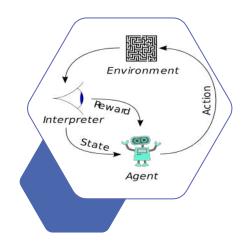
Reinforcement Learning and Markov Decision Processes Georgia Koutsandria

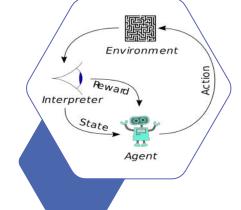
Internet of Things A.Y. 18-19 Prof. Chiara Petrioli Dept. of Computer Science Sapienza University of Rome

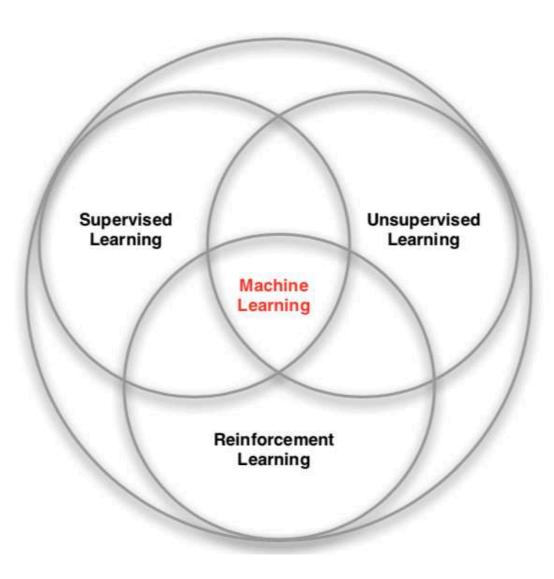


Reinforcement Learning (RL)

2

Branches of Machine Learning





Internet of Things A.Y. 18-19

Branches of Machine Learning

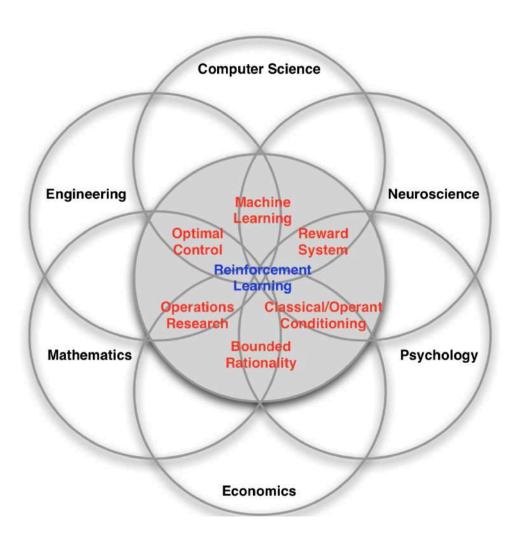
- Supervised learning: Learning from a training set of labeled data provided by a knowledgable external supervisor.
- **Unsupervised learning**: Learning the inherent structure of data without the use of explicitly-provided labels.
- **Reinforcement learning**: Learning what to do—how to map situations to actions—so as to maximize a numerical reward signal.

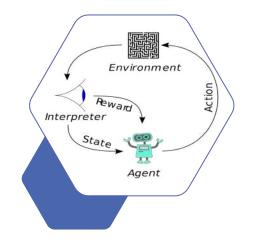
Environment

Agent

Interprete

Many faces of RL



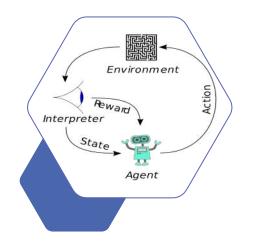


5

Internet of Things A.Y. 18-19

Machine vs. Reinforcement Learning

- There is no supervisor, only a *reward* signal
- No instantaneous feedback (delayed)
- Time really matters (sequential, non i.i.d. data)
- Agent's actions affect the subsequent data it receives.



