
Introduction to C++
Georgia Koutsandria

Internet of Things A.Y. 18-19
Prof. Chiara Petrioli
Dept. of Computer Science
Sapienza University of Rome PART III

2Internet of Things A.Y. 18-19

Associative Containers in the
C++ standard library

(Recap++)

3

Associative Container Types

Internet of Things A.Y. 18-19

As
so

cia
tiv

e
co

nt
ai

ne
rs

Container Type
map Holds key-value pairs

set The key is the value

multimap A key can appear multiple times

multiset A key can appear multiple times

unordered_map Organized by a hash function

unordered_set Organized by a hash function

unordered_multimap Hashed map; keys can appear multiple times

unordered_multiset Hashed set; keys can appear multiple times

4

The map associative container

Internet of Things A.Y. 18-19

• A collection of (key, value) pairs; often referred to as an
associative array.

• Values are found by a key rather than by their position (as in
arrays).

• E.g.: Mapping names to phone numbers; Each pair contains a
person’s name as a key and a phone number as its value.

As
so

cia
tiv

e
co

nt
ai

ne
rs

#include <map>

map<key, value> name;

5

The set associative container

Internet of Things A.Y. 18-19

• A collection of keys.
• Useful when we want to know whether a value is present.
• It keeps the elements ordered at all times.
• E.g.: A business might define a set named bad_checks to

hold the names of individuals who have written bad checks.

As
so

cia
tiv

e
co

nt
ai

ne
rs

#include <set>

6

The set associative container

Internet of Things A.Y. 18-19

As
so

cia
tiv

e
co

nt
ai

ne
rs//empty set of ints

set<int> first;

//range
int myints[] = {10, 20, 30, 40};
set<int> second(myints,myints+4);

//a copy of the set named second
set<int> third(second);

//iterator
set<int> fourth(second.begin(), second.end());

7

The set associative container

Internet of Things A.Y. 18-19

• Several basic functions:
• begin () - returns an iterator to the first element in the set
• end() - returns an iterator to the past-the-end element in the container
• size () - Returns the number of elements in the set
• empty () - returns whether the set container is empty
• insert()-adds a new element to the set
• erase()-removes an element from the set

• find() –returns the iterator to a specific element.
• Operator = assigns new contents to set replacing the current

ones.

As
so

cia
tiv

e
co

nt
ai

ne
rs

8

The set associative container

Internet of Things A.Y. 18-19

// count the number of times each word occurs
// in the input

map<string, size_t> word_count; //empty map
set<string> exclude = {"Then","But","An"};
string word;

while(cin >> word){
//count only words that are not in exclude
if (exclude.find(word) == exlude.end())

++word_count[word];
}

As
so

cia
tiv

e
co

nt
ai

ne
rs

9Internet of Things A.Y. 18-19

Range-based Loop

10

Range-based loop

Internet of Things A.Y. 18-19

As
so

cia
tiv

e
co

nt
ai

ne
rs

• A more readable equivalent to the traditional for loop
operating over a range of values, such as all elements in a
container (array, vector, map, set, etc.).

• For observing elements in a container. i.e., read-only:
1. If the objects are cheap to copy (capture by value)

2. Capture by const reference

• When modifying the elements in the container:
• Capture by non-const reference

for (auto elem : container_name)

for (const auto& elem : container_name)

for (auto& elem : container_name)

11

Loop through Map

Internet of Things A.Y. 18-19

map<string,int>::iterator it;

for(it=myMap.begin();it!=myMap.end();it++)
{

cout << it->first << ": "
<< it->second
<< endl;

}

for(auto const& x : myMap)
{

cout << x.first << ": "
<< x.second
<< endl;

}

As
so

cia
tiv

e
co

nt
ai

ne
rs

auto : Tells the compiler to deduce
the type of a declared variable from
its initialization expression.

12

Loop through Set

Internet of Things A.Y. 18-19

set<string,int>::iterator it;

for(it=mySet.begin();it!=mySet.end();it++)
cout << *it << endl;

for(auto elem : mySet)
cout << elem << " , ";

As
so

cia
tiv

e
co

nt
ai

ne
rs

auto : Tells the compiler to deduce
the type of a declared variable from
its initialization expression.

