-1 Georgia Koutsandria

N

+ Internet of Things AY. 18-19
‘= Prof. Chiara Petrioli
Dept. of Computer Science

Sapienza University of Rome
= { N oo} il

i Introductlon to C++

Associative Containers in the
C++ standard library
(Recap++)

Internet of Things A.Y. 18-19

Associative Container Types

Container Type

map

set

multimap

multiset
unordered_map
unordered_set
unordered_multimap
unordered_multiset

Holds key-value pairs

The key is the value

A key can appear multiple times
A key can appear multiple times
Organized by a hash function
Organized by a hash function

Hashed map; keys can appear multiple times

Associative containers

Hashed set; keys can appear multiple times

Internet of Things A.Y. 18-19

The map associative container

A collection of (key, value) pairs; often referred to as an

associative array.

Values are found by a key rather than by their position (as in

arrays).

E.g.: Mapping names to phone numbers; Each pair contains a
person’s name as a key and a phone number as its value.

Ve

-

#include <map>

~

J

Vs

-

map<key, value> name;

~N

Internet of Things A.Y. 18-19

Associative containers

B

The set associative container

A collection of keys.
Useful when we want to know whether a value is present.
It keeps the elements ordered at all times.

E.g.: A business might define a set named bad_checks to
hold the names of individuals who have written bad checks.

Associative containers

[#include <set> J

Internet of Things A.Y. 18-19

The set associative container

//empty set of ints
set<int> first;

//range
int myints[] = {10, 20, 30, 40};
set<int> second(myints,myints+4);

//a copy of the set named second
set<int> third(second):

Associative containers

//1terator
set<int> fourth(second.begin(), second.end());

Internet of Things A.Y. 18-19 u

Several basic functions:

The set associative container

begin () - returns an iterator to the first element in the set
end() - returns an iterator to the past-the-end element in the container
size () - Returns the number of elements in the set
empty () - returns whether the set container is empty
insert()-adds a new element to the set
erase()-removes an element from the set

* find() —returns the iterator to a specific element.

 QOperator = assigns new contents to set replacing the current

ones.

Associative containers

Internet of Things A.Y. 18-19

The set associative container

// count the number of times each word occurs
// 1n the 1input

map<string, size_t> word_count; //empty map
set<string> exclude = {"Then","But","An"};
string word;

while(cin >> word){
//count only words that are not in exclude
if (exclude.find(word) == exlude.end())
++word_count [word];

Internet of Things A.Y. 18-19

Associative containers

Range-based Loop

Internet of Things A.Y. 18-19 n

Range-based loop

* A more readable equivalent to the traditional for loop
operating over a range of values, such as all elements in a
container (array, vector, map, set, etc.).

* For observing elements in a container. i.e., read-only:

1. If the objects are cheap to copy (capture by value)
for (auto elem : container_name)
2. Capture by const reference
for (const auto& elem : container_name)
* When modifying the elements in the container:
 (Capture by non-const reference

Associative containers

for (auto& elem : container_name)

Internet of Things A.Y. 18-19

Loop through Map

map<string,int>::iterator 1it;

for(it=myMap.begin();it!=myMap.end();it++)
{
cout << it—>first << ": "
<< it->second
<< endl;

for(auto const& x : myMap)

{
cout << Xx.first << ": "
<< X.second
<< endl;
¥
\ J
|

auto : Tells the compiler to deduce
the type of a declared variable from
its initialization expression.

Internet of Things A.Y. 18-19

Associative containers

~
~

Loop through Set

set<string, int>::iterator it;

for(it=mySet.begin();it!=mySet.end();it++)
cout << *it << endl;

for(auto elem : mySet)
cout << elem << " , ";

|

auto : Tells the compiler to deduce
the type of a declared variable from
its initialization expression.

Internet of Things A.Y. 18-19

Associative containers

~
!

Exercise 1

Write a program that initializes a set which contains 5
integers and prints the contents of the set container. Use
two different ways to loop through the set: 1) Using an
iterator; 2) Using type inference (auto).