Historical Background

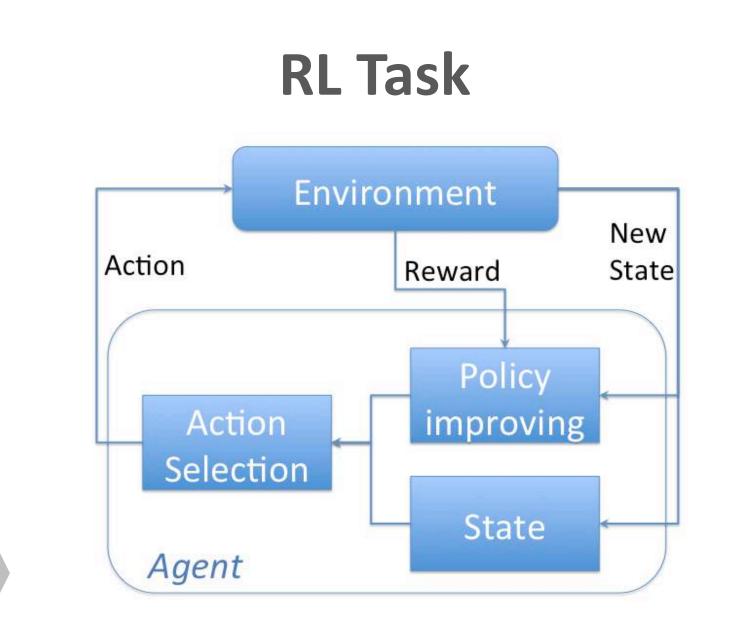
Original motivation: animal learning

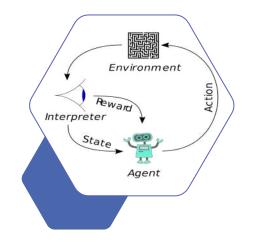
~

Early emphasis: neural net implementations and heuristic properties

Operations research, optimal control theory, dynamic programming, Al state-space research

Best formalized as a set of techniques to handle: MDPs or P(artially)O(bservable)MDPs

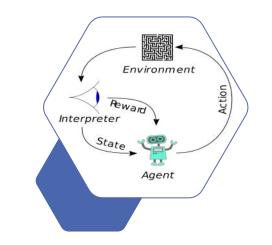




8

RL Task

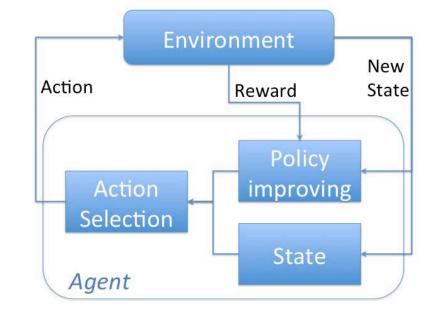
$$s(0) \xrightarrow{r(1)} s(1) \xrightarrow{r(2)} s(2) \xrightarrow{r(3)} s(3)...$$



Goal: learn to choose actions that maximize the cumulative reward

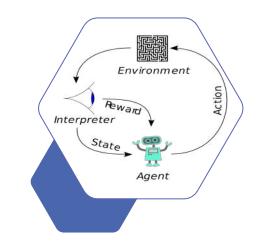
$$r(0) + \gamma r(1) + \gamma r(2) + \gamma r(3) + ...$$

where $0 \leq \gamma < 1$



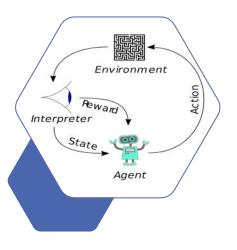
Elements of an RL agent

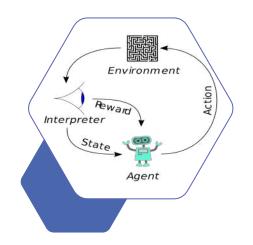
- Policy: Defines the agent's way of behaving
- Reward signal: Defines the goal of the RL problem
- Value function: Specifies what is good in the long run
- Model: Mimics the behavior of the environment.



Foresigthed Optimization

- Key feature: Actions affect **immediate** and **future** system performance
 - System optimazation "on the long run".
- When actions/decisions affect immediate and future performance, myopic heuristic solutions are suboptimal because they ignore the expected future utility.
 - Dramatic improvements can be achieved using long term optimization.





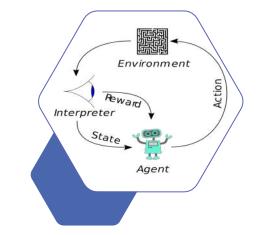
Markov Decision Processes (MDP)

Internet of Things A.Y. 18-19

12

Introduction to MDPs

- MDPs formally describe an environment for RL.
- The environment is fully observable, i.e., the current state completely characterizes the process.
- Almost all RL problems can be formalized as MDPs.