13

Exercise 1

Internet of Things A.Y. 18-19

Write a program that initializes a set which contains 5
integers and prints the contents of the set container. Use
two different ways to loop through the set: 1) Using an
iterator; 2) Using type inference (auto).

As
so

cia
tiv

e
co

nt
ai

ne
rs

14

Exercise 1: Solution

Internet of Things A.Y. 18-19

As
so

cia
tiv

e
co

nt
ai

ne
rs

#include <iostream>
#include <set>
using namespace std;
int main(){

int mynumbers[] = {23, 10, 45, 5, 3};
set<int> myset (mynumbers, mynumbers + 5);
cout << "myset contains: ";
for(set<int>::iterator iter = myset.begin() ;iter != myset.end();iter++)

cout << " " << *iter;
cout << endl;
cout << "myset contains: ";
for(auto elem : myset)

cout << " " << elem;
cout << endl;
return 0;

}

15Internet of Things A.Y. 18-19

Data Structures

16

Data Structures

Internet of Things A.Y. 18-19

• A group of data elements grouped together under
one name.

• These data elements are called members which can have
different types and lengths.

Da
ta

 S
tr

uc
tu

re
s

struct type_name{
member_type1 member_name1;
member_type2 member_name2;
member_type3 member_name3;
.
.
.

}object_names;

17

Data Structures

Internet of Things A.Y. 18-19

• type_name: The name of the structure type.
• member_name: The name of the data member.
• object_names: A set of valid identifiers for objects that have

the type of this structure.

Da
ta

 S
tr

uc
tu

re
s

struct type_name{
member_type1 member_name1;
member_type2 member_name2;
member_type3 member_name3;
.
.
.

}object_names;

18

Data Structures

Internet of Things A.Y. 18-19

struct product{
int weight;
double price;

};

product apple;
product melon,orange;

It declares a structure
type, called product

Two members, each of
a different type

Three objects of structure
type are declared.

Da
ta

 S
tr

uc
tu

re
s

19

Data Structures
(Alternative option)

Internet of Things A.Y. 18-19

struct product{
int weight;
double price;

} apple, melon, orange;

Name objects can be used to
directly declare objects of the

structure type.

Da
ta

 S
tr

uc
tu

re
s

struct product{
int weight;
double price;

};

product apple;
product melon,orange;

20

Accessing the members

Internet of Things A.Y. 18-19

Da
ta

 S
tr

uc
tu

re
s

• Once a member is declared, it can be accessed directly.
• Syntax: Insert a dot (.) between the object name and the

member name.
• E.g.: Each of the data type corresponds to the member it refers to.

• apple.weight
• apple.price
• melon.weight
• melon.price
• orange.weight
• orange.price

21

Data Structures: An example

Internet of Things A.Y. 18-19

Da
ta

 S
tr

uc
tu

re
s

#include <iostream>
#include <string>
#include <sstream>
using namespace std;
struct movies_t{

int year;
string title;

}mine, yours;

void printmovie (movies_t movie){
cout << movie.title;
cout << " (" << movie.year << ")"

<< endl;
}

int main(){
string mystr;
mine.title = "Goodbye Bafana";
mine.year = 2007;
cout << "Enter a title: ";
getline(cin, yours.title);
cout << "Enter year: ";
getline(cin, mystr);
stringstream(mystr) >> yours.year;
cout << "My favorite movie is: ";
printmovie(mine);
cout << "Your favorite movie is: ";
printmovie(yours);

return 0;
}

22Internet of Things A.Y. 18-19

Pointers to Structures

23

Pointers to Structures

Internet of Things A.Y. 18-19

Da
ta

 S
tr

uc
tu

re
s

• A structure can be pointed to by its own type of pointers.

struct movies_t{
int year;
string title;

};

movies_t amovie;
movies_t * pmovie;
pmovie = &amovie;

An object of structure
type movies_t

A pointer that points to
objects of structure type

movies_t
The value of the pointer
pmovie is assigned the

address of object amovie.

