within
other members of the same class.

!

111

Defining a member function

Internet of Things A.Y. 20-21

C
la

ss
e

s

1. Within the class definition: Function is automatically
considered an inline member function by the
compiler.

1. Include declaration and define it later outside the
class: A normal (not-inline) class member function.

112

An example

Internet of Things A.Y. 20-21

C
la

ss
e

s

#include <iostream>

using namespace std;

class Rectangle{

int width, height;

public:

void set_values(int,int);

int area(){return width*height;}

};

void Rectangle::set_values(int x, int y){

width = x;

height = y;

}

int main(){

Rectangle rect;

rect.set_values(3,4);

cout << "area: " << rect.area() << endl;

return 0;

}

The scope operator (::) is
used in the definition of a
class member to define a
member of class outside
the class itself.

113

Multiple object declaration

Internet of Things A.Y. 20-21

C
la

ss
e

s

#include <iostream>

using namespace std;

class Rectangle{

int width, height;

public:

void set_values(int,int);

int area(){return width*height;}

};

void Rectangle::set_values(int x, int y){

width = x;

height = y;}

int main(){

Rectangle rect, rectb;

rect.set_values(3,4);

rectb.set_values(5,6);

cout << "area: " << rect.area() << endl;

cout << "areab: " << rectb.area() << endl;

return 0;

}

Two instances
(objects)

114Internet of Things A.Y. 20-21

C
la

ss
e

s

Q: What would happen in the previous example if we called
the member function area before having called set_values?

115Internet of Things A.Y. 20-21

C
la

ss
e

s

Q: What would happen in the previous example
if we called the member function area before

having called set_values?

A: An undetermined result, since the members
width and height had never been assigned a value.

116Internet of Things A.Y. 20-21

C
la

ss
e

s

Q: What would happen in the previous example if we called
the member function area before having called set_values?

#include <iostream>

using namespace std;

class Rectangle{

int width, height;

public:

void set_values(int,int);

int area(){return width*height;}

};

void Rectangle::set_values(int x, int y){

width = x;

height = y;}

int main(){

Rectangle rect, rectb;

cout << "area: " << rect.area() << endl;

rect.set_values(3,4);

rectb.set_values(5,6);

cout << "areab: " << rectb.area() << endl;

return 0;

}

117Internet of Things A.Y. 20-21

C
la

ss
e

s

Q: What would happen in the previous example
if we called the member function area before

having called set_values?

A: An undetermined result, since the members width

and height had never been assigned a value.

118

Constructor

Internet of Things A.Y. 20-21

C
la

ss
e

s

• A special member function of a class which is
automatically called whenever a new object of a class is
created.

• It allows the class to initialize member variables or allocate
storage.

• They are only executed once, when a new object is
created.

• Declaration: like a regular member function; the name
matches the class name; no return type (they initialize an
object)

119

Constructor - An example

Internet of Things A.Y. 20-21

C
la

ss
e

s

#include <iostream>

using namespace std;

class Rectangle{

int width, height;

public:

Rectangle(int, int);

int area(){return width*height; }

};

Rectangle::Rectangle(int a, int b){

width = a;

height = b;

}

int main(){

Rectangle rect(3,4);

Rectangle rect_b(5,6);

cout << " rect area: " << rect.area() << endl;

cout << " rect_b area: " << rect_b.area() << endl;

return 0;

}

Constructor prototype
declaration

Constructor
definition

120Internet of Things A.Y. 20-21

Overloading constructors

121

Overloading constructors

Internet of Things A.Y. 20-21

C
la

ss
e

s

• A constructor can be overloaded with different versions
taking different parameters.

• The compiler will automatically call the one whose parameters match
the arguments.

• The default constructor: A special kind constructor that takes no
parameters. It is called when an object is declared but is not initialized
with any arguments.

Rectangle rectb; // ok, default constructor called

Rectangle rectc(); // Oops!

122

Constructors: An example

Internet of Things A.Y. 20-21

C
la

ss
e

s

#include <iostream>

using namespace std;

class Rectangle{

int width, height;

public:

Rectangle();

Rectangle(int, int);

int area(){return width*height; }

};

Rectangle::Rectangle(){

width = 5;

height = 5;

}

Rectangle::Rectangle(int a, int b){

width = a;

height = b;

}

int main(){

Rectangle rect(3,4);

Rectangle rect_b;

cout << "rect area:" << rect.area()

<< endl;

cout << " ect_b area: " << rect_b.area()

<< endl;

return 0;

}

123Internet of Things A.Y. 19-20

Calling constructors

124

Calling constructors

Internet of Things A.Y. 20-21

C
la

ss
e

s

• functional form: Enclose the arguments of the constructor in
parentheses.