Associative containers

Internet of Things A.Y. 18-19

Exercise 1: Solution

#include <iostream>
#include <set>
using namespace std;

(72]
int main(){ o
int mynumbers[] = {23, 10, 45, 5, 3}; =
set<int> myset (mynumbers, mynumbers + 5); o8
cout << "myset contains: "; g
for(set<int>::iterator iter = myset.begin() ;iter != myset.end();iter++) O
cout << " " << xiter; g
cout << endl; =
cout << "myset contains: "; O
for(auto elem : myset) -
cout << " " << elem; éf
cout << endl;
return 0;

Internet of Things A.Y. 18-19

Data Structures

Internet of Things A.Y. 18-19

Data Structures

 Agroup of data elements grouped together under

one name.
e These data elements are called members which can have

different types and lengths.

struct type_ name{
member_typel member_namel;
member_type2 member_name2;
member_type3 member_name3;

Data Structures

Jobject_names;

Internet of Things A.Y. 18-19

Data Structures

- type_name: The name of the structure type.
- member_name: The name of the data member.
- object_names: A set of valid identifiers for objects that have

the type of this structure.

struct type_ name{
member_typel member_namel;
member_type2 member_name2;
member_type3 member_name3;

Data Structures

Jobject_names;

Internet of Things A.Y. 18-19

Data Structures

It declares a structure
type, called product T struct producty
int weight;

Two members, each of
doub le price;}

a different type
i

Data Structures

product apple; — Three objects of structure
product melon,orange;— type are declared.

Internet of Things A.Y. 18-19

Data Structures
(Alternative option)

struct producty
int weight;
double price;

&

product apple;
product melon,orange;

struct producty
int weight;
double price;
} apple, melon, orange;

l

Name objects can be used to
directly declare objects of the
structure type.

Internet of Things A.Y. 18-19

(V)]
Q
L
-
=
(@
-
p
)
(V)
©
=
©
o

Accessing the members

* Once a member is declared, it can be accessed directly.

 Syntax: Insert a dot (.) between the object name and the
member name.

e E.g.: Each of the data type corresponds to the member it refers to.

* apple.weight
* apple.price

* melon.weight
* melon.price

e orange.weight
* Qrange.price

Data Structures

Internet of Things A.Y. 18-19

Data Structures: An example

#include <iostream>

#include <string> int main()A{
#include <sstream> string mystr; "
using namespace std; mine.title = "Goodbye Bafana"; @
struct movies_t{ mine.year = 2007; 3
int year; cout << "Enter a title: "; =
string title; getline(cin, yours.title); 5
ymine, yours; cout << "Enter year: "; wn
getline(cin, mystr); oS
void printmovie (movies_t movie){ stringstream(mystr) >> yours.year; 8
cout << movie.title; cout << "My favorite movie is: ";
cout << " (" << movie.year << ")" printmovie(mine);
<< endl; cout << "Your favorite movie is: ";
1 printmovie(yours);
return 0;
s

Internet of Things A.Y. 18-19

Pointers to Structures

Internet of Things A.Y. 18-19

Pointers to Structures

e A structure can be pointed to by its own type of pointers.

struct movies_t{ An object of structure
int year;

string title; type movies_t
i A pointer that points to
movies_t amovie; objects of structure type
/

movies_t * pmovie;
pmovie = &amovie;

Data Structures

movies t

T The value of the pointer

pmovie is assigned the
address of object amovie.

Internet of Things A.Y. 18-19

Pointers to Structures

The arrow operator (->) is a dereference operator that is used

exclusiveley with pointers to objects that have members; It §
allows access to the member of an object directly from its g
address. J
o
(V)
8
Expression What is evaluated Equivalent S
a.b Member b of object a
a—>b Member b of object pointed to by a (xa).b
*a.b Value pointed to by member b of object a *x(a.b)

Internet of Things A.Y. 18-19

Pointers to Structures: An example

#include <iostream>
#include <string>
#include <sstream>
using namespace std;
struct movies_t{
int year;
string title;
b
int main(){

string mystr;

movies_t amovie;

movies_t * pmovie;

pmovie = &amovie;

cout << "Enter a title: ";

getline(cin, pmovie—>title);

cout << "Enter year: ";

getline(cin, mystr);

stringstream(mystr) >> pmovie->year;

cout << "You have entered: " << pmovie—>title;

cout << " (" << pmovie—->year << ")" << endl;

return 0;

I3 Internet of Things A.Y. 18-19

Data Structures

Nesting Structures

Internet of Things A.Y. 18-19

Nesting Structures

e Structurwes can be nested in such a way that an element
of a structure is itself another structure.

