
Introduction to C++
Georgia Koutsandria

Internet of Things A.Y. 19-20
Prof. Chiara Petrioli
Dept. of Computer Science
Sapienza University of Rome

2

How to compile a C++ program

Co
m

pi
le

rs

• Windows: Install an Integrated Development Interface (IDE).
• Dev-C++ http://www.bloodshed.net/dev/index.html

• Mac: Install Xcode with the gcc/clang compilers.

• Linux: Compile your code directly from the terminal using the
following commnad g++ -std=c++0x example.cpp -o example_program

g++ -std=c++11 example.cpp -o example_program OR
clang++ -std=c++11 -stdlib=libc++ example.cpp -o example_program

Internet of Things A.Y. 19-20

http://www.bloodshed.net/dev/index.html

3Internet of Things A.Y. 19-20

Associative Containers in the
C++ standard library

(Recap)

4

Associative Containers

Internet of Things A.Y. 19-20

• Elements are stored and retrieved by a key.

• Two primary associative container types: map and set.

• The C++ library provides eight associative containers.

As
so

ci
at

iv
e

co
nt

ai
ne

rs

5

Associative Container Types

Internet of Things A.Y. 19-20

As
so

ci
at

iv
e

co
nt

ai
ne

rs

Container Type
map Holds key-value pairs

set The key is the value

multimap A key can appear multiple times

multiset A key can appear multiple times

unordered_map (c++11) Organized by a hash function

unordered_set (c++11) Organized by a hash function

unordered_multimap(c++11) Hashed map; keys can appear multiple
times

unordered_multiset(c++11) Hashed set; keys can appear multiple
times

6

The map associative container

Internet of Things A.Y. 19-20

• A collection of (key, value) pairs; often referred to as an
associative array.

• Values are found by a key rather than by their position (as in
arrays).

• E.g.: Mapping names to phone numbers; Each pair contains a
person’s name as a key and a phone number as its value.

As
so

ci
at

iv
e

co
nt

ai
ne

rs

#include <map>

map<key, value> name;

7

The set associative container

Internet of Things A.Y. 19-20

• It store unique elements following a specific order.
• The value of an element is its key; it must be unique.
• The value of the elements cannot be modified once in the

container.
• The value of the elements can be either inserted or removed

from the container.

As
so

ci
at

iv
e

co
nt

ai
ne

rs

#include <set>

set<key> name;

8Internet of Things A.Y. 19-20

Range-based Loop

9

Range-based loop

Internet of Things A.Y. 19-20

As
so

ci
at

iv
e

co
nt

ai
ne

rs

• A more readable equivalent to the traditional for loop
operating over a range of values, such as all elements in a
container (array, vector, map, set, etc.).

• For observing elements in a container. i.e., read-only:
1. If the objects are cheap to copy (capture by value)

2. Capture by const reference

• When modifying the elements in the container:
• Capture by non-const reference

for (auto elem : container_name)

for (const auto& elem : container_name)

for (auto& elem : container_name)

10

Loop through Map

Internet of Things A.Y. 19-20

map<string,int>::iterator it;

for(it=myMap.begin();it!=myMap.end();it++)
{

cout << it->first << ": "
<< it->second
<< endl;

}

for(auto const& x : myMap)
{

cout << x.first << ": "
<< x.second
<< endl;

}

As
so

ci
at

iv
e

co
nt

ai
ne

rs

auto : Tells the compiler to deduce
the type of a declared variable from
its initialization expression.

11

Loop through Set

Internet of Things A.Y. 19-20

set<string,int>::iterator it;

for(it=mySet.begin();it!=mySet.end();it++)
cout << *it << endl;

for(auto elem : mySet)
cout << elem << " , ";

As
so

ci
at

iv
e

co
nt

ai
ne

rs

auto : Tells the compiler to deduce
the type of a declared variable from
its initialization expression.

12

Exercise 1

Internet of Things A.Y. 19-20

Write a program that initializes a set which contains 5
integers and prints the contents of the set container. Use
two different ways to loop through the set: 1) Using an
iterator; 2) Using type inference (auto).

