+ Internet of Things AY. 19-20
‘= Prof. Chiara Petrioli
Dept. of Computer Science

Sapienza University of Rome
. (bl e :




How to compile a C++ program

Windows: Install an Integrated Development Interface (IDE).
e Dev-C++ http://www.bloodshed.net/dev/index.html

Mac: Install Xcode with the gcc/clang compilers.

g++ -std=c++11 example.cpp -0 example_program OR
clang++ -std=c++11 -stdlib=libc++ example.cpp -0 example program

Compilers

Linux: Compile your code directly from the terminal using the
following commnad | g++ -std=c++0x example.cpp -0 example_program

Internet of Things A.Y. 19-20


http://www.bloodshed.net/dev/index.html

Pointers

Internet of Things A.Y. 19-20



Pointers

e Variables: Locations in the computer’s memory which
can be accessed by their identifier (their name).

* The address of a variable can be obtained by using the
ampersand sign(&).

Pointers

* Pointer: The variable/object whose value is the address in memory
of another variable.

Internet of Things A.Y. 19-20



Pointers

* Pointer: The variable/object whose value is the address
iIn memory of another variable.

* Dereferencing: Acessing an object to which a pointer refers
e Use the indirection operator, i.e., " * "
e E.g.,ifpisapointer, *p is the object to which the pointer refers

(]
p
Q
=)
=
@)
(a1

* Null pointer: a special pointer value that does not refer to
any valid memory location (nullptr keyword)

Internet of Things A.Y. 19-20



Pointers

Pointer: The variable/object whose value is the address
of another variable.
Dereferencing: Acessing an object to which a pointer refers

* Use the indirection operator, i.e.,, " * " c
 E.g. iffoois a pointer, *foo is the object to which the pointer £
refers =
myvar
25 myvar = 25;

1775 1776 1777

Internet of Things A.Y. 19-20




Pointers

foo
1776
| o
; g
myvar = 25; k=
22 foo = &myvar; 2
1775 | 1776 | 1777 baz = *f00"
’
| V2
25
baz

Internet of Things A.Y. 19-20




Declaring Pointers

They have different properties when they point to a
char than when they point to an int or float.
Their declaration needs to include the data type are going to point
to.

Syntax: type * name;

The asterisk means that a pointer is declared which should not be
confused with the dereference operator.

(]
p
Q
=)
=
@)
(a1

Internet of Things A.Y. 19-20



Pointers- An example

#include <iostream>
using namespace std;

int main(){
int firstvalue = 0;

int * mypointer;

(]
p
Q
=)
=
@)
(a1

mypointer = &firstvalue;

cout << "mypointer is " << mypointer << endl;
cout << "firstvalue is " << *xmypointer << endl;
*mypointer = 10;

cout << "firstvalue is " << firstvalue << endl;

return 0;

Internet of Things A.Y. 19-20



Pointers arithmetics

* Only addition/subtraction operations are allowed.

* Operations depend on the size of the data type to which
they point.

* E.g.:Inagiven system, a char takes 1 byte, a short takes 2 bytes,

and long takes 4 bytes. 3 pointers that point to memory locations 2
0
1000, 2000, and 3000. 1000 1001 1002 2000 2001 2002 2003 a
char *x mychar;
short *x myshort; ,
long *x mylong; mychar — 7 myshort—————++

3000 3001 3002 3003 3004 3005 3006 3007

++

my long Internet of Things A.Y. 19-20




Pointers arithmetics

 The increment/decrement operators can be used as
either prefix or suffix of an expression.

 The increment/decrement operator has a higher
precedence than the *.

Pointers

//1incremement pointer, and dereference unincremented address
*xp++;//same as x(p++);

//1incremement pointer, and dereference incremented address
*x++p; //same as x(++p);

//dereference pointer, and increment the value it points to
++xp; //same as ++(xp);

//dereference pointer, and post-increment the value it
points to

(xkp)++;

Internet of Things A.Y. 19-20



Pointers to Pointers

 The syntax requires an asterisk (*) for each level of
indirection in the declaration of the pointer.

char a; < : ¢ v
char * b; i WU ® 8092 f':.%
char *x c; 7230 8092 10502 é
a = "'2"; . . .

b = &a; ° Variable c can be used in three different levels of

c = &b; indirection

1. cis of type charsxx and has a value of 8092.
2. xc is of type charx and has a value of 7230.
3. *xxc is of type char and has a value of ‘z"’.