(7))}

U

struct movies_t{ — .§

int year; g

string title; gina.name r

}; gabriele.favorite _movie.title ‘g

gina.favorite_movie.year =

struct friends_t{ Pfriends—>favorite_movie.year O
int year;

: —
string name;

string email;
movies t favorite_movie;

}gina, gabriele;

friends_t x pfriends = &gina; — Internet of Things A.Y. 18-19

Exercise 1

Write a program that implements a structure array to
construct a database for the products of a supermarket.

Your program should take as input the name and the price | "
. Enter the name of product 1: Milk Eg
of 5 products (from the keyboard/user) and it should Enter the price of product 1: 6.9 E
display them on the screen in a table manner. ERTh T e of pronen: Je s §
Enter the name of product 3:Water 5
Ent th i f duct 3:0.5
- product: a data structure. FReT The price o brodhe g
. . Enter the name of product 4:Bread 0O
- pr:an array structure/object of size 5. Enter the price of product 4:1.99
- name: member to store the name of the product. Enter the name of product 5:Sugar

Enter the price of product 5:2.34

- price: member to store the price of the product.

Product Name Price (Euro)
Milk 0.9

Shampoo 5:23

Water 0.5

Bread 1..99

Sugar 2.34

Internet of Things A.Y. 18-19

Exercise 1-Solution

#include <iostream>

using namespace std;

struct product{
char name[20];

float price; o

} pri(5]; Eé
int main(){ S
for(int i=0;i<5;i++){ %
cout << "Enter the name of product " << i+l << ":"; o

cin >> pr[i].name; 2

cout << "Enter the price of product " << i+l << ":"; 0

cin >> prli].price;

cout << endl;
}
cout << "Product Name" << "\t \t" << "Price (Euro)" << endl;
for(int i=0;i<5; i++)

cout << prli].name << "\t \t \t" << prl[i]l.price << endl;

return 0;
} Internet of Things A.Y. 18-19

Classes

Internet of Things A.Y. 18-19

Classes

class_name: A valid identifier for the class.
object_names: An optional list of names for objects;
An object is an instantiation of a class.

members: Contained in the body of the declaration; can be data or
function declarations.

access_specifiers: Modify the access rights for the members of the
class (optional).

Classes

class class_nameq{
access_specifier_1:
memberl;
access_specifier_2:
member2;

yobject _names;
Internet of Things A.Y. 18-19

Access specifier

Private: Accessible only from within other members of
the same class (default).

Protected: Accessible from other members of the same
class and also from members of their derived classes.

Classes

Public: Accessible from anywherhe where the object is
visible.

Internet of Things A.Y. 18-19

An example

Class declaration Name of class

~ _—

class Rectangled Two data members of

B int width, height; —™— , , "
Class contains public: type Iint; private access g
T N void set values(int,int); ©
_ int area(void); -
}rect; \\
\ Two member functions:
public access. Only the

An object, i.e., a variable,
of the class

Declaration is included.

Internet of Things A.Y. 18-19

Class vs. Object name

* Rectangle: The class name
* rect: An object of type Rectangle

* Analogy: int a:

Q
/ \ class [Rectangl«%{ 2
int width, height; (@
The type name The variable name public:
(the class) (the object) void set _values(int,int);
int area(void);
rect);

Internet of Things A.Y. 18-19

Accessing public members of a class

* Public objects can be accessed as if they were normal
functions or variables.

 Use of dot (.) between object name and member
name.

Classes

class Rectangle{

e E.g.: rect.set_values(3,4); int width, height;
public:

myarea = rect.area(); void set values(int, int);
int area(void):
trect;

Internet of Things A.Y. 18-19

Accessing members of a class

class Rectangle{ | . .
it whelth, Meha it * Members with private access cannot be

oublic: ~accessed from outside of the class. ot

void set values(int,int); They can only be referred to from within §

int area(void); other members of the same class. O
}rect;

Internet of Things A.Y. 18-19

Q: What would happen if your program tries to access a private
data member from outside of a class?

Classes

Internet of Things A.Y. 18-19

An example

#include <iostream>
using namespace std;

class MyClass{
int varl, var2;
b

Classes

int main()
{
MyClass mc;
mc.varl = 10;
cout << "varl: " << mc.varl << endl;
return 0;

Internet of Things A.Y. 18-19

Q: What would happen if your program tries to
access a private data member from outside of a
class?