As
so

ci
at

iv
e

co
nt

ai
ne

rs

13

Exercise 1: Solution

Internet of Things A.Y. 19-20

As
so

ci
at

iv
e

co
nt

ai
ne

rs

#include <iostream>
#include <set>
using namespace std;
int main(){

int mynumbers[5] = {23, 10, 45, 5, 3};
set<int> myset (mynumbers, mynumbers + 5);
cout << "myset contains: ";
for(set<int>::iterator iter = myset.begin() ;iter != myset.end();iter++)

cout << " " << *iter;
cout << endl;
cout << "myset contains: ";
for(auto elem : myset)

cout << " " << elem;
cout << endl;
return 0;

}

14Internet of Things A.Y. 19-20

Functions
(Cont.)

15

Passing arguments to a function

• Arguments can be passed by value; Only copies of the
variables values at that moment are passed to thefunction;
Modifications on the values of the variables have not effect on the
values of the variables outside the function.

• Arguments can be passed by reference; The variable itself is passed to
the function; Any modifications on the local variables within the
function are reflected in the variables passed as arguments in the call

Fu
nc

tio
ns

Internet of Things A.Y. 19-20

16

Passing arguments to a function
(Cont.)

• Passing arguments by const reference. Why?
• Passing by value requires that all arguments are copied into the

function parameters.->time consuming when handling large structs,
classes, etc.
• Solution: arguments are passed by reference.
• Problem: Undesirable when we want read-only arguments.
• (More appropriate) solution: pass by const reference

• Minimum performance penalty (not copying
arguments)

• Function cannot change the value of the
arguments.

Fu
nc

tio
ns

Internet of Things A.Y. 19-20

17

Passing arguments by const reference:
An (wrong)example

Fu
nc

tio
ns

Internet of Things A.Y. 19-20

//passing parameters by const reference
#include <iostream>
using namespace std;
void foo(const int &a){

a = 2;
}

Compiler will complain!
A const reference cannot
have its value changed!

!

18

Passing arguments to a function

Q: Can we pass an entire array as an argument to a function?

Fu
nc

tio
ns

Internet of Things A.Y. 19-20

19

Passing arguments to a function

A: Not directly but «indirectly!»

Fu
nc

tio
ns

Internet of Things A.Y. 19-20

Q: Can we pass an entire array as an argument to a function?

20

Passing arguments to a function

• While an entire array cannot be passed as an argument to a
function, pointers to an array can.

• There are different ways to do so:
1. Formal parameter as a pointer:

2. Formal parameter as a sized array:

3. Formal parameter as an unsized array:

Fu
nc

tio
ns

Internet of Things A.Y. 19-20

void function_name(type *param){}

void function_name(type param[n]){}

void function_name(type param[]){}

21

Passing arguments to a function
An example (Case 1)

Fu
nc

tio
ns

Internet of Things A.Y. 19-20

#include <iostream>
using namespace std;
double calcAverage(int *arr, int size);
int main(){

int numbers[5] = {2, 4, 6, 8};
double avg;
// int * p = numbers;
avg = calcAverage(numbers, 4);
cout << "Average is: " << avg << endl;
return 0;

} double calcAverage(int *arr, int size){
int sum = 0;
double k;

for (int n=0;n<size;n++)
sum +=arr[n];

k = double(sum)/size;
return k;

}

22

Passing arguments to a function
An example (Case 2)

Fu
nc

tio
ns

Internet of Things A.Y. 19-20

#include <iostream>
using namespace std;
double calcAverage(int arr[], int size);
int main(){

int numbers[5] = {2, 4, 6, 8};
double avg;
avg = calcAverage(numbers, 4);
cout << "Average is: " << avg << endl;
return 0;

}
double calcAverage(int arr[], int size){

int sum = 0;
double k;

for (int n=0;n<size;n++)
sum +=arr[n];

k = double(sum)/size;
return k;