24

Pointers to Structures

Internet of Things A.Y. 18-19

Da
ta

 S
tr

uc
tu

re
s

Expression What is evaluated Equivalent
a.b Member b of object a

a->b Member b of object pointed to by a (*a).b
*a.b Value pointed to by member b of object a *(a.b)

• The arrow operator (->) is a dereference operator that is used
exclusiveley with pointers to objects that have members; It
allows access to the member of an object directly from its
address.

25

Pointers to Structures: An example

Internet of Things A.Y. 18-19

Da
ta

 S
tr

uc
tu

re
s

#include <iostream>
#include <string>
#include <sstream>
using namespace std;
struct movies_t{
int year;
string title;

};
int main(){
string mystr;
movies_t amovie;
movies_t * pmovie;
pmovie = &amovie;
cout << "Enter a title: ";
getline(cin, pmovie->title);
cout << "Enter year: ";
getline(cin, mystr);
stringstream(mystr) >> pmovie->year;
cout << "You have entered: " << pmovie->title;
cout << " (" << pmovie->year << ")" << endl;
return 0;

}

26Internet of Things A.Y. 18-19

Nesting Structures

27

Nesting Structures

Internet of Things A.Y. 18-19

Da
ta

 S
tr

uc
tu

re
s

• Structurwes can be nested in such a way that an element
of a structure is itself another structure.

struct movies_t{
int year;
string title;

};

struct friends_t{
int year;
string name;
string email;
movies_t favorite_movie;

}gina, gabriele;

friends_t * pfriends = &gina;

gina.name
gabriele.favorite_movie.title
gina.favorite_movie.year
Pfriends->favorite_movie.year

28

Exercise 1

Internet of Things A.Y. 18-19

Da
ta

 S
tr

uc
tu

re
s

Write a program that implements a structure array to
construct a database for the products of a supermarket.
Your program should take as input the name and the price
of 5 products (from the keyboard/user) and it should
display them on the screen in a table manner.

- product: a data structure.
- pr : an array structure/object of size 5.
- name: member to store the name of the product.
- price: member to store the price of the product.

29

Exercise 1-Solution

Internet of Things A.Y. 18-19

Da
ta

 S
tr

uc
tu

re
s

#include <iostream>
using namespace std;
struct product{

char name[20];
float price;

} pr[5];

int main(){
for(int i=0;i<5;i++){

cout << "Enter the name of product " << i+1 << ":";
cin >> pr[i].name;
cout << "Enter the price of product " << i+1 << ":";
cin >> pr[i].price;
cout << endl;

}
cout << "Product Name" << "\t \t" << "Price (Euro)" << endl;
for(int i=0;i<5;i++)

cout << pr[i].name << "\t \t \t" << pr[i].price << endl;

return 0;
}

30Internet of Things A.Y. 18-19

Classes

31

Classes

Internet of Things A.Y. 18-19

• class_name: A valid identifier for the class.
• object_names: An optional list of names for objects;

An object is an instantiation of a class.
• members: Contained in the body of the declaration; can be data or

function declarations.
• access_specifiers: Modify the access rights for the members of the

class (optional).

Cl
as
se
s

class class_name{
access_specifier_1:
member1;

access_specifier_2:
member2;

. . .
}object_names;

32

Access specifier

Internet of Things A.Y. 18-19

• Private: Accessible only from within other members of
the same class (default).

• Protected: Accessible from other members of the same
class and also from members of their derived classes.

• Public: Accessible from anywherhe where the object is
visible.

Cl
as

se
s

33

An example

Internet of Things A.Y. 18-19

Cl
as

se
s

class Rectangle{
int width, height;

public:
void set_values(int,int);
int area(void);

}rect;

Class declaration Name of class

An object, i.e., a variable,
of the class

Class contains
four members

Two data members of
type int; private access

Two member functions;
public access. Only the
Declaration is included.

34

Class vs. Object name

Internet of Things A.Y. 18-19

Cl
as

se
s

class Rectangle{
int width, height;

public:
void set_values(int,int);
int area(void);

}rect;

• Rectangle: The class name
• rect: An object of type Rectangle
• Analogy: int a;

The type name
(the class)

The variable name
(the object)

35

Accessing public members of a class

Internet of Things A.Y. 18-19

Cl
as

se
s

class Rectangle{
int width, height;

public:
void set_values(int,int);
int area(void);

}rect;

• Public objects can be accessed as if they were normal
functions or variables.

