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Branches of Machine Learning
• Supervised learning:  Learning from a training set of labeled

data provided by a knowledgable external supervisor.

• Unsupervised learning: Learning the inherent structure of data without
the use of explicitly-provided labels.

• Reinforcement learning: Learning what to do—how to map situations to 
actions—so as to maximize a numerical reward signal (closed-loop 
problem).
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Reinforcement Learning (RL)
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Machine vs. Reinforcement
Learning

• More focused on goal-directed learning from interaction
• There is no supervisor, only a reward signal
• No instantaneous feedback (delayed)
• Time really matters (sequential, non i.i.d. data)
• Agent’s actions affect the subsequent data it receives. Re
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Many faces of RL
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Historical Background
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Original motivation: animal learning

Early emphasis: neural net implementations and 
heuristic properties

Operations research, optimal control theory, 
dynamic programming, AI state-space research

Best formalized as a set of techniques to handle: 
MDPs or P(artially)O(bservable)MDPs
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RL Task

Re
in
fo
rc
em

en
tL
ea
rn
in
g

Internet of Things A.Y. 20-21



10

RL Task
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𝑠 0
! "
# "

𝑠 1
! $
# $

𝑠 2
! %
# %

𝑠 3 …

Goal: learn to choose actions that maximize the 
cumulative reward

𝑟 0 + 𝛾𝑟 1 + 𝛾𝑟 2 + 𝛾𝑟 3 +…

where 0 ≤ 𝛾 < 1

Internet of Things A.Y. 20-21



11

Elements of an RL agent

• Policy: Defines the agent’s way of behaving

• Reward signal: Defines the goal of the RL problem; Agent’s objective
is to maximize the total reward in the long run

• Value function: Specifies what is good in the long run

• Model: Mimics the behavior of the environment.
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Markov Decision Processes (MDP)
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Introduction to MDPs

• MDPs formally describes a framework for RL.

• The environment is fully observable, i.e., the current state 
completely characterizes the process.

• Almost all RL problems can be formalized as MDPs.
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Markov Decision Processes

• Finite set of states 𝑆
• Finite set of actions 𝐴(𝑠), 𝑠Î 𝑆
• Immediate reward function

𝑅: 𝑆 ×𝐴 → 𝑅
• Transition (next-state) function

𝑇: 𝑆 × 𝐴 → 𝑆
• More generally, 𝑅 and 𝑇 are treated as stochastic
• Our focus: discrete time MDPs.
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Markov Decision Processes

• Markov Property for MDPs

𝑃 𝑠! 𝑠, 𝑎 )
𝑠!, 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠)

• Next state is a function of current state and the action taken! M
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Markov Decision Processes

• If no rewards and only one action, this is just a 
Markov chain(or Controlled Markov Chain)

• Overall objective is to determine a policy
p ∶ 𝑆® 𝐴

such that some measure of cumulative reward is optimized

E.g, 𝑟 0 + 𝛾𝑟 1 + 𝛾𝑟 2 + 𝛾𝑟 3 +…
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What is a policy?
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If agent is in state Then a good action is

s1 a3

s2 a7
s3 a1
s4 a3

… …

• A policy is the agent’s
behavior

• It is a map from state 
to action.
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Student Markov Decision Process
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Class 1 Class 2 Class 3

Sleep
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A Markov Decision Process
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Another MDP
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Applications of MDPs
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• Robot path planning
• Travel route planning
• Elevator scheduling
• Autonomous aircraft navigation
• Manufacturing processes
• Network switching & routing
• …

• Many of these have been successfully handled 
using RL methods. Internet of Things A.Y. 20-21



22

Brief Summary of Concepts
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sequence of discrete time steps
• The specification of their interface defines a particular task: 

• the actions are the choices made by the agent
• the states are the basis for making the choices
• the rewards are the basis for evaluating the choices

• A policy is a stochastic rule by which the agent selects actions
as a function of states
• The agent's objective is to maximize the amount of 

reward it receives over time.
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Value Function
• For any policy p, define the Value function as the function 

𝑉&: 𝑆 → 𝐼𝑅 assigning to each state the quantity
𝑉& 𝑠 = ∑'()* 𝛾'𝑟(𝑡), 

where 𝑠 0 = 𝑠
• Each action 𝑎(𝑡) is chosen according to policy 𝜋
• Each subsequent 𝑠(𝑡 + 1) arises from the transition function 𝑇
• Each immediate reward 𝑟(𝑡) is determined by the immediate 

reward function 𝑅
• g is a given discount factor in [0, 1] Reminder: Use expected values in 

the stochastic case.
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Discount factor g
• Models idea: Future rewards are not worth as much as

immediate rewards
• Used in economic models
• Uncertainty about the future

• Models situations where there is a nonzero fixed probability 1 − 𝛾
of termination at any time

• Tradeoff between myopic (𝛾 = 0) vs. foresighted optimization
(𝛾 close to 1)

• …and makes the math work out nicely with bounded rewards, sum           
guaranteed to be finite even in infinite-horizon case.
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Technical Remarks
• If the next state and/or immediate reward functions are 

stochastic, then the 𝑟(𝑡) values are random variables and
the return is defined as the expectation of this sum.