Markov Decision Processes

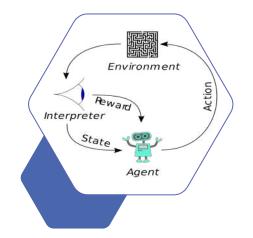
- Finite set of states *S*
- Finite set of actions $A(s), s \in S$
- Immediate reward function

$$R: S \times A \to R$$

• Transition (next-state) function

 $T\colon S\times A\to S$

- More generally, R and T are treated as stochastic
- Our focus: discrete time MDPs.



Markov Decision Processes

• Markov Property for MDPs

$$P(s' \mid s, a)$$

$$s', s \in S, \qquad a \in A(s)$$

• Next state is a function of current *state* and the *action taken*!

15

Environment

Agent

Interprete

State

Markov Decision Processes

- If no rewards and only one action, this is just a Markov chain(or Controlled Markov Chain)
- Overall objective is to determine a policy $\pi: S \rightarrow A$

such that some measure of cumulative reward is optimized

E.g,
$$r(0) + \gamma r(1) + \gamma r(2) + \gamma r(3) + ...$$

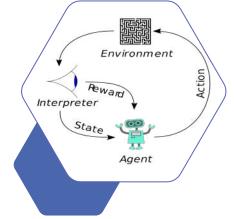
Environment

Agent

Interprete

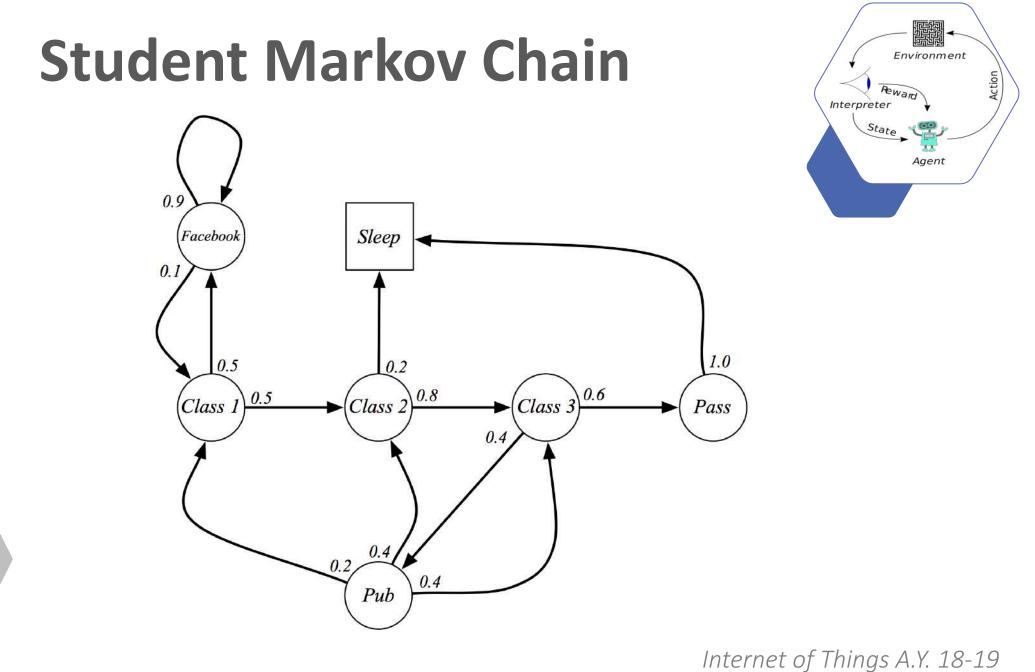
What is a policy?