}

23

Passing arguments to a function
An example (Case 3)

Fu
nc

tio
ns

Internet of Things A.Y. 19-20

#include <iostream>
using namespace std;
double calcAverage(int arr[5], int size);
int main(){

int numbers[5] = {2, 4, 6, 8};
double avg;
avg = calcAverage(numbers, 4);
cout << "Average is: " << avg << endl;
return 0;

}
double calcAverage(int arr[5], int size){

int sum = 0;
double k;

for (int n=0;n<size;n++)
sum +=arr[n];

k = double(sum)/size;
return k;

}

24Internet of Things A.Y. 19-20

Data Structures

25

Data Structures

Internet of Things A.Y. 19-20

• A group of data elements of different kinds grouped
together under a single name.

• Data elements (members) can be of different types and
lengths.

Da
ta

 S
tr

uc
tu

re
s

struct type_name{
member_type1 member_name1;
member_type2 member_name2;
member_type3 member_name3;
.
.
.

}object_names;

26

Defining data structures

Internet of Things A.Y. 19-20

• Keyword "struct" is used to create the structure.
• type_name: The name of the structure type.
• member_name: The name of the data member.
• object_names: A set of valid identifiers for objects that have

the type of this structure.

Da
ta

 S
tr

uc
tu

re
s

struct type_name{
member_type1 member_name1;
member_type2 member_name2;
member_type3 member_name3;
.
.
.

}object_names;

27

Defining data structures: An example

Internet of Things A.Y. 19-20

struct product{
int weight;
double price;

};

product apple;
product melon,orange;

It declares a structure
type, called product

Two members, each of
a different type

Three objects of structure
type are declared.

Da
ta

 S
tr

uc
tu

re
s

28

Defining data structures: An example
(Alternative option)

Internet of Things A.Y. 19-20

struct product{
int weight;
double price;

} apple, melon, orange;

Name objects can be used to
directly declare objects of the

structure type.

Da
ta

 S
tr

uc
tu

re
s

struct product{
int weight;
double price;

};

product apple;
product melon,orange;

Objects of type product

structure type namestructure type name

29

Accessing the members

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

• Once a member is declared, it can be accessed directly.
• Syntax: Insert a dot (.) between the object name and the

member name.
• E.g.: Each of the objects has a data type corresponds to the member

it refers to.
• apple.weight
• apple.price
• melon.weight
• melon.price
• orange.weight
• orange.price

*.weight are of type int

*.price are of type double

30

Initializing structure members

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

• Structure members can be initialized using curly braces,
i.e., {}.

#include <iostream>
using namespace std;
struct point{

int x, y;
};
int main (){

point p1 = {0,1};
cout << "Printing x coordinate of p1: " << p1.x << "\n";
cout << "Printing y coordinate of p1: " << p1.y << "\n";
return 0;

}

31

Initializing structure members

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

• Structure members can be initialized using curly braces,
i.e., {}, or with declaration.

#include <iostream>
using namespace std;
struct point{

int x = 0;
int y = 1;

};
int main (){

point p1;
cout << "Printing x coordinate of p1: " << p1.x << "\n";
cout << "Printing y coordinate of p1: " << p1.y << "\n";
return 0;

}

32

Array of structures

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

• We can create an array of structures. Each array will have
the same structure members.
#include <iostream>
using namespace std;
struct student{

int studentId;
string firstName, lastName;

};
int main (){

student stud[2];
for(int i=0;i<2;i++){

cout << "Enter the id of the student:";
cin >> stud[i].studentId;
cout << "Enter the first name of the student :";
cin >> stud[i].firstName;
cout << "Enter the last name of the student :" << endl;
cin >> stud[i]. lastName;}

return 0;
}

33

Data structures and functions

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

• Structure elements can be passed to a function as
normal agruments.

1. by value
• The values of the elements are passed to the function.
• The entire structure can be passed to a function.

2. by reference
• The address of the structure element is passed to the

function.
• Structure elements can be returned from a function as normal

arguments.