• If the MDP has absorbing states, the sum may actually be finite
• In that case 𝛾 = 1 is allowed, i.e., no discount
• We stick with this infinite sum notation for the sake of generality
• The formulation we use is called infinite-horizon. Re
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Optimal Policies
• Objective: Find a policy 𝜋∗ such that

𝑉&∗ 𝑠 ≥ 𝑉& 𝑠

for any policy 𝜋 and any state 𝑠

• Such a policy is called an optimal policy

We define:
𝑉∗ = 𝑉&∗
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Interesting Facts

• For every MDP such that 𝑆 is discrete and 𝐴(𝑠) is finite 
there exists an optimal policy
• This theorem can be easily extended to the case in which 𝐴(𝑠) is 

a compact set.

• It is a policy such that for every possible start state there is no 
better option than to follow the policy. Re
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Finding an Optimal Policy

• Idea:
1. Run through all possible policies.
2. Select the best.

What’s the problem ??
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Finding an Optimal Policy

• Dynamic Programming approach:
Determine the optimal value function for each state
Select actions according to this optimal value function 𝑉∗

• How do we compute 𝑉∗?
• Magic words: Bellman equation(s)
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Derivation of the Bellman Equation

• Given the state transition 𝑠 → 𝑠’
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Bellman Equations
• For any state 𝑠 and policy 𝜋

• For any state 𝑠, the optimal value function is

• Recurrence relations
• Can be used to compute the return from a given policy or 

to compute the optimal return via value iteration.

Re
in
fo
rc
em

en
tL
ea
rn
in
g

Internet of Things A.Y. 20-21



32

Bellman Equations: General Form
• For completeness, here are the Bellman equations for 

stochastic and discrete time MDPs:

where 𝑅(𝑠, 𝑎) now represents 𝐸(𝑅 | 𝑠, 𝑎) and 𝑃""!(𝑎) is the 
probability that the next state is 𝑠# given that action 𝑎 is taken in state 𝑠
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From Values to Policies

• Given the optimal value function 𝑉∗ it follows from 
Bellman equation that the optimal policy can be
computed as:

𝜋(𝑠) = argmax
$

𝑅 𝑠, 𝑎 + 𝛾𝑉∗(𝑠#)

• An optimal policy is said to be greedy for 𝑉∗
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An example: Maze task
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An example: Maze task
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How would you model the 
MDP?
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Maze task: MDP Model
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• State is a pair: s = 𝑥, 𝑦 , 𝑥 ∈ {1,… , 9} and 𝑦 ∈ {1,… , 6}
defining the robot’s position.

• Actions: 𝐴 𝑠 = {up, down, left, rigℎ𝑡}
(except for those states near the black squares)

• Reward Function: 𝑅 𝑠 = Q −1, ∀𝑠 ≠ 𝐺
100, if 𝑠 = 𝐺

• Transition function: 𝑠# =

𝑥 + 1, 𝑦 if 𝑎 = right
𝑥 − 1, 𝑦 if 𝑎 = left
𝑥, 𝑦 + 1 if 𝑎 = up
𝑥, 𝑦 − 1 if 𝑎 = down
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Maze task: Value Function
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Maze task: Optimal Path

Re
in
fo
rc
em

en
tL
ea
rn
in
g

Internet of Things A.Y. 20-21



39

Why On-line learning is important?

• Assumption: All system parameters to be known.

• Finding the optimal policy becomes a straightforward 
computational problem
• E.g., value iteration, but even policy iteration, linear programming, etc…

• What if rewards/transitions probabilities are unknown? Can we 
compute the optimal policy?
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Agent-Environment Interaction

• Everything inside the agent is completely known and 
controllable by the agent.

• Everything outside is incompletely 
controllable but may or may not be 
completely known.
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Agent Knowledge

• A reinforcement learning problem can be posed in a variety 
of different ways depending on assumptions about the level 
of knowledge initially available to the agent.

• In problems of complete knowledge, the agent has a complete and 
accurate model of the environment's dynamics .