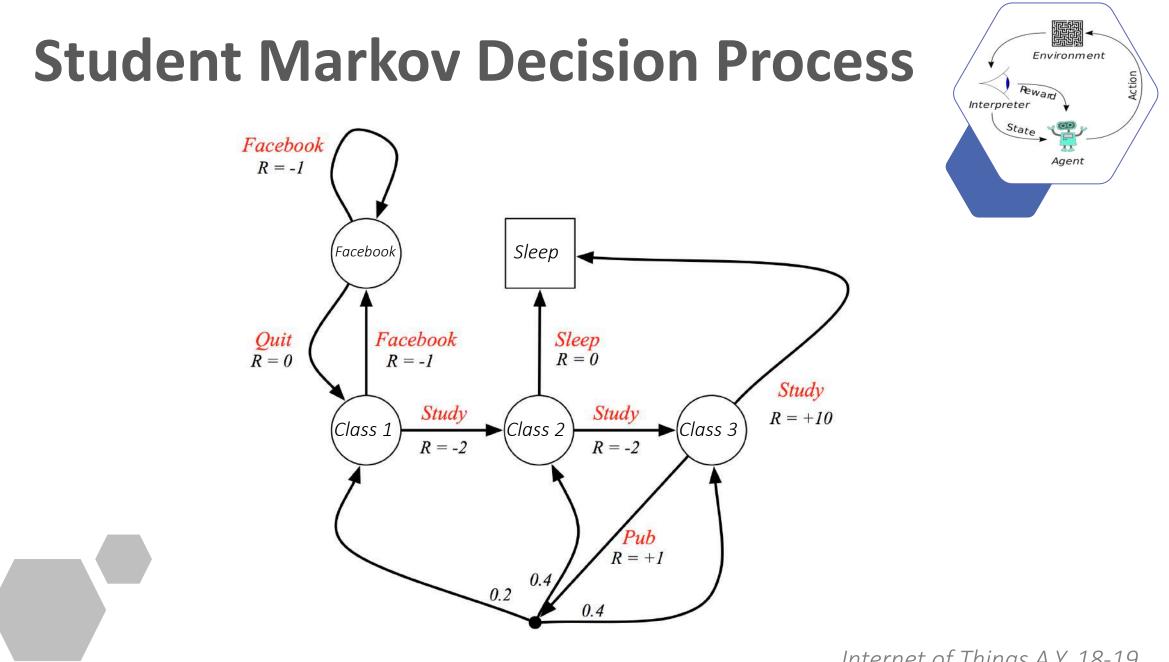
•



• A **policy** is the agent's behavior Then a good action is If agent is in state S_1 a_3 It is a map from state to action. **S**₂ a_7 **S**₃ a_1 S_4 a_3

Internet of Things A.Y. 18-19

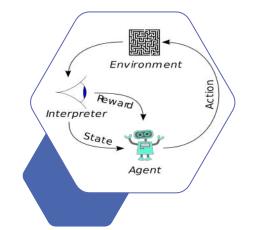




Process **Markov Decision**

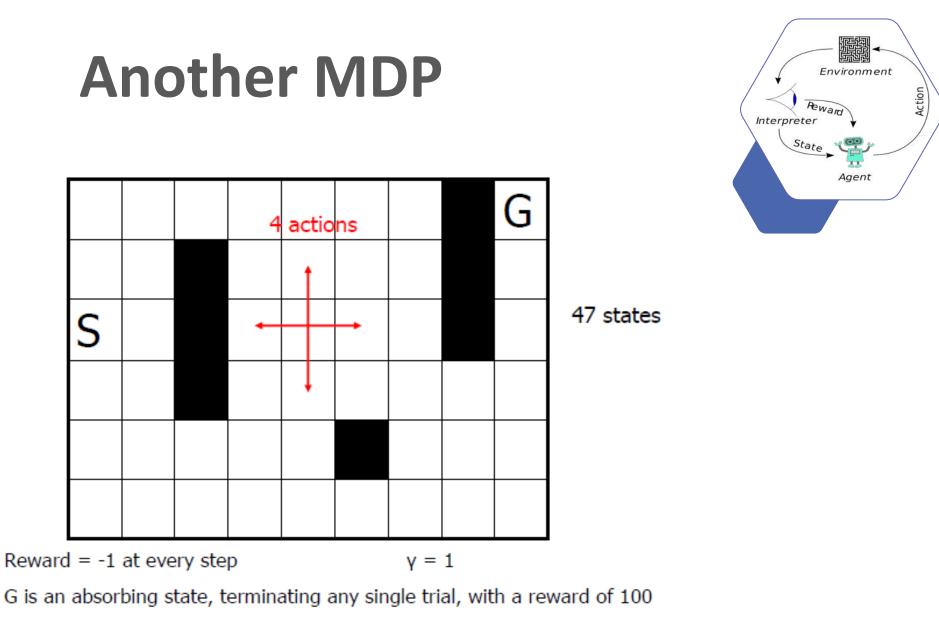
19

A Markov Decision Process



 $\gamma = 0.9$ You run a S startup company. Poor & Poor & _N1/2 А Famous Unknown А 1/2 In every +0 +0 state you must S 1/2 choose 1/2 between 1/2 1/21/2 Saving Illustrates that A money or S the next-state A Advertising. ^{1/2} function really Rich & Rich & determines a Famous probability 1/2 S Unknown Here the reward distribution over /1/2 \ +10 shown inside any successor states +10 state represents the in the general reward received upon case. entering that state.

