
System Performance Evaluation
Georgia Koutsandria

Internet of Things A.Y. 19-20
Prof. Chiara Petrioli
Dept. of Computer Science
Sapienza University of Rome 



2Internet of Things A.Y. 19-20

System Performance Evaluation



3

System Performance Evaluation

• Allows to obtain the highest performance at the lowest
cost.

• Allows performance comparison of a number of alternative 
designs/solutions to find the best one. 

• Gives good insights on how well a system is performing and whether
any improvements need to be made.

• Useful at any stage of the system’s life cycle, i.e., design, 
manufacturing, use, upgrade, etc..

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

Internet of Things A.Y. 19-20



4

A systematic aproach

• Most performance problems are unique.
• Evaluation techniques used for one problem generally cannot be 

used for a different problem.

• Steps common to all performance evaluation projects:

1. State goals and define the system under evaluation
o Define the boundaries of the system.

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

Internet of Things A.Y. 19-20



5

A systematic aproach
2. List services and outcomes
o Each system provides a set of services
o E.g., A computer network allows its users to send

packets to specified destinations
o A list of services and possible outcomes is useful in selecting

the right metrics and workloads.

3. Select metrics
o Select the criteria(metrics) to compare the performance
o E.g.,  delay, accuracy, speed etc..

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

Internet of Things A.Y. 19-20



6

A systematic aproach
4. List of parameters that affect the performance
o System parameters (hardware and software)
o Workload parameters (depend on users’ requests)

5. Select factors to study
o Some parameters will be varied during the simulation

(factors) and will get different values (levels)

6. Select evaluation technique
o Analytical modeling
o Simulation
o Real test-bed

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

Internet of Things A.Y. 19-20



7

A systematic aproach
7. Select Workload
o A list of service requests to the system
o Analytical modeling: A probability of various requests
o Simulation: Trace of requests measured on a real system
o Test-bed: Scripts to be executed on the system.

8. Design Experiments
o Decide on a sequence of experiments that offer maximum 

information with minimal effort
o Varying number of factors and levels to determine their

relative effect.

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

Internet of Things A.Y. 19-20



8

A systematic aproach

9. Analyze and Interpret Data
o The analysis procudes results (not conclusions)
o Each repetition of an experiment has a different outcome.

10.Present results
o They should be presented in a manner that is easily

understood, e.g., in a graph form
o If it is needed, redefine system boundaries, included other

factors and performance metrics…(several cycles).

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

Internet of Things A.Y. 19-20



9

Selecting an evaluation technique

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

Criterion Analytical
modeling

Simulation Measurement

Stage Any Any Post-prototype

Time required Small Medium Varies

Tools Analysts Computer Languages Instrumentation

Accuracya Low Moderate Varies

Trade-off evaluation Easy Moderate Difficult

Cost Small Medium High

Scalability Low Medium High

a  In all cases, results may be misleading or wrong.

Internet of Things A.Y. 19-20



10

Selecting an evaluation technique

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

• Three rules of validation:
1. Do not trust the results of a simulation model     

until they have been validated by analytical modeling or             
measurements.

2. Do not trust the results of an analytical model until they
have been validated by a simulation model or 
measurements.

3. Do not trust the results of a measurement until they have
been validated by simulation or analytical modeling.

Internet of Things A.Y. 19-20



11

Selecting performance metrics

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

• For each performance study, a set of performance criteria
must be chosen.

• Time to execute a task
• Execution time, response time, latency

• Number of tasks per day, hour, sec, ns, etc.
• Throughput, bandwidth.

Aircraft DC to Paris Speed
(mph)

Passengers Throughput
(pmph)

Boeing 
747

6.5 hours 610 470 286,700

Concorde 3 hours 1350 132 178,200
Internet of Things A.Y. 19-20



12

Selecting performance metrics

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

• Flight time of Concorde vs. Boeing 747?
• Concorde: 1350 mph / 610 mph = 2.2 times faster

= 6.5 hours / 3 hours 

• Concorde is 2.2 times («120%») faster in terms of flight time.

Aircraft DC to Paris Speed
(mph)

Passengers Throughput
(pmph)

Boeing 
747

6.5 hours 610 470 286,700

Concorde 3 hours 1350 132 178,200
Internet of Things A.Y. 19-20



13

Selecting performance metrics

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

• Flight time of Concorde vs. Boeing 747:
• Concorde: 1350 mph / 610 mph = 2.2 times faster

= 6.5 hours / 3 hours 
• Concorde is 2.2 times (120%) faster in terms of flight time.