Internet of Things A.Y. 19-20



Pointers and Arrays

An array can always be implicity converted to a pointer
of a proper typer.

Pointers and arrays support the same set of operations.
Exception: Pointers can be assigned a new address,
while arrays cannot.

The name of an array can be used like a pointer to its first
element.

Pointers

Internet of Things A.Y. 19-20



Pointers and Arrays-An example

#include <iostream>
using namespace std;
int main(){

int numbers[5];

int *x p; g
P = numbers; xp = 10; =
p++; *p = 20; E
p = &numbers[2]; *p = 30;

p = numbers + 3; xp = 40;

p = numbers; x(p+4) = 50;

for (int n=0;n<5;n++)

cout << numbers[n] << "\n";
return 0;

Internet of Things A.Y. 19-20



Pointers and Functions

C++ allows to pass a pointer to a function

The function parameter(s) should be declared as a pointer

Pointers

Changes on the value of the pointer inside the function
reflect back in the calling function.

Internet of Things A.Y. 19-20



Pointers and Functions— An example

#include <iostream>
using namespace std;
double calcAverage(int *arr, int size);
int main(){
int numbers[5] = {2, 8, 10, 20};
double avg;

avg = calcAverage(numbers, 4); g
cout << "Average is: " << avg << endl; =
return 0; 'S

(¥

}

double calcAverage(int *arr, int size){
int sum = 0;
double k;
for (int n=0;n<size;n++)
sum +=arr[n];
k = double(sum)/size;
return k;

¥ Internet of Things A.Y. 19-20



Exercise 1

What is the exact output of the following program?

#include <iostream>
using namespace std;
int main(){
int arrayl[3]={3, 5, 10};
int *x p = array;
cout << "Print a: " << endl;
for (int n=0;n<3;n++)
cout << x(p+n)+2 << endl;
cout << "Print b: " << endl;
for (int k=2;k>=0;k—)
cout << x(p+k)- 2 << endl;

Pointers

return 0;
Internet of Things A.Y. 19-20



Exercise 1--Solution

#include <iostream>
using namespace std;

int main(){ Pri .
rint a:
int arrayl[3]={3, 5, 10}; v
int % p = array; 5 o
cout << "Print a: " << endl; 7 k=
for (int n=0;n<3;n++) S
cout << *(p+n)+2 << endl; 12
cout << "Print b: " << endl; : :
for (int k=2;k>=0;k—) Print b:
cout << *(p+k)- 2 << endl; 3
return 0; 3
} 1

Internet of Things A.Y. 19-20



Exercise 2

Write a program to print the elements of an array in
reverse order using pointers. Print the elements of the
array before and after reversing it.

Pointers

Internet of Things A.Y. 19-20



Exercise 2-Solution

#include <iostream>
using namespace std;
int main(){
int arrayl[4] = {1, 2, 3, 4};
int *xp = array;
cout << "Array before reversing: " << endl;
for (int 1i=0;i<4;i++)
cout << x(p+1i) << endl;
cout << "These reversed array is: " << endl;
for (int j=3;j>=0;j—-)
cout << x(p+j) << endl;
return 0;

Pointers

Internet of Things A.Y. 19-20



Exercise 3

Write a program with a function that swaps (exchanges
the values of) two integer numbers. You should pass the
arguments to the function using pointers. Display the
values of the two numbers before and after swapping
them.

Pointers

Internet of Things A.Y. 19-20



Exercise 3-Solution

#include <iostream>
using namespace std;
void swap(intx nl1l, intx n2) {

int temp;

temp = *nl;
*Nl = *n2;
*n2 = temp;

5

int main(){
int a = 10, b = 20;
cout << "Before swapping: "“;
cout << "a =" << a<< ", b="<<b << endl;
swap(&a, &b);
cout << "After swapping: ";
cout << "a =" << a<< ", b="<<b << endl;
return 0;

Pointers

Internet of Things A.Y. 19-20



Containers in the C++ standard
library

Internet of Things A.Y. 19-20



Containers

 Container: stores a collection of other objects (elements).
 Containers library: a collection of class templates and
algorithms; allows flexibility to the programmer.
e Two main categories of containers
 Sequential
e Associative: Ordered; Unordered (c++11)

Containers

 Q: Which container to choose?
 A:-Functionality offered by the container.
- Efficiency/complexity of its members.