34

Data structures and functions

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

struct product{
int weight;
double price;

} apple; void func1(apple.weight, apple.price){}

Individual elements are
passed in a function

35

Data structures and functions

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

struct product{
int weight;
double price;

} apple; void func1(product fruit){}

Entire structue is passed to a
function

• The entire structure can be passed to a function by value.
• Any changes to the contents of the structure inside the

function, do not affect the structure itself.

36

Data structures and functions:
An example

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

#include <iostream>
#include <string>
#include <sstream>
using namespace std;
struct movies_t{

int year;
string title;

}mine, yours;

void printmovie (movies_t movie){
cout << movie.title;
cout << " (" << movie.year << ")"

<< endl;
}

int main(){
string mystr;
mine.title = "Goodbye Bafana";
mine.year = 2007;
cout << "Enter a title: ";
getline(cin, yours.title);
cout << "Enter year: ";
getline(cin, mystr);
stringstream(mystr) >> yours.year;
cout << "My favorite movie is: ";
printmovie(mine);
cout << "Your favorite movie is: ";
printmovie(yours);

return 0;
}

37Internet of Things A.Y. 19-20

Pointers to Structures

38

Pointers to Structures

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

• A structure can be pointed to by its own type of pointers.

struct movies_t{
int year;
string title;

};

movies_t amovie;
movies_t * pmovie;
pmovie = &amovie;

An object of structure
type movies_t

A pointer that points to
objects of structure type

movies_t
The value of the pointer
pmovie is assigned the

address of object amovie.

39

Pointers to Structures

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

Expression What is evaluated Equivalent
a.b Member b of object a

a->b Member b of object pointed to by a (*a).b
*a.b Value pointed to by member b of object a *(a.b)

• The arrow operator (->) is a dereference operator that is used
exclusiveley with pointers to objects that have members; It
allows access to the member of an object directly from its
address.

40

Pointers to Structures: An example

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

#include <iostream>
#include <string>
#include <sstream>
using namespace std;
struct movies_t{
int year;
string title;

};
int main(){
string mystr;
movies_t amovie;
movies_t * pmovie;
pmovie = &amovie;
cout << "Enter a title: ";
getline(cin, pmovie->title);
cout << "Enter year: ";
getline(cin, mystr);
stringstream(mystr) >> pmovie->year;
cout << "You have entered: " << pmovie->title;
cout << " (" << pmovie->year << ")" << endl;
return 0;

}

41

Pointers to Structures:
An (other) example

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

#include <iostream>
using namespace std;
struct movies_t{

int year;
string title;

}mine;
void printmovie (movies_t *movie){

cout << movie->title;
cout << " (" << movie->year << ")" << endl;

}
int main(){

mine.title = "Goodbye Bafana";
mine.year = 2007;
cout << "My favorite movie is: ";
printmovie(&mine);
return 0;

}

42Internet of Things A.Y. 19-20

Nesting Structures

43

Nesting Structures

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

• Structures can be nested in such a way that an element of
a structure is itself another structure.

struct movies_t{
int year;
string title;

};

struct friends_t{
int year;
string name;
string email;
movies_t favorite_movie;

}gina, gabriele;

friends_t * pfriends = &gina;

gina.name
gabriele.favorite_movie.title
gina.favorite_movie.year
pfriends->favorite_movie.year

44

Exercise 1

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

Write a program that implements a structure array to
construct a database for the products of a supermarket.
Your program should take as input the name and the price
of 5 products (from the keyboard/user) and it should
display them on the screen in a table manner.

- product: a data structure.
- pr : an array structure/object of size 5.
- name: member to store the name of the product.
- price: member to store the price of the product.