• Throughput = profit per passenger = speed per passenger (pmph)
• Boeing 747 = 286,700 pmph
• Concorde = 178,200 pmph

• Boeing 747 procudes 286,700 pmph / 178,200 pmph = 
1.6 times (60%) more profit in terms of throughput.

Internet of Things A.Y. 19-20



14

Selecting performance metrics

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

• Global metrics: Reflect the systemwide utility
• Resource utilization, reliability, availability.

• Individual metrics: Reflect the utility of each single user
• Response time, throughput.

• There are cases when the decision that optimizes individual metrics is 
different from the one that optimizes the system metric.

Internet of Things A.Y. 19-20



15

Selecting performance metrics

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n• E.g.: Total vs. per node throughput

• Keep the system throughput constant while increasing
the number of packets from one source may lead to increasing its
throughput, but it may also decrease someone’s else throughput.

• Using only the system throughput or the individual throughput
may lead to unfair situations. 

Internet of Things A.Y. 19-20



16

Selecting performance metrics

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n1. Low variability: Reduce the number of repetitions required

to obtain a given level of statistical confidence.

2. Nonredudancy: Similar metrics should be avoided.

3. Completeness: All possible outcomes should be reflected in the set of 
performance metrics.

Internet of Things A.Y. 19-20



17

Introduction to Simulation

Internet of Things A.Y. 19-20



18

Introduction to Simulation

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

• What is a network simulator?
• A software for modeling network applications and 

protocols (wired and wireless).
• What is it used for? 
• Rebuilding a system that evolves like the real system

according to certain aspects, based on a model.
Internet of Things A.Y. 19-20



19

Simulation: When to use it
• Study and experimentation of the internal interactions

of a complex system.

• System performance evaluation before the prototype.

• Verify analytical solutions.

• Common approach in research:
• Design of new protocols
• Comparison of protocols
• Traffic analysis

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Internet of Things A.Y. 19-20



20

Simulation: Why to use it

• Only one workstation is enough to run simulations.
• Allows the study of a wide range of scenarios in a relatively

short time.
• Allows realization of complex and expensive networks to be 

implemented in a real test-bed.
• Easy to test/check the impact of changes in a simulated

solution. In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Internet of Things A.Y. 19-20



21

Simulation: Pros & Cons
• Pros
• System verification before the production of a prototype
• Easy debugging of the simulated protocol
• Possibility to analyze the system’s scalability
• Identification of system vulnerabilities
• Flexibility on studying the behavior of the system. 

• Cons
• The design/implementation of a model and its validation

require the understanding of the simulation tool.
• It is not always possible to capture the various aspects of 

the simulated system.

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Internet of Things A.Y. 19-20



22

Simulation: Terminology
• State variables:
• The variables whose values define the state of the 

system
• Network simulation: number of nodes, packet queue, mac

and routing protocols used etc..

• Event:
• A change in the system state.

• Network simulation: packet transmission, packet
reception etc..

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Internet of Things A.Y. 19-20



23

Simulation: Terminology
• Continuous-Time and Discrete-Time models:
• Continuous time model: A model in which the system state is 

defined at all times.
• Network simulation: number of nodes, communication

among nodes is defined at any time.
• Discrete-Time model: The system state is defined only at

particular instants in time.
• Classes: weekly

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Continuous Discrete

Internet of Things A.Y. 19-20



24

Simulation: Terminology
• Continuous-State and Discrete-State models:
• Continuous: State variables are continuous.
• Discrete: State variables are discrete.
• Network simulation: number of nodes, packet queue

length.

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

DiscreteContinuous

Internet of Things A.Y. 19-20



25

Simulation: Terminology
• Continuous-state models = Continuous-event models
• Discrete-state models = Disctete-event models

• Continuity of time does not imply continuity of state and vice 
versa!

• Four possible combinations:
1. Continuous state/continuous time
2. Discrete state/discrete time

3. Continuous state/discrtete time
4. Discrete state/continuous time

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Internet of Things A.Y. 19-20



26

Simulation: Terminology
• Deterministic and Probabilistic models:
• Deterministic: The output (results) of a model can be 

predicted with certainty.
• Probabilistic: For the same set on input parameters, each

repetition gives a different output.
• Static and Dynamic models:
• Static: Time is not a variable.
• Dynamic: The system state changes with time.