Internet of Things A.Y. 19-20



Sequential Containers in the C++
standard library

Internet of Things A.Y. 19-20



Sequential Containers

Standard library includes several container types

* E.g,array(c++11), vector, list, forward list(c++11),
deque.

The order of the elements corresponds to the positions in

which the elements are added to the container (they can be

accessed sequentially).

Built-in functions, e.g., sorting and ordering.

Sequential containers

Internet of Things A.Y. 19-20



Sequential Containers

Array: A fixed-size container.

Other containers: We can add or remove elements,

growing and shrinking the size of the container.

Containers offer different performance trade-offs

relative to

 The cost to add or delete elements

 The cost to perform nonsequential access to the
elements.

Sequential containers

Internet of Things A.Y. 19-20



Sequential Containers

 Array:
e Fixed-size
 [ast random access
e (Cannot add/delete elements.

« \Vectors:
 Hold their elements in contiguous memory
* Fast random access
* Fastinsert/delete at the back
* |nsert/delete other than the back may be slow.

Sequential containers

Internet of Things A.Y. 19-20



Sequential Containers

 Deque:
 Supports fast random access
e Adding/removing elements in the middle of a
deque is a (potentially) expesnsive operation.
 Adding/removing elements at either end is a fast
operation.
e Listand forward list:
* Fastinsert/delete at any point of the list
Do not support random access to elements;
access is done by iterating through the container
e Substantial memory overhead.

Sequential containers

Internet of Things A.Y. 19-20



Which sequential container to use?

 Unless you have a reason to use another
container, use a vector.

* Lots of small elements and space overhead matters,
don’t use list or forward_1list.

e Random access to elements: vector or deque.

* [nsert/delete elements in the middle of the
container: list or forward_list.

* |nsert/delete elements at the front and the back
(not in the middle): deque.

Sequential containers

Internet of Things A.Y. 19-20



Which sequential container to use?

4 h

The predominant operation of the application
(whether it does more access or more insertion
or deletion) will determine the choice of the
container type.

\_ /

Sequential containers

Internet of Things A.Y. 19-20



Array

A fixed-size sequence container; No memory
management.

Holds a specific number of elements ordered in a
strict linear sequence.

Appropriate header: #include <array>

//array holds 2 objects of type int; initialized
array<int, 2> myarray = {2, 8};

//array holds 2 objects of type int; initialized
array<int, 2> myarray{2, 8};

//10 objects of type int

array<int, 10 > myarray;

Sequential containers

Internet of Things A.Y. 19-20



Arrays: An example

#include <iostream>
#include <array>
using namespace std;

int main(){
array<int,4> myarray = {1, 2, 3, 4};
cout << "Element of myarray at position 1 1is: "
<< myarray[l] << endl;
return 0;

Sequential containers

Internet of Things A.Y. 19-20



Built-in vs. Library Arrays

#include <iostream> #include <iostream> g
using namespace std; § #include <array> =
| using namespace std; o
int main(){ ; _ | S
int myarray[3] = {10,20,30}; int main(){ O
for(int i=0;i<3;i++) array<int,3> myarray{1l0, 20, 30}; T
++myarrayl[i]; for(int i=0;i<myarray.size();i++) .'E'
for(int elem:myarray) § ++myarray[i]; o
cout<<elem<<endl; ; for(int elem:myarray) -
return 0; cout<<elem<<endl; g

1 | return 0;

5 s

Internet of Things A.Y. 19-20



Using arrays

begin () - returns an iterator to the first element in the array
end() - returns an iterator to the past-the-end element
size () - Returns the number of elements in the array
empty () - returns whether the array is empty
at ()-returns a reference to the element at a specific position
front()-returns a reference to the first element in the array
back()-returns a reference to the last element in the array
e fill()-sets a value for all elements in the array
 Operator []-returns a reference to the element at a specified
position in the array.

