
Introduction to C++
Georgia Koutsandria

Internet of Things A.Y. 18-19
Prof. Chiara Petrioli
Dept. of Computer Science
Sapienza University of Rome PART III

2Internet of Things A.Y. 18-19

Pointers

3

Pointers

Internet of Things A.Y. 18-19

• Variables: Locations in the computer’s memory which
can be accessed by their identifier (their name).

• The address of a variable can be obtained by using the
ampersand sign(&).

• Pointer: The variable that stores the address of another variable.

Po
in
te
rs

25
1775 1776 1777

1776 25

foo bar&

myvar = 25;
foo = &myvar;
bar = myvar;

myvar

4

Pointers

Internet of Things A.Y. 18-19

• They can be used to access the variable they point to
directly.

• A dereference operator (*) is preceding the pointer’s name.
• Pointer: The variable that stores the address of another variable.

Po
in
te
rs

25
1775 1776 1777

1776

25

foo

baz

myvar = 25;
foo = &myvar;
baz = *foo;

5

Declaring Pointers

Internet of Things A.Y. 18-19

• They have different properties when they point to a
char than when they point to an int or float.

• Their declaration needs to include the data type are going to point
to.

• Syntax: type * name;
• The asterisk means that a pointer is declared which should not be

confused with the dereference operator.

Po
in
te
rs

6

Pointers- An example

Internet of Things A.Y. 18-19

Po
in

te
rs

#include <iostream>
using namespace std;
int main(){

int firstvalue, secondvalue;
int * mypointer;

mypointer = &firstvalue;
*mypointer = 10;
mypointer = &secondvalue;
*mypointer = 20;
cout << "firstvalue is " << firstvalue << endl;
cout << "secondvalue is " << secondvalue << endl;

return 0;
}

7

Pointers and Arrays

Internet of Things A.Y. 18-19

Po
in

te
rs

• An array can always be implicity converted to a pointer
of a proper typer.

• Pointers and arrays support the same set of operations.
• Exception: Pointers can be assigned a new address,

while arrays cannot.
• The name of an array can be used like a pointer to its first

element.

8

Pointers and Arrays-An example

Internet of Things A.Y. 18-19

Po
in

te
rs

#include <iostream>
using namespace std;
int main(){

int numbers[5];
int * p;
p = numbers; *p = 10; p++; *p = 20;
p = &numbers[2]; *p = 30;
p = numbers + 3; *p = 40;
p = numbers; *(p+4) = 50;
for (int n=0;n<5;n++)

cout << numbers[n] << ", ";
return 0;

}

9

Pointers arithmetics

Internet of Things A.Y. 18-19

Po
in
te
rs

• Only addition/subtraction operations are allowed.
• Operations depend on the size of the data type to which

they point.
• E.g.: In a given system, a char takes 1 byte, a short takes 2 bytes,

and long takes 4 bytes. 3 pointers that point to memory locations
1000, 2000, and 3000.
char * mychar;
short * myshort;
long * mylong; mychar

1000 1001 1002

++ myshort

2000 2001 2002

++

2003

mylong

3000 3001 3002

++

3003 3004 3005 3006 3007

10

Pointers arithmetics

Internet of Things A.Y. 18-19

Po
in
te
rs

• The increment/decrement operators can be used as
either prefix or suffix of an expression.

• The increment/decrement operator has a higher
precedence than the *.

//incremement pointer, and dereference unincremented address
*p++;//same as *(p++);
//incremement pointer, and dereference incremented address
*++p; //same as *(++p);
//dereference pointer, and increment the value it points to
++*p; //same as ++(*p);
//dereference pointer, and post-increment the value it
points to
(*p)++;

11

Pointers to Pointers

Internet of Things A.Y. 18-19

Po
in

te
rs

• The syntax requires an asterisk (*) for each level of
indirection in the declaration of the pointer.

char a;
char * b;
char ** c;
a = ‘z’;
b = &a;
c = &b;

‘z’

a
7230

b
8092

c

7230 8092 10502

• Variable c can be used in three different levels of
indirection

1. c is of type char** and a value of 8092.
2. *c is of type char* and a value of 7230.
3. **c is of type char and a value of ‘z’.