• Open and Closed models:
• Open: The input is external to the model and is 

independent of it.
• Closed: No external input.

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Internet of Things A.Y. 19-20



27

Simulation: Terminology
• Linear and Nonlinear models:
• Linear: The output parameters are a linear function of 

the input parameter.
• Nonlinear: Otherwise.

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Input Input

O
ut

pu
t

O
ut

pu
t

Linear Nonlinear

Computer system models:  tempo continuo, stato discreto, probabilistico, 
dinamico e non lineare. Aperti o chiusi, stabili o instabili. 

Internet of Things A.Y. 19-20



28

Simulation: Terminology
• Stable and Unstable models:
• Stable: The dynamic behavior of the model settles

down to a steady state. 
• Unstable: The bevavior

of the model is continuous
changing.

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Computer system models:  tempo continuo, stato discreto, probabilistico, 
dinamico e non lineare. Aperti o chiusi, stabili o instabili. 

Stable Unstable

Time Time
M

ea
n

O
ut

pu
t

M
ea

n
O

ut
pu

t

Internet of Things A.Y. 19-20



29

Simulation: Types
• Model Carlo method:
• Static simulation without a time axis.
• Model probabilistic phenomena that do not change

characteristics with time.
• Trace-driven:
• The simulation uses a trace as its input (a time-ordered

record of events on a real system.)
• Discrete-event:
• Discrete-state model of system.

• Network simulation: number of packets in the 
queue.

• Discrete- or continuous-time values.

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Internet of Things A.Y. 19-20



30

Discrete-event Simulation
• Components:

1. Event scheduler: It keeps a linked list of events waiting
to happen.

2. Simulation clock: Each simulation has a global variable
representing simulated time.
• The scheduler is responsible for advancing this time.
• Unit time: Increments time by small increment and then

checks to see if there are any events that can occur.
• Event-driven: Increments the time automatically to the time 

of the next earliest occurring time.

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Internet of Things A.Y. 19-20



31

Discrete-event Simulation
• Components:

3. Event routine: Each event is simulated by its routine.
4. Input routines: Get the model parameters.
5. Initialization routines: Set the initial state of the system.
6. Trace routines: Print out intermediate variables as the simulation

proceeds; Useful on debugging.
7. Report generator: Output routines executed at the end of the 

simulation; Calculate the final result.
8. Main program: It brings all the routines together. In

tr
od

uc
tio

n
to

 S
im

ul
at

io
n

Internet of Things A.Y. 19-20



32

Common mistakes

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

1. Inappropriate level of detail
• More details => Longer simulations => More bugs => 

More computations => More parameters ≠ Higher accuracy
2. Inappropriate experimental design
• Too much generic => longer simulations and less accurate

3. Unverified models
• Bugs in the code

4. Invalid models
• Non realistic results

Internet of Things A.Y. 19-20



33

Common mistakes

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n5. Improperly handled initial conditions

• Generally not representative of the system behavior
in a steady state.

6. Too short simulations
7. Poor random-number generators
8. Improper selection of seeds
• The seed for different random-number streams should be 

carefully chosen to maintain independence among the      
streams. 

Internet of Things A.Y. 19-20



34

Model Verification and Validation
1. Antibugging: Include additional checks and output in the 

program that will point out the bugs (if any).
• E.g. 1: Check if the probabilities for certain events add up to 1.
• E.g. 2: Packets received = pkts generated – pkts lost/dropped.

2. Structured walk-through: Explain the code to another person or a 
group. (It works even when the others do not understand the model!).

3. Run simplified cases: Easy to analyze them.
4. Consistenty test: Check that the model produces similar results for 

input parameter values that have similar effects.
5. Degeneracy test: Check that the model works for extreme

values of system configuration or workload parameters.

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Internet of Things A.Y. 19-20



35

Simulation Results Analysis
• In most simulations, only the steady-state performance is

of interest!
• Results of the initial part of the simulation should not be included in 

the final computations.

• Transient removal: Identify the end of the 
transient state.
• It is not possible to define exactly what

consistutes the transient state and when
the transient state ends.
• All methods for transient removal are heuristic.