A: Compilation will fail! You will get the following error:

Georgias—-MacBook-Pro:C++ examples gina$ g++ —-std=c++11 classes.cpp -0 classes
error:

Classes

mc.varl = 5;
A
note: implicitly declared private here
int varl, var2;
A
error:
cout << "wvarl: " << mc.varl << endl;
A
note: implicitly declared private here
int varl, var2;

A

2 errors generated.

Internet of Things A.Y. 18-19

Defining a member function

1. Within the class definition: Function is automatically
considered an inline member function by the
compiler.

Classes

2. Include declaration and define it later outside the
class: A normal (not-inline) class member function.

Internet of Things A.Y. 18-19

An example

#include <iostream>

using namespace std;

, class Rectangleq
The scope operator (::) is int width, height;

used in the definition of a public: o
_ void set_values(int, int);
class member to define a

int area(){return widthxheight;} §
member of class outside Y H | | %
_ void Rectangle::set_values(int x, int y){ o
the class itself. width = x:
height = vy;

¥

int main(){
Rectangle rect;
rect.set values(3,4);

cout << "area: " << rect.area() << endl;
return 0;

Internet of Things A.Y. 18-19

The scope operator(::)

It specifies the class to which the member being
defined belongs.

It grands exactly the same scope properties as if this function
definition was directly included within the class definition.

Classes

Internet of Things A.Y. 18-19

Multiple object declaration

#include <iostream>
using namespace std;
class Rectangleq
int width, height;
public:
void set_values(int, int);

int area(){return widthxheight;} §
}; 7,
void Rectangle::set_values(int x, int y){ ég
width = x;
height = y;} ,
int main(){ Two Instances
Rectangle rect, rectbi////,,/”’/' :
rect.set values(3,4); / (ObJeCtS)
rectb.set values(5,6);
cout << "area: " << rect.area() << endl;
cout << "areab: " << rectb.area() << endl;
return 0;
¥

Internet of Things A.Y. 18-19

Q: What would happen in the previous example if we called
the member function area before having called set_values?

Classes

Internet of Things A.Y. 18-19

Q: What would happen in the previous example
if we called the member function area before
having called set_values?

Classes

A: An undetermined result, since the members
width and height had never been assigned a
value.

Internet of Things A.Y. 18-19

Q: What would happen in the previous example if we called
the member function area before having called set_values?

#include <iostream>

using namespace std;

class Rectangleq

int width, height;
public:

void set_values(int,int); &a
int area(){return widthxheight;} "
b ©
void Rectangle::set_values(int x, int y){ O
width = Xx;
height = y;}

int main(){
Rectangle rect, rectb;
cout << "area: " << rect.area() << endl;
rect.set values(3,4);
rectb.set values(5,6);

cout << "areab: " << rectb.area() << endl;
return 0;

¥ Internet of Things A.Y. 18-19

Q: What would happen in the previous example
if we called the member function area before
having called set_values?

A: An undetermined result, since the members
width and height had never been assigned a value.

Classes

Georgias—MacBook-Pro:C++ examples gina$ g++ —-std=c++11 rectangleError.cpp -o rectangleError
Georgias—MacBook-Pro:C++ examples gina$./rectangleError

area: 1718552992

areab: 30

Internet of Things A.Y. 18-19

Constructor

A special function which is automatically called whenever
a new object of a class is created.

It allows the class to initialize member variables or
allocate storage.

They are only executed once, when a new object is
created.

Declaration: like a regular member function; the name
matches the class name; no return type.

Classes

Internet of Things A.Y. 18-19

Constructor - An example

#include <iostream>
using namespace std;
class Rectangleq
int width, height;
public:
Rectangle(int, int);

int area(){return widthxheight; } §
rs 7))
Rectangle::Rectangle(int a, int b){ ég
width = a;
height = b;
5

, | Constructor
int main(){ ’//,//”’///’
Rectangle rect(3,4);

Rectangle rect_b(5,6);

cout << " rect area: " << rect.area() << endl;
cout << " rect_b area: " << rect_b.area() << endl;
return 0,

Internet of Things A.Y. 18-19

Overloading constructors

Internet of Things A.Y. 18-19

Overloading constructors

A constructor can be overloaded with different versions
taking different parameters.

* The compiler will automatically call the one whose parameters match
the arguments.

 The default constructor: A special kind constructor that takes no
parameters. It is called when an object is declared but is not initialized
with any arguments.