Sequential containers

Internet of Things A.Y. 19-20



Vectors

A collection of objects which have the same type.
Every object has an associated index which allows
access to that object.

Efficient and flexible memory management.
Appropriate header:

Sequential containers

#include <vector>

Internet of Things A.Y. 19-20



Vectors

//vector vec holds objects of type T; vec 1s empty
vector<Tl> vec;

vector<int> vec(4); //vec holds 4 objects of type int

//4 objects of type int, each initialized to 10
vector<int> vec(4, 10);

vector<string> vec(4, "hi!");//4 strings,all initialized to "hi!"

Sequential containers

vector<vector<int>> vec //vector whose objects are vectors

Internet of Things A.Y. 19-20



Vectors: An example

//1nclude vector header
#include <vector>
using namespace std,;

int main(){
vector<int> vec(4);
vec[1]=5;
return 0;

Sequential containers

Internet of Things A.Y. 19-20



Using vectors

begin () - returns an iterator to the first element in the vector
end() - returns an iterator to the past-the-end element
size () - Returns the number of elements in the vector
empty () - returns whether the vector is empty
at ()-returns a reference to the element at a specific position
insert()-inserts a new element at a specified position
erase()-removes either a single element or a range of elements

e push back()-adds a new element at the end of the vector

e pop_back()-removes the last element in the vector

* clear()-removes all elements from the vector

 Operator []-Oreturns a reference to the element at a specified

position

Sequential containers

Internet of Things A.Y. 19-20



Using vectors

#include <vector>

using namespace std; %
int main(){ '%
vector<float> ivec(10): =
| | - | ,//”f» Built-in function to S
for(int i=0; i<ivec.size(); ++i) ot the size of 3 ©
ivec.at(i) = 5.0fxfloat(1i); 5 c
\ vector g
return 0; 5;

s access element of

vector ivec at
position i

Internet of Things A.Y. 19-20



(Iterators in C++ STL)

Internet of Things A.Y. 19-20



Iterators

Objects, like pointers, that point to the memory address of
STL containers
Allow iteration over a collection of elements

Reduced complexity and execution time g
Types: ©
° |nput / \ g
* Qutput

e Forward Not all iterators are supported by all the

containers in STL

\_ /

Internet of Things A.Y. 19-20

e Bidirectional
e _Random-access




Why use iterators?

Convenience in programming: Use iterators to iterate
through the contents of containers.

Reusability: Access elements of any container

Iterators

Dynamic processing of container: Dynamically add or remove elements

Internet of Things A.Y. 19-20



Iterators -- Operations

begin (): returns the beginning position of the container
end (): returns the after-end position of the container
advance (): increments the iterator position till the specified number
next (): returns the new iterator that the iterator would point after
advancing the positions mentioned in the arguments

prev ():returns the new iterator that the iterator would point after
decrementing the positions mentioned in the arguments.

inserter (): inserts the elements at any position in the container; accepts
2 arguments: 1) the container; 2) the iterator to position where the
elements should be inserted.

Iterators

Internet of Things A.Y. 19-20



Iterators — An example

#include <iostream> . #include <iostream>
#include <vector> . #include <vector> "
using namespace std; . using namespace std; B
int main(){ . int main()A{ =
vector<int> ivec(5,20); vector<int> ivec(5,20); {©
| vector<int>::iterator it; 9
for(int i=0; i<ivec.size(); ++i) -

cout << ivec.at(i) << "\n"; for(it=ivec.begin();it<ivec.end();it++)
5 cout << *xit << "\n";

return 0; .
; § return 0;
\ Y ) ; \ ]
Accessing the Accessing the elements of a
elements of a vector vector using iterators

Internet of Things A.Y. 19-20



Using vectors (Con.)