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Steady state
(knee point)

Transient state

Internet of Things A.Y. 19-20



36

Simulation Results Analysis
• Six methods for transient removal:

1. Long runs
2. Proper initialization
3. Truncation
4. Initial data deletion
5. Moving average of independent replications
6. Batch means

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Steady state
(knee point)

Transient state

Internet of Things A.Y. 19-20



37

Terminating Simulations
• Short simulations => low degree confidence
• Long simulations => waste of resources
• There are systems that never reach a steady-state 

performance. 
• These systems always operate under transient conditions.
• Such simulations are called terminating simulations; they do 

not require transient removal.
• E.g.: A system shuts down at 5pm every day.

• To increase data confidence take the average over 
several independent repetitions.

In
tr

od
uc

tio
n

to
 S

im
ul

at
io

n

Internet of Things A.Y. 19-20



38

Simulators for IoT Systems

Internet of Things A.Y. 19-20



39

What is a Simulator?

• A tool/software that realistically imitates/models the 
behavior of IoT systems.

• Different types of simulators; Most commonly used:
• Trace-Driven Simulators
• Discrete-Event Simulators

Si
m

ul
at

or
sf

or
 Io

T
Sy

st
em

s

Internet of Things A.Y. 19-20



40

Why do we use Simulators?
• The most common approach to delelop and test 

new protocols/applications.

• Evulate the performance of new solutions.

• Consider a large-scale IoT network:
• Low cost
• Easy(?) to implement
• Practical

Si
m

ul
at

or
sf

or
 Io

T
Sy

st
em

s

Internet of Things A.Y. 19-20



41

Simulators for IoT Systems
• Several simulators exist:
• ns-3/ns-2
• OMNeT
• Castalia
• GreenCastalia
• SUNSET
• COOJA
• Avrora
• … Si

m
ul

at
or

sf
or

 Io
T

Sy
st

em
s

Internet of Things A.Y. 19-20



42

GreenCastalia: An energy
harvesting-enabled simulator for IoT

Internet of Things A.Y. 19-20



43

What is GreenCastalia?

G
re

en
Ca

st
al

ia

• An extension of the Castalia simulator.
• Allows to model and simulate networks of IoT devices, 

i.e., embedded devices, with energy harvesting capabilities.
• Castalia: Am OMNeT++ based simulator for WSNs, BANs, and 

networks of low-power embedded devices.
• A realistic framework for fisrt order validation.
• Not platform(device) specific.
• Highly parametric.

Internet of Things A.Y. 19-20



44

How to install GC

• You will first need to install OMNET++ 
• OMNET++ (recommended version 4.6): 

https://omnetpp.org
• Castalia: https://github.com/boulis/Castalia

• Complete instructions:
• http://senseslab.di.uniroma1.it/greencastaliav01d 

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



45

How to install GC

• We strongly recommend that you use a Unix-based
machine.

• Alternative Option: Download the VM (available link on twiki) 
with the GC simulator already installed on it (pwd: iot2018)
• You will first need to install the VirtualBox software
• https://www.virtualbox.org/wiki/Downloads

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



46

GreenCastalia: Main features

• Inherited by the Castalia simulator:
• Channel model based on empirically measured data.
• Radio model based on real traces for low-power

communication.
• Sensing modelling provisions.
• MAC and routing protocols available.
• Designed for adaption and expansion.

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



47

GreenCastalia: Main features
• GC-specific:
• Multiple energy sources and multi-source harvesters.
• Networks of embedded devices with heterogeneous harvesting

and storage capabilities.
• Multi-storage architectures (batteries, supercaps, rechargeable

batteries).
• Non-ideal battery models based on empirical discharge patterns, 

and supercaps leakage models.
• Energy prediction models.

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



48

GreenCastalia Structure

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



49

SensorNode module

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



50

GC Organization

G
re

en
Ca

st
al

ia

• Each module or submodule has its corrsponding directory.

• All reside in the directory ~/Castalia/src/

• E.g.: Module node resides in the directory:
~/Castalia/src/node/

Module communication resides in the directory:
~/Castalia/src/node/communication/

Submodule routing resides in the directory:
~/Castalia/src/node/communication/routing

Internet of Things A.Y. 19-20



51

GC Organization

G
re

en
Ca

st
al

ia

• In the GC directory there is a folder named Simulations
~/Castalia/Simulations/

• This folder includes:
• Existing simulation examples with their simulation configuration files.
• A subfolder named Parameters
• Includes specially fromatted files with parameters that define the 

basic operational properties of specific modules (MAC, Radio, 
WirelessChannel, SensorDevice, PhysicalProcess).