20

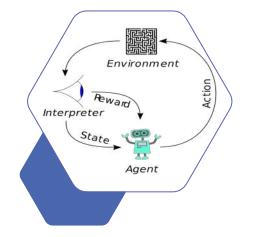


Effect of actions is deterministic

Applications of MDPs

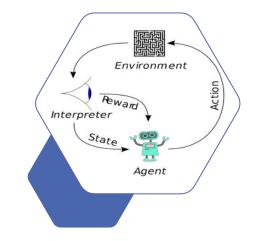
- Many important problems are MDPs
 - Robot path planning
 - Travel route planning
 - Elevator scheduling
 - Autonomous aircraft navigation
 - Manufacturing processes
 - Network switching & routing

• Many of these have been successfully handled using RL methods. Internet of Things A.Y. 18-19



Brief Summary of Concepts

- The *agent* and its *environment* interact over a sequence of discrete time steps
- The specification of their interface defines a particular task:
 - the actions are the choices made by the agent
 - the *states* are the basis for making the choices
 - the *rewards* are the basis for evaluating the choices
- A *policy* is a stochastic rule by which the agent selects actions as a function of states
 - The agent's objective is to maximize the amount of reward it receives over time.



Value Function

- For any policy π , define the Value function as the function $V^{\pi}: S \rightarrow I\!\!R$ assigning to each state the quantity $V^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^{t} r(t),$ where s(0) = s
- Each action a(t) is chosen according to policy π
- Each subsequent s(t + 1) arises from the transition function T
- Each immediate reward r(t) is determined by the immediate reward function R
- γ is a given discount factor in [0, 1]

Reminder: Use expected values in the stochastic case.

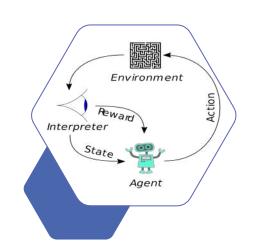
Environment

Agent

Interprete

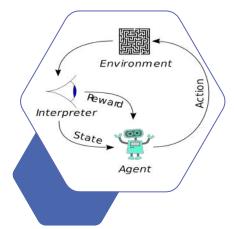
Discount factor γ

- Models idea: Future rewards are not worth as much as immediate rewards
 - Used in economic models
 - Uncertainty about the future
- Models situations where there is a nonzero fixed probability $1-\gamma$ of termination at any time
- Tradeoff between myopic ($\gamma = 0$) vs. for esighted optimization (γ close to 1)
- ...and makes the math work out nicely with bounded rewards, sum guaranteed to be finite even in infinite-horizon case.



Technical Remarks

- If the next state and/or immediate reward functions are stochastic, then the r(t) values are random variables and the return is defined as the expectation of this sum.
- If the MDP has absorbing states, the sum may actually be finite
 - In that case $\gamma = 1$ is allowed, i.e., no discount
 - We stick with this infinite sum notation for the sake of generality
 - The formulation we use is called infinite-horizon.



-earning

Reinforcement

Optimal Policies

• **Objective**: Find a policy π^* such that

 $V^{\pi^*}(s) \ge V^{\pi}(s)$

for any policy π and any state s

• Such a policy is called an optimal policy

We define:

$$V^* = V^{\pi^*}$$

Environment Interpreter State Agent

Internet of Things A.Y. 18-19

Interesting Facts

- For every MDP such that *S* is discrete and *A*(*s*) is finite there exists an optimal policy
 - This theorem can be easily extended to the case in which A(s) is a compact set.
- It is a policy such that for every possible start state there is no better option than to follow the policy.

Environment

Agent

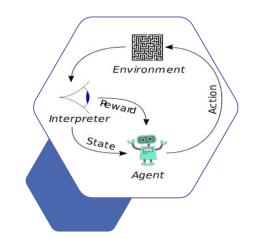
Interprete

State

Finding an Optimal Policy

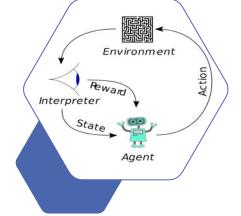
- Idea:
 - 1. Run through all possible policies.
 - 2. Select the best.