• Use of dot (.) between object name and member
name.

• E.g.: rect.set_values(3,4);
myarea = rect.area();

36

Accessing members of a class

Internet of Things A.Y. 18-19

Cl
as

se
s

class Rectangle{
int width, height;

public:
void set_values(int,int);
int area(void);

}rect;

Members with private access cannot be
accessed from outside of the class.
They can only be referred to from within
other members of the same class.

!

37Internet of Things A.Y. 18-19

Cl
as
se
s

Q: What would happen if your program tries to access a private
data member from outside of a class?

38Internet of Things A.Y. 18-19

Cl
as

se
s

An example
#include <iostream>
using namespace std;

class MyClass{
int var1, var2;

};

int main()
{
MyClass mc;
mc.var1 = 10;
cout << "var1: " << mc.var1 << endl;
return 0;

}

39Internet of Things A.Y. 18-19

Cl
as
se
s

Q: What would happen if your program tries to
access a private data member from outside of a

class?

A: Compilation will fail! You will get the following error:

40

Defining a member function

Internet of Things A.Y. 18-19

Cl
as

se
s

1. Within the class definition: Function is automatically
considered an inline member function by the
compiler.

2. Include declaration and define it later outside the
class: A normal (not-inline) class member function.

41

An example

Internet of Things A.Y. 18-19

Cl
as

se
s

#include <iostream>
using namespace std;
class Rectangle{
int width, height;

public:
void set_values(int,int);
int area(){return width*height;}

};
void Rectangle::set_values(int x, int y){

width = x;
height = y;

}
int main(){

Rectangle rect;
rect.set_values(3,4);
cout << "area: " << rect.area() << endl;
return 0;

}

The scope operator (::) is
used in the definition of a
class member to define a
member of class outside
the class itself.

42

The scope operator(::)

Internet of Things A.Y. 18-19

Cl
as

se
s

• It specifies the class to which the member being
defined belongs.

• It grands exactly the same scope properties as if this function
definition was directly included within the class definition.

43

Multiple object declaration

Internet of Things A.Y. 18-19

Cl
as

se
s

#include <iostream>
using namespace std;
class Rectangle{
int width, height;

public:
void set_values(int,int);
int area(){return width*height;}

};
void Rectangle::set_values(int x, int y){

width = x;
height = y;}

int main(){
Rectangle rect, rectb;
rect.set_values(3,4);
rectb.set_values(5,6);
cout << "area: " << rect.area() << endl;
cout << "areab: " << rectb.area() << endl;
return 0;

}

Two instances
(objects)

44Internet of Things A.Y. 18-19

Cl
as
se
s

Q: What would happen in the previous example if we called
the member function area before having called set_values?

45Internet of Things A.Y. 18-19

Cl
as
se
s

Q: What would happen in the previous example
if we called the member function area before

having called set_values?

A: An undetermined result, since the members
width and height had never been assigned a

value.

46Internet of Things A.Y. 18-19

Cl
as
se
s

Q: What would happen in the previous example if we called
the member function area before having called set_values?

#include <iostream>
using namespace std;
class Rectangle{
int width, height;

public:
void set_values(int,int);
int area(){return width*height;}

};
void Rectangle::set_values(int x, int y){

width = x;
height = y;}

int main(){
Rectangle rect, rectb;
cout << "area: " << rect.area() << endl;
rect.set_values(3,4);
rectb.set_values(5,6);
cout << "areab: " << rectb.area() << endl;
return 0;

}

47Internet of Things A.Y. 18-19

Cl
as
se
s

Q: What would happen in the previous example
if we called the member function area before

having called set_values?

A: An undetermined result, since the members
width and height had never been assigned a value.

48

Constructor

Internet of Things A.Y. 18-19

Cl
as
se
s

• A special function which is automatically called whenever
a new object of a class is created.

• It allows the class to initialize member variables or
allocate storage.

• They are only executed once, when a new object is
created.