Internet of Things A.Y. 19-20



52

Building GreenCastalia

• (Re)Build GC by using the following commands at the 
top-most GC directory ~/Castalia/

make clean
./makemake
make

• After the creation of new files or any modifications in existing ones, 
rebuild GC using the same commands.

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



53

Using GreenCastalia
• Files with the suffice «.ned» contain NED language code
• Define a module’s name and interfaces (gates in/out)
• Define parameters

• Module directories always contain a «.ned» file defining them

• Simple modules include C++ code (.cc and .h files) defining their behavior

• Composite modules, e.g., node, include subdirectories to define the 
submodules.

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



54

Simulation Configuration File
• All simulation examples/tests reside in the directory 

~/Castalia/Simulations
• Configuration file typically named omnetpp.ini
• Assigns values to parameters; Defines the simulation scenario.
• The following file should be always included in the configuration file
• include ../Parameters/Castalia.ini
• It containes basic parameter assignment.

• Defines the simulation time 
• Parameters always start with SN (sensor network: the top-most

composite module)

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



55

Simulation Configuration File

[General]

include ../Parameters/Castalia.ini

sim-time-limit = 100s

SN.field_x = 200 #meters
SN.field_y = 200 #meters

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



56

Simulation Configuration File

G
re

en
Ca

st
al

ia

• Defining the area of deployment using the parameter
SN.deployment

• Several options:
• uniform: random uniform distribution
• NxM: nodes are placed in a NxM grid area
• NxMxK: 3D dimension; nodes are placed in a NxMxK grid area
• randomized_NxM: nodes are randomly places to NxM grid
• Randomized_NxMxK: nodes are randomly places to NxMxK grid
• center: nodes are placed in the center of the deployment area

Internet of Things A.Y. 19-20



57

Simulation Configuration File

G
re

en
Ca

st
al

ia

• The sensor network compound module (SN) contains many
Node sub-modules.

• Sub-modules are addressed in the form of an array.

• Assigning values to multiple nodes:
• [*]: all indexes
• [3..5]: indexes 3,4,5
• [..4]: indexes 1, 2, 3, 4
• [5..]: indexes 5 till last one

Internet of Things A.Y. 19-20



58

Running a simulation
• How to use the Castalia input script
• ../../bin/Castalia –h

• Available configurations
• ../../bin/Castalia

• Run a simulation using a specific configuration
../../bin/Castalia –c General

• Two files created in the directory
1. YYMMDD-HHMMSS.txt: Output file which includes results.
2. Castalia-Trace.txt: Contains traces of all events requested.

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



59

The CastaliaResults script  
• Directory: 

~/Castalia/bin/CastaliaResults/
• CastaliaResults
• Full list of Castalia output files with information about the 

configurations and the creation date.
• Number of repetitions is indicated in the parenthesis.
• CastaliaResults –i YYMMDD-HHMMSS.txt
• Parses the given file and finds out what output was recorded by the 

different modules.

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



60

The CastaliaResults script  

G
re

en
Ca

st
al

ia

• Use the -s switch to select among outputs, e.g., packets; 
Results are the average of all modules and indices.
../../bin/CastaliaResults -i YYMMDD-HHMMSS.txt -s packets

• Get the sum of all nodes
../../bin/CastaliaResults -i YYMMDD-HHMMSS.txt -s packets –sum

• Get per node results
../../bin/CastaliaResults -i YYMMDD-HHMMSS.txt -s packets -n

Internet of Things A.Y. 19-20



61

Simulation: An Example
• Go to ~/Castalia/Simulations/radioTest

• Scenario: General (Tests reception)
• A receiver (node 0) moves through the area of two

transmitters (nodes 1 and 2).
• No interference between transmitters.
• Receiver moves in a straight line back and forth;
• The receiver should receive packets when it is 

close to each of the two transmitters.

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



62

Simulation: An Example
• Type the following commands:

1. rm 1*.txt
2. rm Castalia-Trace.txt

• Run a simulation using the default configuration
../../bin/Castalia –c General

• Two files created in the directory
1. YYMMDD-HHMMSS.txt: Output file which includes results.
2. Castalia-Trace.txt: Contains traces of all events requested.