• Single parameter:

• Uniform initialization: Same as the functional form but using braces
instead of parentheses. (Optional: an equal sign before the braces.)

class_name object_name = { value1, value2, value3, … }

class_name object_name = initialization_value;

class_name object_name { value1, value2, value3, … }

class_name object_name (value1, value2, value3, …)

125

An example

Internet of Things A.Y. 20-21

C
la

ss
e

s

#include <iostream>

using namespace std;

class Circle{

double radius;

public:

Circle(double r){radius = r;};

double circum(){return 2*radius*3.14159265; }

};

int main(){

Circle foo(10.0); //functional form

Circle bar = 20.00; // assignment init.

Circle baz {30.00}; // uniform init.

Circle qux = {40.00}; //uniform init.

return 0;

}

126

Constructors: Initialization

Internet of Things A.Y. 20-21

C
la

ss
e

s

• It is mainly a matter of programming style!

• Uniform vs. functional: Braces cannot be confused with
function delcarations.

Rectangle rectb; // default constructor called

Rectangle rectc(); // function declaration

Rectangle rectd{}; // default constructor called

127Internet of Things A.Y. 20-21

Member initialization in
constructors

128

Member initialization

Internet of Things A.Y. 20-21

C
la

ss
e

s

• When a constructor is used to initialize other members,
these members can be initialized directly.

• Initialization is done by inserting, before the contructor’s body, a
colon (:) and a list of initializations for class members.

class Rectangle{

int width, height;

public:

Rectangle(int, int);

int area(){return width*height; }

};

1. Rectangle::Rectangle(int a, int b){ width = a; height = b; }

2. Rectangle::Rectangle(int a, int b) : width(a) { height = b; }

3. Rectangle::Rectangle(int a, int b) : width(a), height(b) { }

129

Member initialization

Internet of Things A.Y. 20-21

C
la

ss
e

s

class Rectangle{

int width, height;

public:

Rectangle(int, int);

int area(){return width*height; }

};

1. Rectangle::Rectangle(int a, int b){ width = a; height = b; }

2. Rectangle::Rectangle(int a, int b) : width(a) { height = b; }

3. Rectangle::Rectangle(int a, int b) : width(a), height(b) { }

Classic constructor
definition

Constructor definition
with member
initialization

130

Destructor

Internet of Things A.Y. 20-21

C
la

ss
e

s

• A member function of a class that deletes an object
• It helps deallocate the memory of an object
• It does not take any arguments and does not return anything
• There cannot be more than one destructor in a class
• Syntax: ~className
• The compiler creates a default desctructor

• Problem: Dynamically allocated memory or pointer in a class.
• Solution: Write a destructor to release memory and avoid

memory leak (using delete object).

131Internet of Things A.Y. 20-21

Pointers to classes

132

Pointers to classes

Internet of Things A.Y. 20-21

• Objects can be pointed to by pointers.

• The members of an object can be accessed directly
from a pointer by using the arrow operator(->).

• Syntax:

C
la

ss
e

s

class_name * pointer_name;

133

Operators

Internet of Things A.Y. 20-21

C
la

ss
e

s

Expression

*x Pointed to by x

&x Address of x

x.y Member y of object x

x->y Member y of object pointed to by x

(*x).y Member y of object pointed to by x

x[0] First object pointed to by x

x[0] Second object pointed to by x

x[n] (n+1)th object pointed to by x

134

Pointers to classes: An example

Internet of Things A.Y. 20-21

C
la

ss
e

s

#include <iostream>

using namespace std;

class Rectangle{

int width, height;

public:

Rectangle(int x, int y): width(x), height(y){};

int area(void){return width*height; }

};

int main(){

Rectangle rect(3,4);

Rectangle * foo, * bar, * baz;

foo = ▭

bar = new Rectangle (5,6);

baz = new Rectangle[2]{{2,5},{3,6}};

cout << " rect’s area: " << rect.area() << endl;

cout << " *foo’s area: " << foo->area() << endl;

cout << " *bar’s area: " << bar->area() << endl;

cout << " baz[0] area: " << baz[0].area() << endl;

cout << " baz[1] area: " << baz[1].area() << endl;

delete bar;

delete[] baz;

return 0;

}

135

Classes- Alternative definitions

Internet of Things A.Y. 20-21

C
la

ss
e

s

• Classes can be defined also with keywords struct
and union.

• Keyword struct: Plain data structures; public access by
default.

• Keyword union: Store only one data member at a
time; public access by default.

136

Additional Resources

• http://www.cplusplus.com/doc/tutorial/
• https://en.cppreference.com/w/
• Programming: Principles and Practice Using C++, Bjarne

Stroustrup (Updated for C++11/C++14)
• C++ Primer, Stanley Lippman, Josée Lajoie, and Barbara E.

Moo (Updated for C++11)

Internet of Things A.Y. 20-21

http://www.cplusplus.com/doc/tutorial/