• Declaration: like a regular member function; the name
matches the class name; no return type.

49

Constructor - An example

Internet of Things A.Y. 18-19

Cl
as

se
s

#include <iostream>
using namespace std;
class Rectangle{
int width, height;

public:
Rectangle(int, int);
int area(){return width*height; }

};
Rectangle::Rectangle(int a, int b){

width = a;
height = b;

}
int main(){

Rectangle rect(3,4);
Rectangle rect_b(5,6);
cout << " rect area: " << rect.area() << endl;
cout << " rect_b area: " << rect_b.area() << endl;
return 0;

}

Constructor

50Internet of Things A.Y. 18-19

Overloading constructors

51

Overloading constructors

Internet of Things A.Y. 18-19

Cl
as
se
s

• A constructor can be overloaded with different versions
taking different parameters.

• The compiler will automatically call the one whose parameters match
the arguments.

• The default constructor: A special kind constructor that takes no
parameters. It is called when an object is declared but is not initialized
with any arguments.

Rectangle rectb; // ok, default constructor called
Rectangle rectc(); // Oops!

52

An example

Internet of Things A.Y. 18-19

Cl
as

se
s

#include <iostream>
using namespace std;
class Rectangle{
int width, height;
public:
Rectangle(int, int);
int area(){return width*height; }

};
Rectangle::Rectangle(){

width = 5;
height = 5;

}
Rectangle::Rectangle(int a, int b){

width = a;
height = b;

}

int main(){
Rectangle rect(3,4);
Rectangle rect_b;
cout << "rect area:" << rect.area()

<< endl;
cout << " ect_b area: " << rect_b.area()

<< endl;
return 0;

}

53Internet of Things A.Y. 18-19

Calling constructors

54

Calling constructors

Internet of Things A.Y. 18-19

Cl
as
se
s

• functional form: Enclose the arguments of the constructor in
parentheses.

• Single parameter:

• Uniform initialization: Same as the functional form but using braces
instead of parentheses. (Optional: an equal sign before the braces.)

class_name object_name = initialization_value;

class_name object_name { value1, value2, value3, … }

class_name object_name (value1, value2, value3, …)

55

An example

Internet of Things A.Y. 18-19

Cl
as

se
s

#include <iostream>
using namespace std;
class Circle{

double radius;
public:

Circle(double r){radius = r;};
double circum(){return 2*radius*3.14159265; }

};

int main(){
Circle foo(10.0); //functional form
Circle bar = 20.00; // assignment init.
Circle baz {30.00}; // uniform init.
Circle qux = {40.00}; //uniform init.

return 0;
}

56Internet of Things A.Y. 18-19

Member initialization in
constructors

57

Member initialization

Internet of Things A.Y. 18-19

Cl
as
se
s

• When a constructor is used to initialize other members,
these members can be initialized directly.

• Initialization is done by inserting, before the contructor’s body, a colon
(:) and a list of initializations for class members.

class Rectangle{
int width, height;

public:
Rectangle(int, int);
int area(){return width*height; }

};

1. Rectangle::Rectangle(int a, int b){ width = a; height = b; }

2. Rectangle::Rectangle(int a, int b) : width(a) { height = b; }

3. Rectangle::Rectangle(int a, int b) : width(a), height(b) { }

58Internet of Things A.Y. 18-19

Pointers to classes

59

Pointers to classes

Internet of Things A.Y. 18-19

• Objects can be pointed to by pointers.

• The members of an object can be accessed directly
from a pointer by using the arrow operator(->).