12

Exercise 1

Internet of Things A.Y. 18-19

Po
in
te
rs

Write a program with a function that swaps (exchanges
the values of) two integer numbers. You should pass the
arguments to the function by reference using pointers.
Display the values of the two numbers before and after
swapping them.

13

Exercise 1-Solution

Internet of Things A.Y. 18-19

Po
in
te
rs

#include <iostream>
using namespace std;
void swap(int* n1, int* n2) {

int temp;
temp = *n1;
*n1 = *n2;
*n2 = temp;

}
int main(){

int a = 10, b = 20;
cout << "Before swapping: ";
cout << "a = " << a << ", b = " << b << endl;
swap(&a, &b);
cout << "After swapping: ";
cout << "a = " << a << ", b = " << b << endl;
return 0;

}

14

Exercise 2

Internet of Things A.Y. 18-19

Po
in
te
rs

Write a program to print the elements of an array in
reverse order using pointers. Print the elements of the
array before and after reversing it.

15

Exercise 2-Solution

Internet of Things A.Y. 18-19

Po
in
te
rs

#include <iostream>
using namespace std;
int main(){

int array[4] = {1, 2, 3, 4};
int *p = array;
cout << "Array before reversing: " << endl;
for (int i=0;i<4;i++)

cout << *(p+i) << endl;
cout << "These reversed array is: " << endl;
for (int j=3;j>=0;j--)

cout << *(p+j) << endl;
return 0;

}

16Internet of Things A.Y. 18-19

Sequential Containers in the C++
standard library

17

Sequential Containers

Internet of Things A.Y. 18-19

• Standard library includes several container types,
e.g., array, vector, string, list, forward_list,
deque.

• The order of the elements corresponds to the
positions in which the elements are added to the
container.

• Built-in functions, e.g., sorting and ordering. Se
qu

en
tia

lc
on

ta
in
er
s

18

Sequential Containers

Internet of Things A.Y. 18-19

• Array: A fixed-size container.
• Other containers: We can add or remove elements,

growing and shrinking the size of the container.
• Containers offer different performance trade-offs

relative to
• The cost to add or delete elements
• The cost to perform nonsequential access to the

elements.

Se
qu

en
tia

lc
on

ta
in
er
s

19

Sequential Containers

Internet of Things A.Y. 18-19

• Array:
• Fixed-size
• Fast random access
• Cannot add/delete elements.

• String and Vector:
• Hold their elements in contiguous memory
• Fast random access
• Fast insert/delete at the back
• Insert/delete other than the back may be slow.

Se
qu

en
tia

lc
on

ta
in
er
s

20

Sequential Containers

Internet of Things A.Y. 18-19

• Deque:
• Supports fast random access
• Adding/removing elements in the middle of a

deque is a (potentially) expesnsive operation.
• Adding/removing elements at either end is a fast

operation.
• List and forward_list:
• Fast insert/delete at any point of the list
• Do not support random access to elements;

access is done by iterating through the container
• Substantial memory overhead.

Se
qu

en
tia

lc
on

ta
in
er
s

21

Which sequential container to use?

Internet of Things A.Y. 18-19

• Unless you have a reason to use another
container, use a vector.

• Lots of small elements and space overhead matters,
don’t use list or forward_list.

• Random access to elements: vector or deque.
• Insert/delete elements in the middle of the

container: list or forward_list.
• Insert/delete elements at the front and the back

(not in the middle): deque.

Se
qu

en
tia

lc
on

ta
in

er
s

22

Which sequential container to use?

Internet of Things A.Y. 18-19

The predominant operation of the application
(whether it does more access or more insertion
or deletion) will determine the choice of the
container type.

Se
qu

en
tia

lc
on

ta
in

er
s

23

Array

Internet of Things A.Y. 18-19

• A fixed-size sequence container; No memory
management.

• Holds a specific number of elements ordered in a
strict linear sequence.