<iostream>
<vector>
std;
int main(){
vector<int> myvector;
vector<int>::iterator it;

it = myvector.begin();

myvector.insert (it,10);

it = myvector.end();

myvector.insert (it,2,30);

cout << "myvector contains:";
(it=myvector.begin(); it<myvector.end(); it++)

cout << << xit;
cout << endl;
cout << "element at position @ is: " << myvector.at(0) << endl;
cout << "size of vector is: " << myvector.size() << endl;
myvector.erase (myvector.begin()+2);
cout << "size of vector is: " << myvector.size() << endl;
myvector.push_back(50);
cout << "myvector contains:";
(int i=0; i<myvector.size(); i++)
cout << ' ' << myvector[i];
cout << endl;
myvector.clear();
cout << "size of vector is: " << myvector.size() << endl;
0;

Sequential containers

N =
WN =W

=N

NNNNNNNN
cO~JdOYWn

Internet of Things A.Y. 19-20



Lists

Are implemented as doubly-linked lists; Each element is
stored in different and unrelated storage locations.
Allow constant time insertion and delete operations from
anywhere in the container; iteration in both directions.
No fast random access; Lack of direct access to the
elements by their position.

Appropriate header:

Sequential containers

#include <list>

Internet of Things A.Y. 19-20



Lists — An example

#include <iostream>

#include <list> 5
using namespace std; =
=
int main(){ kE
list<int> mylist = {1, 2, 3, 4}; B
for (int n : mylist) §
cout << "Elements of mylist: " << n << "\n"; S
(Vg

return 0;

Internet of Things A.Y. 19-20



Using Lists
front () — acess the first element
back () — acess the last element
begin () - returns an iterator to the begining
end() - returns an iterator to the end
size () - Returns the number of elements
empty () - checks whether the list is empty
insert()-inserts a new element at a specified position
erase()-removes either the element at pos. or a range of elements
 push back()-adds an element to the end

* pop_back()-removes the last element
* clear()-clears the contents

Sequential containers

Internet of Things A.Y. 19-20



Using Lists

#include <iostream>

#include <list> Create a list )
using namespace std; containing integers o
int main(){ ///’ | '%
list<int> mylist = {1, 2, 3, 4}; 2 Addan integer at the £
mylist.push_front(10);— front of the list S
mylist.push_back(20); = Add an integer at the ®
list<int>::iterator it; = edcat the (s ‘q:';
it = find(mylist.begin(),mylist.end(), 3); 3
if (it!=mylist.end()) i Insert an integer @
mylist.insert(it,30); . hefore 3 m
for (int n : mylist) , y
cout << "Elements of mylist: " << n << "\n"; seraching
return 0,

} Internet of Things A.Y. 19-20



Deque

Deque: double-ended queue
Dynamic size; can be expanded or contracted on both ends
deque vs. vectors: efficient insertion and deletion also at
the begining -- not only at the end(vectors).

Perform worst than lists and forward lists when frequent
insertions or removals ( in the middle) are required.
Appropriate header:

Sequential containers

#include <deque>

Internet of Things A.Y. 19-20



Using deque
front () — acess the first element
back () — acess the last element
begin () - returns an iterator to the begining
end() - returns an iterator to the end
size () - Returns the size
empty () - checks whether the list is empty
insert()-inserts a new element at a specified position
erase()-removes either the element at pos. or a range of elements
e push back()-adds an element to the end
 push front()-adds an element at beginning
 pop_back()-removes the last element
e pop_front()-removes first element

* clear()-clears the contents Internet of Things AY. 19-20

Sequential containers



Deque-An example

#include <iostream>
#include <deque>
using namespace std;

int main(){
deque<int> mydeque;
mydeque. push_back(10);
deque<int>::iterator it;
for (it=mydeque.begin();it< mydeque.end();it++)
cout << *x1it << "\n";

Sequential containers

return 0;

Internet of Things A.Y. 19-20



Write a program to implement the various functions of a
vector.

Exercise 1

A vector initially has two integer elements initialized to 50.

Print the contents and the size of the vector.

Insert at the beginning of the vector elements from 1to 10 (1098 7 6
54321).

Print the contents and the size of the vector.

Remove the last element of the vector and print again the size.