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



63

Modeling in GC

• Different aspects of a wireless sensor network from 
communications to physical processes.

• Single common point for all non-composite modules:
• A parameter called collectTraceInfo
• Is set by default to false; If set to true, then the module will

produce trace information
• Traces will be written in the Castalia-Trace.txt file (in 

the directory of the simulation scenario folder)

G
re

en
Ca

st
al

ia

Internet of Things A.Y. 19-20



64

The wireless channel

G
re

en
Ca

st
al

ia

• GC implements a realistic wireless channel for IoT systems,
such as WSNs and BANs.

• Average path loss modeling
• Lognormal shadowing model has been shown to give accurate 

estimates.

• Path loss in dB as a function of the distance between two nodes

Internet of Things A.Y. 19-20



65

The wireless channel

G
re

en
Ca

st
al

ia

• Directory: 
~/Castalia/src/wirelessChannel/defaultChannel/

• File WirelessChannel.ned:
• Defines parameters related to the wireless channel
• pathLossExponent, PLd0, d0, sigma

• To access these parameters in the .ini file you have to prefix their
name with “SN.wirelessChannel.”

Internet of Things A.Y. 19-20



66

Node mobility

G
re

en
Ca

st
al

ia

• Taking the path loss between two nodes is not enough.

• Keep state about the path losses between points in the space.

• Space is broken in discrete cells and calculate the path losses from
each cell to each other cell.

• Use cell locations and cell IDs instead of specific node locations and
node IDs.

Internet of Things A.Y. 19-20



67

Node mobility

G
re

en
Ca

st
al

ia

• Parameters that set the cell size (default=5m)
• SN.wirelessChannel.xCellSize
• SN.wirelessChannel.yCellSize
• SN.wirelessChannel.zCellSize

• No mobility
• SN.wirelessChannel.onlyStaticNodes

Internet of Things A.Y. 19-20



68

The radio module

G
re

en
Ca

st
al

ia

• Captures many features for real low-power radios.
• Main features include:
• Multiple states: Transmit, receive, listen, configurable sleep states.
• Transition delays from one state to another.
• Different power consumption for the different states and Tx levels

used.
• …
• GC includes 3 already defined radios.

Internet of Things A.Y. 19-20



69

The radio module

G
re

en
Ca

st
al

ia

• Directory: ~/Simulations/Parameters/Radio/
• Available radios
• BANRadio.txt: defines the narrowband radio proposed in the IEEE 

802.15 Task Group 6 documents
•   CC1000.txt: defines the CC1000 real radio by Texas Instruments
•   CC2420.txt: defines the CC2420 real radio by Texas Instruments

• In the omnetpp.ini file the parameter RadioParametersFile of 
the radio module points to one of these files.

Internet of Things A.Y. 19-20



70

The radio module

G
re

en
Ca

st
al

ia

• Directory
~/Simulations/Parameters/Radio/

• E.g.: CC2420.txt
• Radio parameters file
• RX MODES
• TX LEVELS 
• DELAY TRANSITION MATRIX
• POWER TRANSITION MATRIX
• SLEEP LEVELS

Internet of Things A.Y. 19-20



71

The radio module

G
re

en
Ca

st
al

ia

• A set of parameters can be specified in the configuration file 

•   Select the starting RX mode; default empty value means that
the first mode listed will be used: string mode = default (“”)

• Select the starting state once simulation begins; default value is set to 
listening (receiving) state: string state = default (“RX”)

• Starting transmission output power level; only levels declared in the  radio 
parameter file can be used; default empty value means that the

highest value will be used: 
string TxOutputPower = default (“”)

Internet of Things A.Y. 19-20



72

Creating modules

G
re

en
Ca

st
al

ia

• Determine the correct location for the new code.

• Create a dedicated directory for the source code of the new 
module.

• Possible locations:
• Application: ~/Castalia/src/node/application
• Routing: ~/Castalia/src/node/communication/routing
• MAC~/Castalia/src/node/communication/mac
• Mobility: 

~/Castalia/src/node/communication/mobilityManager

Internet of Things A.Y. 19-20



73

Creating modules

G
re

en
Ca

st
al

ia

• Define the module using the NED language; the .ned file is 
named by the name of the module:
• E.g.: new module: newCastaliaModule

• Then the name of the corresponding .ned file will be  
NewCastaliaModule.ned

• The dedicated directory starts with a lower case letter, while the name of 
the .ned file starts with an upper case letter.