• Appropriate header: #include <array>

Se
qu

en
tia

lc
on

ta
in
er
s

//array holds 2 objects of type int; initialized
array<int, 2> myarray = {2, 8};
//array holds 2 objects of type int; initialized
array<int, 2> myarray{2, 8};
//10 objects of type int, each initialized to 10
array<int, 10 > myarray;

24

Arrays: An example

Internet of Things A.Y. 18-19

#include <iostream>
#include <array>
using namespace std;

int main(){
array<int,4> myarray = {1, 2, 3, 4};
cout << "Element of myarray at position 1 is: "

<< myarray[1] << endl;
return 0;

}

Se
qu

en
tia

lc
on

ta
in

er
s

25

Built-in vs. Library Arrays

Internet of Things A.Y. 18-19

#include <iostream>
using namespace std;

int main(){
int myarray[3] = {10,20,30};
for(int i=0;i<3;i++)

++myarray[i];
for(int elem:myarray)

cout<<elem<<endl;
return 0;

}

Se
qu

en
tia

lc
on

ta
in

er
s#include <iostream>

#include <array>
using namespace std;

int main(){
array<int,3> myarray{10, 20, 30};
for(int i=0;i<myarray.size();i++)

++myarray[i];
for(int elem:myarray)

cout<<elem<<endl;
return 0;

}

26

Using arrays

Internet of Things A.Y. 18-19

Se
qu

en
tia

lc
on

ta
in

er
s

• begin () - returns an iterator to the first element in the array
• end() - returns an iterator to the past-the-end element
• size () - Returns the number of elements in the array
• empty () - returns whether the array is empty
• at ()-returns a reference to the element at a specific position
• front()-returns a reference to the first element in the array
• back()-returns a reference to the last element in the array

• fill()-sets a value for all elements in the array
• Οperator []-returns a reference to the element at a specified

position in the array.

27

Vectors

Internet of Things A.Y. 18-19

• A collection of objects which have the same type.
• Every object has an associated index which allows

access to that object.
• Efficient and flexible memory management.
• Appropriate header:

#include <vector>

Se
qu

en
tia

lc
on

ta
in
er
s

28

Vectors

Internet of Things A.Y. 18-19

//vector vec holds objects of type T; vec is empty
vector<T> vec;

vector<int> vec(4); //vec holds 4 objects of type int

//4 objects of type int, each initialized to 10
vector<int> vec(4, 10);

vector<string> vec(4, "hi!");//4 strings,all initialized to "hi!"

vector<vector<int>> vec //vector whose objects are vectors

Se
qu

en
tia

lc
on

ta
in
er
s

29

Vectors: An example

Internet of Things A.Y. 18-19

//include vector header
#include <vector>
using namespace std;

int main(){
vector<int> vec(4);
vec[1]=5;
return 0;

}

Se
qu

en
tia

lc
on

ta
in

er
s

30

Using vectors

Internet of Things A.Y. 18-19

Se
qu

en
tia

lc
on

ta
in

er
s

• begin () - returns an iterator to the first element in the vector
• end() - returns an iterator to the past-the-end element
• size () - Returns the number of elements in the vector
• empty () - returns whether the vector is empty
• at ()-returns a reference to the element at a specific position
• insert()-inserts a new element at a specified position
• erase()-removes either a single element or a range of elements

• push_back()-adds a new element at the end of the vector
• pop_back()-removes the last element in the vector
• clear()-removes all elements from the vector
• Οperator []-returns a reference to the element at a specified

position

31

Using vectors

Internet of Things A.Y. 18-19

#include <vector>
using namespace std;
int main(){

vector<float> ivec(10);

for(int i=0; i<ivec.size(); ++i)
ivec.at(i) = 5.0f*float(i);

return 0;
} access element of

vector ivec at
position i

Built-in function to
get the size of a

vector

Se
qu

en
tia

lc
on

ta
in

er
s

32

Using vectors

Internet of Things A.Y. 18-19

Se
qu

en
tia

lc
on

ta
in

er
s

33

Exercise 1

Internet of Things A.Y. 18-19

Write a program to implement the various functions of a
vector.
- A vector initially has two integer elements initialized to 50.
- Print the contents and the size of the vector.
- Insert at the beginning of the vector elements from 1 to 10 (10 9 8 7 6

5 4 3 2 1).
- Print the contents and the size of the vector.
- Remove the last element of the vector and print again the size. Se

qu
en

tia
lc
on

ta
in
er
s

34

Exercise 1-Solution

Internet of Things A.Y. 18-19

Se
qu

en
tia

lc
on

ta
in
er
s

35Internet of Things A.Y. 18-19

Associative Containers in the
C++ standard library

36

Associative Containers

Internet of Things A.Y. 18-19

• Elements are stored and retrieved by a key.