45

Exercise 1-Solution

Internet of Things A.Y. 19-20

Da
ta

 S
tr

uc
tu

re
s

#include <iostream>
using namespace std;
struct product{

char name[20];
float price;

} pr[5];

int main(){
for(int i=0;i<5;i++){

cout << "Enter the name of product " << i+1 << ":";
cin >> pr[i].name;
cout << "Enter the price of product " << i+1 << ":";
cin >> pr[i].price;
cout << endl;

}
cout << "Product Name" << "\t \t" << "Price (Euro)" << endl;
for(int i=0;i<5;i++)

cout << pr[i].name << "\t \t \t" << pr[i].price << endl;

return 0;
}

46Internet of Things A.Y. 19-20

Classes

47

Classes

Internet of Things A.Y. 19-20

• class_name: A valid identifier for the class.
• object_names: An optional list of names for objects;

An object is an instantiation of a class.
• members: Contained in the body of the declaration; can be data or

function declarations.
• access_specifiers: Modify the access rights for the members of the

class (optional).

Cl
as

se
s

class class_name{
access_specifier_1:
member1;

access_specifier_2:
member2;

. . .
}object_names;

48

Access specifier

Internet of Things A.Y. 19-20

• Private: Accessible only from within other members of
the same class (default).

• Protected: Accessible from other members of the same
class and also from members of their derived classes.

• Public: Accessible from anywherhe where the object is
visible.

Cl
as

se
s

49

Classes: An example

Internet of Things A.Y. 19-20

Cl
as

se
s

class Rectangle{
int width, height;

public:
void set_values(int,int);
int area(void);

}rect;

Class declaration Name of class

An object, i.e., a variable,
of the class

Class contains
four members

Two data members of
type int; private access

Two member functions;
public access. Only the
declaration is included.

50

Class vs. Object name

Internet of Things A.Y. 19-20

Cl
as

se
s

class Rectangle{
int width, height;

public:
void set_values(int,int);
int area(void);

}rect;

• Rectangle: The class name
• rect: An object of type Rectangle
• Analogy: int a;

The type name
(the class)

The variable name
(the object)

51

Accessing public members of a class

Internet of Things A.Y. 19-20

Cl
as

se
s

class Rectangle{
int width, height;

public:
void set_values(int,int);
int area(void);

}rect;

• Public objects can be accessed as if they were normal
functions or variables.

• Use of dot (.) between object name and member
name.

• E.g.: rect.set_values(3,4);
myarea = rect.area();

52

Accessing members of a class

Internet of Things A.Y. 19-20

Cl
as

se
s

class Rectangle{
int width, height;

public:
void set_values(int,int);
int area(void);

}rect;

Members with private access cannot be
accessed from outside of the class.
They can only be referred to from within
other members of the same class.

!

53Internet of Things A.Y. 19-20

Cl
as

se
s

Q: What would happen if your program tries to access a private
data member from outside of a class?

54Internet of Things A.Y. 19-20

Cl
as

se
s

An example
#include <iostream>
using namespace std;

class MyClass{
int var1, var2;

};

int main()
{
MyClass mc;
mc.var1 = 10;
cout << "var1: " << mc.var1 << endl;
return 0;

}

55Internet of Things A.Y. 19-20

Cl
as

se
s

Q: What would happen if your program tries to
access a private data member from outside of a

class?

A: Compilation will fail! You will get the following error:

56

Defining a member function

Internet of Things A.Y. 19-20

Cl
as

se
s

1. Within the class definition: Function is automatically
considered an inline member function by the
compiler.

2. Include declaration and define it later outside the
class: A normal (not-inline) class member function.

57

An example

Internet of Things A.Y. 19-20

Cl
as

se
s

#include <iostream>
using namespace std;
class Rectangle{
int width, height;

public:
void set_values(int,int);
int area(){return width*height;}

};
void Rectangle::set_values(int x, int y){

width = x;
height = y;

}
int main(){

Rectangle rect;
rect.set_values(3,4);
cout << "area: " << rect.area() << endl;
return 0;

}

The scope operator (::) is
used in the definition of a
class member to define a
member of class outside
the class itself.

58

The scope operator(::)

Internet of Things A.Y. 19-20

Cl
as

se
s

• It specifies the class to which the member being
defined belongs.