Classes

Rectangle rectb; // ok, default constructor called
Rectangle rectc(); // Oops!

Internet of Things A.Y. 18-19

An example

#include <iostream>
using namespace std;
class Rectangle{

int width, height;

public:
Rectangle(int, int); | _ "
int area(){return widthxheight; } int main(){ e
}: Rectangle rect(3,4); %)
Rectangle: :Rectangle(){ Rectangle rect_b; 1
width = 5: cout << "rect area:" << rect.area() O
height = 5; << endl;
1 cout << " ect_b area: " << rect_b.areal()
Rectangle::Rectangle(int a, int b){ << endl;
width = a; return 0;
height = b; ¥

Internet of Things A.Y. 18-19

Calling constructors

Internet of Things A.Y. 18-19

Calling constructors

* functional form: Enclose the arguments of the constructordn§

parentheses.
class_name object _name (valuel, value2, value3, ..)

 Single parameter:
class_name object_name = initialization_value;

 Uniform initialization: Same as the functional form but using braces
instead of parentheses. (Optional: an equal sign before the braces.)

Classes

class_name object _name { valuel, value2, value3, ..}

Internet of Things A.Y. 18-19

An example

#include <iostream>
using namespace std;
class Circleq{
double radius;
public:
Circle(double r){radius = r;};
double circum(){return 2%xradiusx*3.14159265; }

¥

Classes

int main(){
Circle foo(10.0); //functional form
Circle bar = 20.00; // assignment init.
Circle baz {30.00}; // uniform init.
Circle qux = {40.00}; //uniform init.

return 0;

Internet of Things A.Y. 18-19

Member initialization in
constructors

Internet of Things A.Y. 18-19

Member initialization

e \When a constructor is used to initialize other members,
these members can be initialized directly.
* |nitialization is done by inserting, before the contructor’s body, a colon

(:) and a list of initializations for class members.

class Rectangle{
int width, height;
public:
Rectangle(int, int);
int area(){return widthxheight; }

Classes

1. Rectangle::Rectangle(int a, int b){ width = a; height = b; }
2. Rectangle::Rectangle(int a, int b) : width(a) { height = b; }

3. Rectangle::Rectangle(int a, int b) : width(a), height(b) { }
Internet of Things A.Y. 18-19

Pointers to classes

Internet of Things A.Y. 18-19

Pointers to classes

Objects can be pointed to by pointers.

The members of an object can be accessed directly
from a pointer by using the arrow operator(->).

Classes

Syntax:
class_name *x pointer_name;

Internet of Things A.Y. 18-19

Operators

Expression
*X Pointed to by x
&X Address of x
XY Member y of object x
X—>Y Member y of object pointed to by x §
(%kx) .y Member y of object pointed to by x é
x[0. First object pointed to by x
x[0. Second object pointed to by x
x[n. (n+1)th object pointed to by x

Internet of Things A.Y. 18-19 a

Pointers to classes: An example

#include <iostream>
using namespace std;
class Rectangle{
int width, height;
public:
Rectangle(int x, int y): width(x), height(y){};
int area(void){return widthxheight; }

}; O
int main(){ A
Rectangle rect(3,4); (O
Rectangle x foo, x bar, * baz; o
foo = ▭
bar = new Rectangle (5,6);
baz = new Rectangle[Z]{{Z 5},4{3,6}};
cout << " rect’s area: << rect.area() << endl;
cout << " xfoo’s area: " << foo->area() << endl;
cout << " xbar’s area: " << bar->area() << endl;
cout << " baz[@] area: " << baz[@].area() << endl;
cout << " baz[1l] area: " << baz[l].area() << endl;
delete bar;
delete[] baz;
Y return 0; Internet of Things A.Y. 18-19

Exercise 1

* Write a class (call it Student) that contains the
following members: 1) First name;2) Last name;
3) Student ID; 4) Grade (private access).

 The class Student should also contain the following two member
functions (public access): 1) storeData():Stores the details of a
student (fname, Iname, etc..); 2) printData():Prints the details of
a student.

Classes

Your program should store the details of 3 students
(given as input by the user) and then print the

details of all students.
Internet of Things A.Y. 18-19

Exercise 1 (cont.)