• If the environment is an MDP, then such a model consists of the one-step 
transition probabilities and expected rewards for all states and their 
allowable actions.

• In problems of incomplete knowledge, a complete and perfect 
model of the environment is not available.
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Q-Values
• For any policy p, define 𝑄%: 𝑆 × 𝐴 → 𝑅 by

𝑄% 𝑠, 𝑎 = ∑&'() 𝛾&𝑟(𝑡)

• 𝑠 0 = 𝑠 is the initial state, 
• 𝑎(0) = 𝑎 is the action taken,
• all subsequent states, actions, and rewards arise following policy p
• Just like 𝑉p except that action 𝑎 is taken at the very first step and 

only  after this, policy p is followed Bellman equations can be 
rewritten in terms of Q-values.
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Q-Values
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state
An starts with this
action and then

follows the policy

Return should
be

s1 a1 -5

s1 a2 3

s2 a1 17.1

s2 a2 10

… … …
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Q-Values
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(given the state transition 𝑠 → 𝑠’)

𝑉%(𝑠) = 𝑅 𝑠, 𝜋(𝑠) + 𝛾𝑉%(𝑠#)

vs.

𝑄%(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + 𝛾𝑉%(𝑠#)
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Q-Values
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(given the state transition 𝑠 → 𝑠’)

𝑉%(𝑠) = 𝑅 𝑠, 𝜋(𝑠) + 𝛾𝑉%(𝑠#)

vs.

𝑄%(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + 𝛾𝑉%(𝑠#)
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Q-Values
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g• Define 𝑄∗ = 𝑄"∗ , where p* is an optimal policy

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝑠#
• Since:

𝑉∗(𝑠) = max
$

𝑅 𝑠, 𝑎 + 𝛾𝑉∗(𝑠#)
• Then:

𝑉∗(𝑠) = max
$
𝑄∗(𝑠, 𝑎)

• And:
𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾max

$"
𝑄∗(𝑠#, 𝑎#)
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Q-Values
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• The optimal policy p* is greedy for 𝑄∗, that is

𝜋∗(𝑠) = argmax
#

𝑄∗(𝑠, 𝑎)

[it follows from 𝑉∗(𝑠) = max
!
𝑄∗ 𝑠, 𝑎 ]
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Q-learning Algorithm
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• Q is the estimated utility function 
• It tells us how good an action is, given a certain state
• It includes immediate reward for making an action + best utility 

(Q) for the resulting state (future utility)
• It allows to compute the optimal policy.

• Q-learning is based on an online estimation of the Q function
𝑄(𝑠, 𝑎) ← (1 − a )𝑄(𝑠, 𝑎) + a [ 𝑟(𝑠, 𝑎) + gmax

$!
𝑄(𝑠#, 𝑎#)]
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Q-learning Algorithm
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Repeat  (for each decision epoch)
Initialize 𝑠
Repeat (for each step of episode)

Choose 𝑎 from 𝑠 using a policy derived from 𝑄
Take action 𝑎, observe 𝑟(𝑠, 𝑎), 
𝑄(𝑠, 𝑎) ← (1 − 𝛼 )𝑄(𝑠, 𝑎) + a [ 𝑟(𝑠, 𝑎) + gmax

!"
𝑄(𝑠,, 𝑎,)]

𝑠¬ 𝑠#
until 𝑠 is terminal

Internet of Things A.Y. 20-21



50

Exploitation and Exploration
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should actually do. The agent learns a Q-function that 
can be used to determine an optimal action. 

• There are two things that are useful for the agent to do:
– exploit the knowledge that it has found at the current state s by 

taking one of the actions a that maximizes Q[s,a].
– explore in order to build a better estimate of the optimal Q-

function. That is, it should select a different action from the one  
that it currently thinks is best.
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Exploitation and Exploration
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– Simple Approach: e-greedy policy
– e small number, e.g., 0.1

Generate a random number p
if p £ e

Choose an action at random  ® explore
else

Choose the greedy action  
𝑎∗ = argmax

#
𝑄(𝑠, 𝑎)® exploit

end
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Q-learning Discussion
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• Q-learning is guaranteed to converge to the optimal 
Q-values if all Q(s,a) values are updated infinitely often
(Watkins and Dayan 1992).

• It follows that exploration is necessary
• A common approach is the e-greedy strategy

• Q-learning can be very slow to converge to the optimal policy, 
especially if the state space is large.

• One of the biggest challenges in the RL field is to speed up the 
learning process.
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Learning or Planning?
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• Classical DP emphasis for optimal control
• Dynamics and reward structure known
• Off-line computation

• Traditional RL emphasis
• Dynamics and/or reward structure initially unknown
• On-line learning

• Computation of an optimal policy off-line with known dynamics and 
reward structure can be regarded as planning.