• Two primary associative container types: map and set.

• The C++ library provides eight associative containers.

As
so

cia
tiv

e
co

nt
ai

ne
rs

37

Associative Container Types

Internet of Things A.Y. 18-19

As
so

cia
tiv

e
co

nt
ai

ne
rs

Container Type
map Holds key-value pairs

set The key is the value

multimap A key can appear multiple times

multiset A key can appear multiple times

unordered_map Organized by a hash function

unordered_set Organized by a has function

unordered_multimap Hashed map; keys can appear multiple times

unordered_multiset Hashed set; keys can appear multiple times

38

The map associative container

Internet of Things A.Y. 18-19

• A collection of (key, value) pairs; often referred to as an
associative array.

• Values are found by a key rather than by their position (as in
arrays).

• E.g.: Mapping names to phone numbers; Each pair contains a
person’s name as a key and a phone number as its value.

As
so

cia
tiv

e
co

nt
ai

ne
rs

#include <map>

map<key, value> name;

39

The map associative container

Internet of Things A.Y. 18-19

• E.g.: map<string,int> words;
• Key = Word (string)
• Value = Word’s frequency count (int)

• Several basic functions:
• begin () - returns an iterator to the first element in the map
• end() - returns an iterator to the theoretical element that follows the

last element in the map
• size () - Returns the number of elements in the map

• empty () - returns whether the map is empty
• at ()-returns the reference to the element associated with the

key.

As
so

cia
tiv

e
co

nt
ai

ne
rs

40

The map associative container

Internet of Things A.Y. 18-19

• Several basic functions (cont.):
• insert(key,value)-adds a new element to the map
• erase(iterator position)-removes the element at that position
• erase(const g)-removes the key value ‘g’ from the map
• clear()-removes all elements
• find() –returns the iterator to the entry having key equal to given key.

• Οperator []-used to reference the element present at position given inside
the operator.

• Operator = assigns contents of a container to a different
container.

As
so

cia
tiv

e
co

nt
ai

ne
rs

41

map : An example

Internet of Things A.Y. 18-19

As
so

cia
tiv

e
co

nt
ai

ne
rs

42

Exercise 1

Internet of Things A.Y. 18-19

Write a program to print the grades of the students
based on the following data (use the map container).
Then you should only print the grades of students
with name = Gabriele and name = Christian.

Name Grade
Georgia 29
Gabriele 26
Chiara 30
Christian 23

As
so

cia
tiv

e
co

nt
ai

ne
rs

43

Exercise 1-Solution

Internet of Things A.Y. 18-19

#include <iostream>
#include <map>
using namespace std;
int main(){

map<string,int>grades{{"Georgia",29},{"Gabriele",26},
{"Chiara",30},{"Christian",23}};

map<string,int>::iterator i;
cout << "The grades of all students are: ";
for (i=grades.begin();i!=grades.end();i++)

cout << i->second << " ";
cout << endl;
cout << "The grade of student Gabriele is: "

<< grades["Gabriele"] << endl;
cout << "The grade of student Christian is: "

<< grades["Christian"] << endl;

return 0;
}

As
so

cia
tiv

e
co

nt
ai

ne
rs

44

Exercise 2

Internet of Things A.Y. 18-19

Change the program of Exercise 1 as follows:
- Insert two new elements in the map
- Print the element of the map with key = "Christian"
- Print the size of the map
- Erase the element with key= "Chiara"
- Print all the elements of map
- Reprint the size of the map.

As
so

cia
tiv

e
co

nt
ai

ne
rs

45

Exercise 2-Solution

Internet of Things A.Y. 18-19

As
so

cia
tiv

e
co

nt
ai

ne
rs

46

Additional Resources

Internet of Things A.Y. 18-19

• http://www.cplusplus.com/doc/tutorial/
• https://en.cppreference.com/w/
• Programming: Principles and Practice Using C++, Bjarne

Stroustrup (Updated for C++11/C++14)
• C++ Primer, Stanley Lippman, Josée Lajoie, and Barbara E. Moo

(Updated for C++11)

http://www.cplusplus.com/doc/tutorial/