What's the problem ??



Finding an Optimal Policy

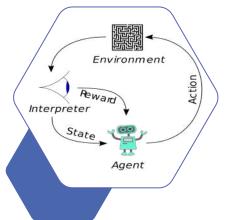
- Dynamic Programming approach:
 Determine the optimal value function for each state
 Select actions according to this optimal value function V*
- How do we compute V^* ?
 - Magic words: Bellman equation(s)



Derivation of the Bellman Equation

• Given the state transition $s \rightarrow s'$

$$(s) = \sum_{t=0}^{\infty} \gamma^{t} r(t)$$
$$= r(0) + \gamma \sum_{t=0}^{\infty} \gamma^{t} r(t+1)$$
$$= r(0) + \gamma V^{\pi}(s')$$



Internet of Things A.Y. 18-19

Bellman Equations

• For any state s and policy π

 $V^{\pi}(s) = R(s, \pi(s)) + \gamma V^{\pi}(T(s, \pi(s)))$

• For any state *s*, the optimal value function is

$$V^{*}(s) = \max_{a} \{R(s,a) + \gamma V^{*}(T(s,a))\}$$

- Recurrence relations
 - Can be used to compute the return from a given policy or to compute the optimal return via value iteration.

Environment

Agent

Interprete

Bellman Equations: General Form

• For completeness, here are the Bellman equations for stochastic and discrete time MDPs:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P_{ss'}(\pi(s)) V^{\pi}(s')$$
$$V^{*}(s) = \max_{a} \{ R(s, a) + \gamma \sum_{s'} P_{ss'}(a) V^{*}(s') \}$$

where R(s, a) now represents $E(R \mid s, a)$ and $P_{ss'}(a)$ is the probability that the next state is s' given that action a is taken in state s

Environment

Agent

Interprete

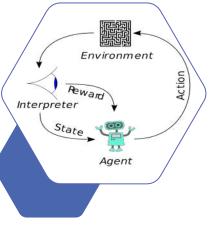
State

From Values to Policies

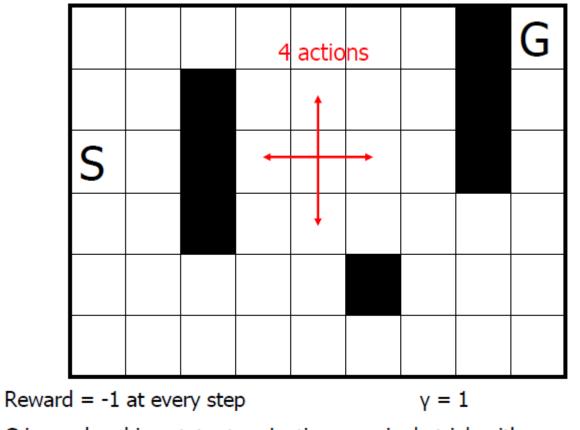
 Given the optimal value function V* it follows from Bellman equation that the optimal policy can be computed as:

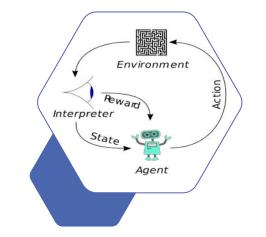
$$\pi(s) = \underset{a}{\operatorname{argmax}} \{R(s,a) + \gamma V^*(s')\}$$

- An optimal policy is said to be greedy for V^*
- If π is not optimal then a greedy policy for V^{π} will yield a larger return than π
 - Not hard to prove
 - Basis for another DP approach to finding optimal policies: policy iteration.



An example: Maze task

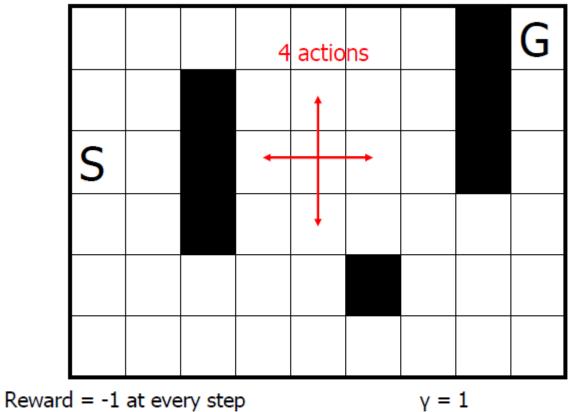




35

G is an absorbing state, terminating any single trial, with a reward of 100 Effect of actions is deterministic

An example: Maze task



How would you model the MDP?