Internet of Things A.Y. 19-20



74

Creating modules

G
re

en
Ca

st
al

ia

• In the .ned file define the following:
• The package of the module
• Obtain the package by taking the current directory path to the

Castalia’s src/ directory and by replacing each “/” symbol with “.”

• Include all the parameters to be passed to the module at runtime from 
the simulation configuration; Some parameters are mandatory for all
modules.

Internet of Things A.Y. 19-20



75

Creating modules: An example

G
re

en
Ca

st
al

ia

package node.communication.mac.newCastaliaModule;
simple NewCastaliaModule like node.communication.mac.iMac {
parameters:
bool collectTraceInfo = default(false);
int macMaxPacketSize = default(0);
int macBufferSize = default(16);
int macPacketOverhead = default(8);
int newParameter1;
string newParameter2 = default("default value");
bool newParameter3 = default(false);
gates:
output toNetworkModule;
output toRadioModule;
input fromNetworkModule;
input fromRadioModule;
input fromCommModuleResourceMgr;
}

Internet of Things A.Y. 19-20



76

Creating modules

G
re

en
Ca

st
al

ia

• The next step is to include (and write in C++) the actual code 
of the module.
• The new module has to inherit some "properties" from 

appropriate base classes that are provided (Virtual classes).
• A .h file and a .cc file have to be created.
• In the source code file (.cc) 
• Include the .h file
• Register the new creating as an OMNeT module

• Define_Module(NewCastaliaModule);

• Define the methods that the virtual class implements.
Internet of Things A.Y. 19-20



77

Creating modules

G
re

en
Ca

st
al

ia

• Application: 

class NewCastaliaModule : public VirtualApplication{
•   Routing: 

class NewCastaliaModule : public VirtualRouting{
•   MAC: 

class NewCastaliaModule : public VirtualMac{
•   MobilityManager: 

class NewCastaliaModule : public VirtualMobilityManager{

Internet of Things A.Y. 19-20



78

Defining an application packet

G
re

en
Ca

st
al

ia

• Default application packets have only one field (double) to 
carry data.

• Create a new .msg file in the new application directory

cplusplus {{
#include "ApplicationPacket_m.h"
}}
class ApplicationPacket;
struct info {
unsigned short nodeID; //the ID of the Node
double locX; // x-coordinate of the node
double locY; // y-coordinate of the node
}
packet MyPacket extends ApplicationPacket {
info extraData;
}

Internet of Things A.Y. 19-20



79

Defining a new Routing module

G
re

en
Ca

st
al

ia

• Directory: ~/src/node/communication/routing

• The VirtualRouting class defines a set of methods
• Callback methods: Allow the specific routing protocol to react to 

certain events.
• Pre-defined methods that perform generic operations.

Internet of Things A.Y. 19-20



80

Defining a new Routing module

G
re

en
Ca

st
al

ia

Callbacks:
• void startup()
• void finishSpecific()
• void fromApplication Layer(cPacket *pkt, const

char*dstAddr)
• void fromMacLayer(cPacket *pkt, int

srcMacAddress, double RSSI, double LQI)
• void handleNetworkControlCommand(cMessage *)
• void handleMacControlMessage(cMessage *)
• void handleRadioControlMessage(cMessage *)

Internet of Things A.Y. 19-20



81

Defining a new Routing module

G
re

en
Ca

st
al

ia

Methods:

• void encapsulatePacket(cPacket *, cPacket *)
• int bufferPacket(cPacket *pkt)
• cPacket *decapsulatePacket(cPacket *)
• void toApplicationLayer(cMessage *msg)
• void toMacLayer(cMessage *msg)
• void toMacLayer(cPacket *pkt, int macAddr)
• int resolveNetworkAddress(const char *)
• bool is NotDuplicatePacket(cPacket *pkt)

Internet of Things A.Y. 19-20



82

Additional Resources

Internet of Things A.Y. 19-20

• R. Jain, "The Art of Computer Systems Performance 
Analysis: Techniques for Experimental Design, 
Measurement, Simulation, and Modeling“, Wiley-
Interscience, New York, NY, April 1991.  (Chapters 2, 3, 24)



April Hansson

+1 23 987 6554

www.proseware.com

Questions?

In
te

rn
et

 o
f T

hi
ng

s 
A.

Y.
 1

9-
20