• It grands exactly the same scope properties as if this function
definition was directly included within the class definition.

59

Multiple object declaration

Internet of Things A.Y. 19-20

Cl
as

se
s

#include <iostream>
using namespace std;
class Rectangle{
int width, height;

public:
void set_values(int,int);
int area(){return width*height;}

};
void Rectangle::set_values(int x, int y){

width = x;
height = y;}

int main(){
Rectangle rect, rectb;
rect.set_values(3,4);
rectb.set_values(5,6);
cout << "area: " << rect.area() << endl;
cout << "areab: " << rectb.area() << endl;
return 0;

}

Two instances
(objects)

60Internet of Things A.Y. 19-20

Cl
as

se
s

Q: What would happen in the previous example if we called
the member function area before having called set_values?

61Internet of Things A.Y. 19-20

Cl
as

se
s

Q: What would happen in the previous example
if we called the member function area before

having called set_values?

A: An undetermined result, since the members
width and height had never been assigned a

value.

62Internet of Things A.Y. 19-20

Cl
as

se
s

Q: What would happen in the previous example if we called
the member function area before having called set_values?

#include <iostream>
using namespace std;
class Rectangle{
int width, height;

public:
void set_values(int,int);
int area(){return width*height;}

};
void Rectangle::set_values(int x, int y){

width = x;
height = y;}

int main(){
Rectangle rect, rectb;
cout << "area: " << rect.area() << endl;
rect.set_values(3,4);
rectb.set_values(5,6);
cout << "areab: " << rectb.area() << endl;
return 0;

}

63Internet of Things A.Y. 19-20

Cl
as

se
s

Q: What would happen in the previous example
if we called the member function area before

having called set_values?

A: An undetermined result, since the members
width and height had never been assigned a value.

64

Constructor

Internet of Things A.Y. 19-20

Cl
as

se
s

• A special member function of a class which is automatically
called whenever a new object of a class is created.

• It allows the class to initialize member variables or allocate
storage.

• They are only executed once, when a new object is created.
• Declaration: like a regular member function; the name

matches the class name; no return type (they initialize an
object)

65

Constructor - An example

Internet of Things A.Y. 19-20

Cl
as

se
s

#include <iostream>
using namespace std;
class Rectangle{
int width, height;

public:
Rectangle(int, int);
int area(){return width*height; }

};
Rectangle::Rectangle(int a, int b){

width = a;
height = b;

}
int main(){

Rectangle rect(3,4);
Rectangle rect_b(5,6);
cout << " rect area: " << rect.area() << endl;
cout << " rect_b area: " << rect_b.area() << endl;
return 0;

}

Constructor prototype
declaration

Constructor
definition

66Internet of Things A.Y. 19-20

Overloading constructors

67

Overloading constructors

Internet of Things A.Y. 19-20

Cl
as

se
s

• A constructor can be overloaded with different versions
taking different parameters.

• The compiler will automatically call the one whose parameters match
the arguments.

• The default constructor: A special kind constructor that takes no
parameters. It is called when an object is declared but is not initialized
with any arguments.

Rectangle rectb; // ok, default constructor called
Rectangle rectc(); // Oops!

68

Constructors: An example

Internet of Things A.Y. 19-20

Cl
as

se
s

#include <iostream>
using namespace std;
class Rectangle{
int width, height;
public:
Rectangle();
Rectangle(int, int);
int area(){return width*height; }

};
Rectangle::Rectangle(){

width = 5;
height = 5;

}
Rectangle::Rectangle(int a, int b){

width = a;
height = b;

}

int main(){
Rectangle rect(3,4);
Rectangle rect_b;
cout << "rect area:" << rect.area()

<< endl;
cout << " ect_b area: " << rect_b.area()

<< endl;
return 0;

}

69Internet of Things A.Y. 19-20

Calling constructors

70

Calling constructors

Internet of Things A.Y. 19-20

Cl
as

se
s

• functional form: Enclose the arguments of the constructor in
parentheses.