• Syntax:

Cl
as

se
s

class_name * pointer_name;

60

Operators

Internet of Things A.Y. 18-19

Cl
as
se
s

Expression
*x Pointed to by x

&x Address of x

x.y Member y of object x

x->y Member y of object pointed to by x

(*x).y Member y of object pointed to by x

x[0] First object pointed to by x

x[0] Second object pointed to by x

x[n] (n+1)th object pointed to by x

61

Pointers to classes: An example

Internet of Things A.Y. 18-19

Cl
as

se
s

#include <iostream>
using namespace std;
class Rectangle{
int width, height;
public:
Rectangle(int x, int y): width(x), height(y){};
int area(void){return width*height; }

};
int main(){
Rectangle rect(3,4);
Rectangle * foo, * bar, * baz;
foo = ▭
bar = new Rectangle (5,6);
baz = new Rectangle[2]{{2,5},{3,6}};
cout << " rect’s area: " << rect.area() << endl;
cout << " *foo’s area: " << foo->area() << endl;
cout << " *bar’s area: " << bar->area() << endl;
cout << " baz[0] area: " << baz[0].area() << endl;
cout << " baz[1] area: " << baz[1].area() << endl;
delete bar;
delete[] baz;
return 0;

}

62

Exercise 1

Internet of Things A.Y. 18-19

Cl
as
se
s

• Write a class (call it Student) that contains the
following members: 1) First name;2) Last name;
3) Student ID; 4) Grade (private access).

• The class Student should also contain the following two member
functions (public access): 1) storeData():Stores the details of a
student (fname, lname, etc..); 2) printData():Prints the details of
a student.

Your program should store the details of 3 students
(given as input by the user) and then print the
details of all students.

63

Exercise 1 (cont.)

Internet of Things A.Y. 18-19

Cl
as

se
s

64

Exercise 1 - Solution

Internet of Things A.Y. 18-19

Cl
as

se
s

#include <iostream>
using namespace std;
class Student{

string fname, lname;
int student_id, grade;

public:
void storeData();
void printData();

};
void Student::storeData(){

cout << "Enter first name: ", cin >> fname;
cout << "Enter last name: ", cin >> lname;
cout << "Enter the id: ", cin >> student_id;
cout << "Enter the grade: ", cin >> grade;
cout << endl;

}
void Student::printData(){

cout << fname << " " << lname << " "
<< student_id << " " << grade << endl;

}

65

Exercise 1 – Solution(cont.)

Internet of Things A.Y. 18-19

Cl
as

se
s

int main(){
Student students[3];
for (auto i=0;i<3;i++){

cout << "Student # " << i+1 << endl;
cout << "************************" << endl;
students[i].storeData();

}
cout << "*************All Students*************" << endl;
cout << "**************************************" << endl;
cout << "F.Name " << " " << "L.Name " << " "

<< " ID " << " " << " Grade " << endl;
for (auto i=0;i<3;i++)

students[i].printData();

return 0;
}

66

Exercise 2

Internet of Things A.Y. 18-19

Cl
as
se
sRedo exercise 1 using class and pointers.

67

Exercise 2 - Solution

Internet of Things A.Y. 18-19

Cl
as

se
s

#include <iostream>
using namespace std;
class Student{

string fname, lname;
int student_id, grade;

public:
void storeData();
void printData();

};
void Student::storeData(){

cout << "Enter first name: ", cin >> fname;
cout << "Enter last name: ", cin >> lname;
cout << "Enter the id: ", cin >> student_id;
cout << "Enter the grade: ", cin >> grade;
cout << endl;

}
void Student::printData(){

cout << fname << " " << lname << " "
<< student_id << " " << grade << endl;

}

68

Exercise 2 – Solution(cont.)

Internet of Things A.Y. 18-19

Cl
as

se
s

int main(){
Student students[3];
Student *studentsp;
studentsp = &students[0];
for (auto i=0;i<3;i++){

cout << "Student # " << i+1 << endl;
cout << "************************" << endl;
(studentsp+i)->storeData();

}
cout << "*************All Students*************" << endl;
cout << "**************************************" << endl;
cout << "F.Name " << " " << "L.Name " << " "

<< " ID " << " " << " Grade " << endl;
for (auto i=0;i<3;i++)

(studentsp+i)->printData();

return 0;
}

69

Additional Resources

Internet of Things A.Y. 18-19

• http://www.cplusplus.com/doc/tutorial/
• https://en.cppreference.com/w/
• Programming: Principles and Practice Using C++, Bjarne

Stroustrup (Updated for C++11/C++14)
• C++ Primer, Stanley Lippman, Josée Lajoie, and Barbara E. Moo

(Updated for C++11)

http://www.cplusplus.com/doc/tutorial/