Sequential containers

Internet of Things A.Y. 19-20



int main(){

Exercise 1-Solution

<iostream>
<vector>
std;

vector<int> vec(2,50);

vector<int>::iterator it;

cout << "vec has size " << vec.size() << " and contains: ";
(int i=0; i<vec.size(); i++)
cout << ' ' << veclil;

cout << endl;

it = vec.begin();

int j=0;
(j=1;j<11;j++){
it = vec.begin();
vec.insert(it,j);
¥
cout << "vec has size " << vec.size() << " and contains: ";
(int i=0; i<vec.size(); i++)
cout << ' ' << vecli];
cout << endl;
vec.pop_back();
cout << "vec has size
Q;

<< vec.size() << endl;

Internet of Things A.Y. 19-20

Sequential containers

E
n



Associative Containers in the
C++ standard library

Internet of Things A.Y. 19-20



Associative Containers

 Elements are stored and retrieved by a key.
e Two primary associative container types: map and set.

 The C++ library provides eight associative containers.

Associative containers

Internet of Things A.Y. 19-20



Associative Container Types

Container Type

map Holds key-value pairs

v
set The key is the value E’
multimap A key can appear multiple times g
multiset A key can appear multiple times S
unordered_map (c++11) Organized by a hash function .02)
unordered_set (c++11) Organized by a hash function -§
unordered_multimap(c++11) Hashed map; keys can appear multiple g
times <
unordered multiset(c++11) Hashed set; keys can appear multiple
times

Internet of Things A.Y. 19-20



Ordered vs. unordered containers

If you want guaranteed performance prefer an ordered.
If you don’t have memory for a hash table prefer an ordered
container.

If you are using string data as a key prefer an unordered container.
map/set containers are generally slower than unordered_map/
unordered_set containers to access individual elements by their
Key.

map/set containers allow direct iteration on subsets based on
their orders.

Associative containers

Internet of Things A.Y. 19-20



The map associative container

A collection of (key, value) pairs; often referred to as an

associative array.

Values are found by a key rather than by their position (as in

arrays).

E.g.: Mapping names to phone numbers; Each pair contains a
person’s name as a key and a phone number as its value.

Ve

-

#include <map>

~

J

Vs

-

map<key, value> name;

~N

Internet of Things A.Y. 19-20

Associative containers




The map associative container
* E.g..map<string, int> words;
 Key=Word (string)
* Value = Word’s frequency count (int)

* Several basic functions:
* begin () - returns an iterator to the first element in the map
 end() - returns an iterator to the theoretical element that follows the
last element in the map

e size () - Returns the number of elements in the map
e empty () - returns whether the map is empty
e at()-returns the reference to the element associated with the

key.

Associative containers

Internet of Things A.Y. 19-20



Several basic functions (cont.):

Operator []-used to reference the element present at position given inside
the operator.

The map associative container

insert(key,value)-adds a new element to the map
erase(iterator position)-removes the element at that pos
erase(const g)-removes the key value ‘g’ from the map
clear()-removes all elements

find() —returns the iterator to the entry having key equal to given key.

tive containers

OCia

Ass

 Operator = assigns contents of a container to a different
container.

Internet of Things A.Y. 19-20



map : An example

<iostream>

<map>

<string>
std;

- W N -

int main (){
map<string,string> car{{"Gabriele","Fiat"}, {"Georgia", "Audi"}};
map<string,string> car_new;
map<string,string>::iterator i, iter;
(i=car.begin();i!=car.end();i++)
cout << "Name: " << i->first << ", car: << i->second
car.insert(pair<string,string>("Daniele","Renault"));
cout << "Name: Daniele" << ", car: " << car["Daniele"] <<
iter = car.find("Georgia");
(iter!=car.end())
car.erase(iter);
cout << "Elements in car:" << endl;
(i=car.begin();i!=car.end();i++)
cout << "Name: " << i->first << ", car:
cout << "Size of car: " << car.size() << endl;
car_new = car;
cout << "Size of car new: " << car_new.size() << endl;
car_new.at("Gabriele") = "Ford";
(i=car_new.begin();il!=car_new.end();i++)
cout << "Name: " << i->first << ", car: " << i->second << endl;
(lcar.empty()){
cout << car.begin()->first << " =>
car.erase(car.begin());}
cout << "Size of car: " << car.size() << endl;}

OO WNn

-

WNM=SOS W

-

!
b §
-

]
-~
-

]
-

i
1
-

~J oY un

[ T S

<< i->second

(o o)

[

o~
Associative containers

J
<
o

N N
ot

N

NINININNN

<< car.begin()->second << endl;

OO~ & W

NN

Internet of Things A.Y. 19-20




The set associative container

It store unique elements following a specific order.
The value of an element is its key; it must be unique.
The value of the elements cannot be modified once in the
container.