• Single parameter:

• Uniform initialization: Same as the functional form but using braces
instead of parentheses. (Optional: an equal sign before the braces.)

class_name object_name = { value1, value2, value3, … }

class_name object_name = initialization_value;

class_name object_name { value1, value2, value3, … }

class_name object_name (value1, value2, value3, …)

71

An example

Internet of Things A.Y. 19-20

Cl
as

se
s

#include <iostream>
using namespace std;
class Circle{

double radius;
public:

Circle(double r){radius = r;};
double circum(){return 2*radius*3.14159265; }

};

int main(){
Circle foo(10.0); //functional form
Circle bar = 20.00; // assignment init.
Circle baz {30.00}; // uniform init.
Circle qux = {40.00}; //uniform init.

return 0;
}

72

Constructors: Initialization

Internet of Things A.Y. 19-20

Cl
as

se
s

• It is mainly a matter of programming style!

• Uniform vs. functional: Braces cannot be confused with
function delcarations.

Rectangle rectb; // default constructor called
Rectangle rectc(); // function declaration
Rectangle rectd{}; // default constructor called

73Internet of Things A.Y. 19-20

Member initialization in
constructors

74

Member initialization

Internet of Things A.Y. 19-20

Cl
as

se
s

• When a constructor is used to initialize other members,
these members can be initialized directly.

• Initialization is done by inserting, before the contructor’s body, a colon
(:) and a list of initializations for class members.

class Rectangle{
int width, height;

public:
Rectangle(int, int);
int area(){return width*height; }

};

1. Rectangle::Rectangle(int a, int b){ width = a; height = b; }

2. Rectangle::Rectangle(int a, int b) : width(a) { height = b; }

3. Rectangle::Rectangle(int a, int b) : width(a), height(b) { }

75

Member initialization

Internet of Things A.Y. 19-20

Cl
as

se
s

class Rectangle{
int width, height;

public:
Rectangle(int, int);
int area(){return width*height; }

};

1. Rectangle::Rectangle(int a, int b){ width = a; height = b; }

2. Rectangle::Rectangle(int a, int b) : width(a) { height = b; }

3. Rectangle::Rectangle(int a, int b) : width(a), height(b) { }

Classic constructor
definition

Constructor definition
with member initialization

76

Destructor

Internet of Things A.Y. 19-20

Cl
as

se
s

• A member function of a class that deletes an object
• It helps deallocate the memory of an object
• It does not take any arguments and does not return anything
• There cannot be more than one destructor in a class
• Syntax: ~className
• The compiler creates a default desctructor
• Problem: Dynamically allocated memory or pointer in a class.
• Solution: Write a destructor to release memory and avoid

memory leak (using delete object).

77Internet of Things A.Y. 19-20

Pointers to classes

78

Pointers to classes

Internet of Things A.Y. 19-20

• Objects can be pointed to by pointers.

• The members of an object can be accessed directly
from a pointer by using the arrow operator(->).

• Syntax:

Cl
as

se
s

class_name * pointer_name;

79

Operators

Internet of Things A.Y. 19-20

Cl
as

se
s

Expression
*x Pointed to by x

&x Address of x

x.y Member y of object x

x->y Member y of object pointed to by x

(*x).y Member y of object pointed to by x

x[0] First object pointed to by x

x[0] Second object pointed to by x

x[n] (n+1)th object pointed to by x

80

Pointers to classes: An example

Internet of Things A.Y. 19-20

Cl
as

se
s

#include <iostream>
using namespace std;
class Rectangle{
int width, height;
public:
Rectangle(int x, int y): width(x), height(y){};
int area(void){return width*height; }

};
int main(){
Rectangle rect(3,4);
Rectangle * foo, * bar, * baz;
foo = ▭
bar = new Rectangle (5,6);
baz = new Rectangle[2]{{2,5},{3,6}};
cout << " rect’s area: " << rect.area() << endl;
cout << " *foo’s area: " << foo->area() << endl;
cout << " *bar’s area: " << bar->area() << endl;
cout << " baz[0] area: " << baz[0].area() << endl;
cout << " baz[1] area: " << baz[1].area() << endl;
delete bar;
delete[] baz;
return 0;

}

81

Classes- Alternative definitions

Internet of Things A.Y. 19-20

Cl
as

se
s

• Classes can be defined also with keywords struct
and union.