Internet of Things A.Y. 20-21



54

Reinforcement Learning in Practice
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The WHARP forwarding strategy
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S. Basagni, V. Di Valerio, G. Koutsandria, C. Petrioli, and D. Spenza. “WHARP: A wake-up radio and 
harvesting-based forwarding strategy for green wireless networks, " in Proceedings of IEEE MASS 
2017, Orlando, FL, USA, October 22–25 2017. 

Channel 
access 

Next-hop 
selection 

Wake-up  
radios 

Semantic 
addressing 

Available 
energy 

Forecast 
energy 
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The WHARP forwarding strategy
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Channel 
access 

Next-hop 
selection 

Wake-up  
radios 

Semantic 
addressing 

Available 
energy 

Forecast 
energy 

• Objective: Optimize energy consumption through a 
«smart» selection of next-hop relays.
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The WHARP forwarding strategy
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• Semantic awakenings: Distance from the sink

• Nodes decide whether to participate to the relay selection process 
based on a proactive Markov Decision Process mechanism 

1. Available energy
2. Forecast energy

• MDP solution method: Backward Value Iteration (BVI)

• WHARP decisions optimize system performance over time 
S. Basagni, V. Di Valerio, G. Koutsandria, C. Petrioli, and D. Spenza. “WHARP: A wake-up radio and 
harvesting-based forwarding strategy for green wireless networks, " in Proceedings of IEEE MASS 
2017, Orlando, FL, USA, October 22–25 2017. 
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The WHARP forwarding strategy
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• The MDP policy outputs either green or red.
• Green output: Nodes turn on their main radio 
• Red output: Nodes remain asleep

S. Basagni, V. Di Valerio, G. Koutsandria, C. Petrioli, and D. Spenza. “WHARP: A wake-up radio and 
harvesting-based forwarding strategy for green wireless networks, " in Proceedings of IEEE MASS 
2017, Orlando, FL, USA, October 22–25 2017. 
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MDP model: States
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S. Basagni, V. Di Valerio, G. Koutsandria, C. Petrioli, and D. Spenza. “WHARP: A wake-up radio and 
harvesting-based forwarding strategy for green wireless networks, " in Proceedings of IEEE MASS 
2017, Orlando, FL, USA, October 22–25 2017. 

: 

hn : 

en = bn + hn � exn

Node energy harvested in

bn
energy level in

decision epoch n

decision epoch n

exn : energy spent for sensing
and transmitting data

en : 
overall energy available
for packet forwarding
in decision epoch n
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MDP model: Actions and Transitions
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S. Basagni, V. Di Valerio, G. Koutsandria, C. Petrioli, and D. Spenza. “WHARP: A wake-up radio and 
harvesting-based forwarding strategy for green wireless networks, " in Proceedings of IEEE MASS 
2017, Orlando, FL, USA, October 22–25 2017. 

sn sn+1

sn+1

sn+1

en etxn-

en

0

an
= ad

an = af

sn = 0 ) bn = 0 :

etxn :

an :
ad :
af : Forward data

Do not forward data
Action in decision epoch n

Energy spent to relay data

All-o↵ node

bn

a
n =

a
f _ a

d
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MDP model: Revenue
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S. Basagni, V. Di Valerio, G. Koutsandria, C. Petrioli, and D. Spenza. “WHARP: A wake-up radio and 
harvesting-based forwarding strategy for green wireless networks, " in Proceedings of IEEE MASS 
2017, Orlando, FL, USA, October 22–25 2017. 

· · ·

· · ·r(s1, af ) > 0 r(s2, af ) < 0 r(sN , ad) = 0r(sN�1, af ) > 0

b1 > 0 b2 = 0 bN�1 > 0 bN � 0

: action an = af : action an = ad

N decision epochs

time
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WHARP: Performance Evaluation
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• Scenario: WHARP vs. EHWA
• GreenCastalia Simulator
• M=120; Grid: 200 x 200 m2

• R = 60m; Rw = 45m
• Energy model: Magonode++ mote

Internet of Things A.Y. 20-21



63

WHARP: Performance Evaluation
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WHARP: Performance Evaluation
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WHARP: Performance Evaluation
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Additional Resources
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• An Introduction to Reinforcement Learning, Sutton and Barto, 
MIT Press 1998
• Book available free online:

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2nd
Ed.pdf

• Algorithms for Reinforcement Learning, Szepesvari, Morgan and Claypool 2010
• Book available free online: 

https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs-lecture.pdf

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs-lecture.pdf
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