The value of the elements can be either inserted or removed
from the container.

Associative containers

e A

#include <set>

- J

4 )

set<key> name;

- J

Internet of Things A.Y. 19-20



The set associative container

begin () - returns an iterator at the beginning
end() - returns an iterator at the end

size () - Returns the size of the container
empty () - returns whether the set is empty
insert ()- inserts an element

erase ()- erase an element

clear()- removes all elements

find() —returns the iterator to element
Operator = copy the content of the container.

Associative containers

Internet of Things A.Y. 19-20



set : An example

#include <iostream>

#include <set> <

using namespace std; .g

int main(){ S

int myints[4] = {1, 2, 3, 4}; S

set<int> myset(myints, myints+4); ©

. ! . )

set<int>::1terator 1it; >

cout << "myset containts: "; ©

for (it= myset.begin();it!= myset.end();it++) 9

cout << xit << " " A

cout << "\n"; <
return 0,

Internet of Things A.Y. 19-20 m



Exercise 1

Write a program to print the grades of the students

based on the following data (use the map container). 2
Then you should only print the grades of students £
with name = Gabriele and name = Christian. §
Name Grade =
Georgia 29 o
Gabriele 26 <
Chiara 30
Christian 23

Internet of Things A.Y. 19-20



Exercise 1-Solution

#include <iostream>
#include <map>
using namespace std;
int main(){
map<string, int>grades{{"Georgia",29},{"Gabriele", 26},
{"Chiara",30},{"Christian",23}};
map<string,int>::iterator 1i;
cout << "The grades of all students are: "“;
for (i=grades.begin();il!=grades.end();i++)
cout << 1i->second << " ";
cout << endl;
cout << "The grade of student Gabriele 1is: "
<< grades["Gabriele"] << endl;
cout << "The grade of student Christian is: "
<< grades['"Christian"] << endl;

Associative containers

return 0;
¥ Internet of Things A.Y. 19-20 m



Exercise 2

Change the program of Exercise 1 as follows:

- |Insert two new elements in the map

- Print the element of the map with key = "Christian’
- Print the size of the map

- Erase the element with key= "Chiara"

- Print all the elements of map

- Reprint the size of the map.

Associative containers

Internet of Things A.Y. 19-20



Exercise 2-Solution

<iostream>
<map>
std;
int main(){
map<string, int>grades{{"Georgia",29},{"Gabriele", 26},
{"Chiara",30},{"Christian",23}};

map<string,int>::iterator i, iter, iterl;

cout << "The grades of all students are: ";
(i=grades.begin();il!=grades.end();i++)
cout << i->second << " ";

cout << endl;

cout << "The grade of student Gabriele is: "
<< grades["Gabriele"] << endl;

cout << "The grade of student Christian is: "
<< grades["Christian"] << endl;

OV EWN =

b el e e
WNEEDSD OO

}.._l )‘-
oW

grades.insert(pair<string,int>("Edoardo",25));
grades.insert(pair<string,int>("Daniele", 19));
iter = grades.[find("Christian");
(iter!=grades.end())
cout << "Grade of student Christian is: " << iter->second << endl;
cout << "Size of grades is: " << grades.size() << endl;
iterl = grades.[find("Chiara");
(iterl!=grades.end())
grades.erase(iterl);
cout << "The grades of all students are: ";
(i=grades.begin();il!=grades.end();i++)
cout << i->second << " ";
cout << endl;
cout << "Size of grades is: " << grades.size() << endl;
H

0 0~

1
17
18
1
2

'

Associative containers

W ININININININININNK
O wWwoOoNOYUDNJ

w Wt
N

Internet of Things A.Y. 19-20



Additional Resources

http://www.cplusplus.com/doc/tutorial/
https://en.cppreference.com/w/
Programming: Principles and Practice Using C++, Bjarne
Stroustrup (Updated for C++11/C++14)

C++ Primer, Stanley Lippman, Josée Lajoie, and Barbara E. Moo
(Updated for C++11)

Internet of Things A.Y. 19-20


http://www.cplusplus.com/doc/tutorial/