• Keyword struct: Plain data structures; public access by
default.

• Keyword union: Store only one data member at a time;
public access by default.

82

Exercise 1

Internet of Things A.Y. 19-20

Cl
as

se
s

• Write a class (call it Student) that contains the
following members: 1) First name;2) Last name;
3) Student ID; 4) Grade (private access).

• The class Student should also contain the following two member
functions (public access): 1) storeData():Stores the details of a
student (fname, lname, etc..); 2) printData():Prints the details of
a student.

Your program should store the details of 3 students
(given as input by the user) and then print the
details of all students.

83

Exercise 1 (cont.)

Internet of Things A.Y. 19-20

Cl
as

se
s

84

Exercise 1 - Solution

Internet of Things A.Y. 19-20

Cl
as

se
s

#include <iostream>
using namespace std;
class Student{

string fname, lname;
int student_id, grade;

public:
void storeData();
void printData();

};
void Student::storeData(){

cout << "Enter first name: ", cin >> fname;
cout << "Enter last name: ", cin >> lname;
cout << "Enter the id: ", cin >> student_id;
cout << "Enter the grade: ", cin >> grade;
cout << endl;

}
void Student::printData(){

cout << fname << " " << lname << " "
<< student_id << " " << grade << endl;

}

85

Exercise 1 – Solution(cont.)

Internet of Things A.Y. 19-20

Cl
as

se
s

int main(){
Student students[3];
for (auto i=0;i<3;i++){

cout << "Student # " << i+1 << endl;
cout << "************************" << endl;
students[i].storeData();

}
cout << "*************All Students*************" << endl;
cout << "**************************************" << endl;
cout << "F.Name " << " " << "L.Name " << " "

<< " ID " << " " << " Grade " << endl;
for (auto i=0;i<3;i++)

students[i].printData();

return 0;
}

86

Exercise 2

Internet of Things A.Y. 19-20

Cl
as

se
sRedo exercise 1 using class and pointers.

87

Exercise 2 - Solution

Internet of Things A.Y. 19-20

Cl
as

se
s

#include <iostream>
using namespace std;
class Student{

string fname, lname;
int student_id, grade;

public:
void storeData();
void printData();

};
void Student::storeData(){

cout << "Enter first name: ", cin >> fname;
cout << "Enter last name: ", cin >> lname;
cout << "Enter the id: ", cin >> student_id;
cout << "Enter the grade: ", cin >> grade;
cout << endl;

}
void Student::printData(){

cout << fname << " " << lname << " "
<< student_id << " " << grade << endl;

}

88

Exercise 2 – Solution(cont.)

Internet of Things A.Y. 19-20

Cl
as

se
s

int main(){
Student students[3];
Student *studentsp;
studentsp = &students[0];
for (auto i=0;i<3;i++){

cout << "Student # " << i+1 << endl;
cout << "************************" << endl;
(studentsp+i)->storeData();

}
cout << "*************All Students*************" << endl;
cout << "**************************************" << endl;
cout << "F.Name " << " " << "L.Name " << " "

<< " ID " << " " << " Grade " << endl;
for (auto i=0;i<3;i++)

(studentsp+i)->printData();

return 0;
}

89

Additional Resources

Internet of Things A.Y. 19-20

• http://www.cplusplus.com/doc/tutorial/
• https://en.cppreference.com/w/
• Programming: Principles and Practice Using C++, Bjarne

Stroustrup (Updated for C++11/C++14)
• C++ Primer, Stanley Lippman, Josée Lajoie, and Barbara E. Moo

(Updated for C++11)

http://www.cplusplus.com/doc/tutorial/