Student # 1

ok o ook oo ok ok o ok ko ok ok ok ok ok ok ok ok ok ok ok

Enter first name: Georgia

Enter last name: Koutsandria

Enter the id of the student: 12345
Enter the grade of the student: 30

Student # 2

ok ok o ook ook o o o oo ook ok ok ok ok ok ok ok ok ok

Enter first name: Gabriele

Enter last name: Saturni

Enter the id of the student: 23456
Enter the grade of the student: 29

Student # 3

ok o o o ok o ook sk ok ok ok ko ok ok ok ok ok ok Kok

Enter first name: Christian

Enter last name: Cardia

Enter the id of the student: 34567
Enter the grade of the student: 28

*okkkkkokkkkkkkALl Studentskkskkkkdkokkkkkk
ok ok o o o ok ok ok o ok o ok ok ok ok ok ok o ok ok ook ok ok ok ok ok sk ok ok okok ok ok ok ok
F.Name L.Name ID Grade
Georgia Koutsandria 12345 30
Gabriele Saturni 23456 29
Christian Cardia 34567 28

Classes

Internet of Things A.Y. 18-19

Exercise 1 - Solution

#include <iostream>
using namespace std;
class Student{
string fname, Llname;
int student_id, grade;
public:
void storeDatal();
void printData();

rs

void Student::storeData(){
cout << "Enter first name: ', cin >> fname;
cout << "Enter last name: ", cin >> lname;
cout << "Enter the 1id: ", cin >> student_id;
cout << "Enter the grade: ", cin >> grade;
cout << endl;

n
Q
n
n

L

o

¥
void Student::printData(){
cout << fname << " " << lhame << " a
<< student_id << " " << grade << endl;

¥ Internet of Things A.Y. 18-19

Exercise 1 — Solution(cont.)

int main(){
Student students[3];
for (auto 1i=0;i<3;i++){
cout << "Student # " << 1+1 << endl;
cout << "skekekskskskskskskkkkkskskkskskkkkkkk'!' << endl;
students[i].storeData();

}

cout << 'kekekskskskskkkkkkkALL Studentskkkskkskskskskkkkkx' << endl;
cout << "skekskskskskskskskskskskskskskskskskokskskskskkkkkskskkkskkkkkkk'!' << endl;
Cout << IIF.Name 11 << 11 11 << IIL.Name 11 << 11 11
<< 11 ID 11 << 11 11 << 11 Grade 11 << end'L;
for (auto 1=0;1i<3;i++)
students[i].printDatal();

n
Q
n
n

L

o

return 0;

Internet of Things A.Y. 18-19

Exercise 2

Redo exercise 1 using class and pointers.

Classes

Internet of Things A.Y. 18-19 m

Exercise 2 - Solution

#include <iostream>
using namespace std;
class Student{
string fname, Llname;
int student_id, grade;
public:
void storeDatal();
void printData();

rs

void Student::storeData(){
cout << "Enter first name: ', cin >> fname;
cout << "Enter last name: ", cin >> lname;
cout << "Enter the 1id: ", cin >> student_id;
cout << "Enter the grade: ", cin >> grade;
cout << endl;

n
Q
n
n

L

o

¥
void Student::printData(){
cout << fname << " " << lhame << " a
<< student_id << " " << grade << endl;

¥ Internet of Things A.Y. 18-19

Exercise 2 — Solution(cont.)

int main(){

Student students[3];

Student *xstudentsp;

studentsp = &students[0];

for (auto i=0;i<3;i++){
cout << "Student # " << 1+1 << endl;
cout << "skekekskskskskskskkkkkskskskkskkkkkkk'' << endl;
(studentsp+i)—>storeDatal();

Classes

s
cout << 'kekekskskskskkkkkkkALL Studentskkkskskskskskskkkkkx' << endl;
cout << "skekskokskskskskskskskskskskskskskskskskskskskkkkkskskkkskskkkkkk'! << endl;

cout << "F.Name " << " " << "L.Name " << " "
<< ID N e N e Grade TR endl;

for (auto i=0;i<3;i++)
(studentsp+i)—>printDatal();

return 0;
Internet of Things A.Y. 18-19 m

Additional Resources

http://www.cplusplus.com/doc/tutorial/
https://en.cppreference.com/w/
Programming: Principles and Practice Using C++, Bjarne
Stroustrup (Updated for C++11/C++14)

C++ Primer, Stanley Lippman, Josée Lajoie, and Barbara E. Moo
(Updated for C++11)

Internet of Things A.Y. 18-19 m

http://www.cplusplus.com/doc/tutorial/