Environment

Agent

Reward

State

Interpreter

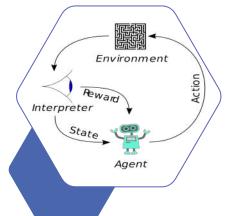
Action

G is an absorbing state, terminating any single trial, with a reward of 100 Effect of actions is deterministic

Internet of Things A.Y. 18-19

Maze task: MDP Model

- State is a pair: $s = (x, y), x, y \in \{1, ..., 9\}$ defining the robot's position.
- Actions: A(s) = {up, down, left, right}
 (except for those states near the black squares)
- Reward Function: $R(s) = \begin{cases} -1, \ \forall s \neq G \\ 100, \ \text{if } s = G \end{cases}$ • Transition function: $s' = \begin{cases} (x+1,y) & \text{if } a = \text{right} \\ (x-1,y) & \text{if } a = \text{left} \\ (x,y+1) & \text{if } a = \text{up} \\ (x,y-1) & \text{if } a = \text{down} \end{cases}$

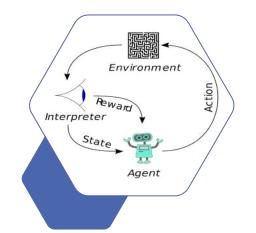


Maze task: Value Function

 V^*

	86	87	88	89	90	91	92		100	G
	85	86		90	91	92	93		99	
S	86	87		91	92	93	94		98	
	87	88		92	93	94	95	96	97	
	88	89	90	91	92		94	95	96	
	87	88	89	90	91	92	93	94	95	

What's an optimal path from S to G?



Maze task: Optimal Path

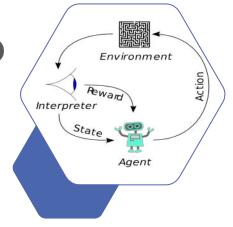
1*

	86	87	88	89	90	91	92		100	G
	85	86		90	91	92	93		99	
S	86	87		91	92	93	94		98	
	87	88		92	93	94	95	96	97	
	88	89	90	91	92		94	95	96	
	87	88	89	90	91	92	93	94	95	

Internet of Things A.Y. 18-19

Why On-line learning is important?

- Assumption: All system parameters to be known.
- Finding the optimal policy becomes a straightforward computational problem
 - E.g., value iteration, but even policy iteration, linear programming, etc...
- What if rewards/transitions probabilities are unknown? Can we compute the optimal policy?
- We have to deal with a *Reinforcement Learning problem*!



Agent-Environment Interaction

- Everything *inside* the agent is completely known and controllable by the agent.
- Everything *outside* is incompletely controllable but may or may not be completely known.

Environment

Agent

Interpreter

State

Agent Knowledge

- A reinforcement learning problem can be posed in a variety of different ways depending on assumptions about the level of knowledge initially available to the agent.
- In problems of *complete knowledge*, the agent has a complete and accurate model of the environment's dynamics .
- If the environment is an MDP, then such a model consists of the one-step *transition probabilities* and *expected rewards* for all states and their allowable actions.
 - In problems of <u>incomplete knowledge</u>, a complete and perfect model of the environment is not available.

Environment

Q-Learning

• For any policy π , define $Q^{\pi}: S \times A \to R$ by

 $Q^{\pi}(s,a) = \sum_{t=0}^{\infty} \gamma^t r(t)$

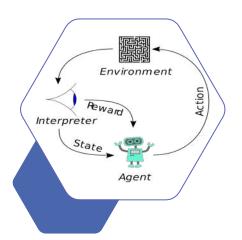
- s(0) = s is the initial state,
- a(0) = a is the action taken,
- all subsequent states, actions, and rewards arise following policy π
- Just like V^{π} except that action a is taken at the very first step and only after this, policy π is followed Bellman equations can be rewritten in terms of Q-values.

Environment

Agent

Interprete

If agent is in state	An starts with this action and then follows the policy	Return should be
s ₁	a ₁	-5
S ₁	a ₂	3
S ₂	a ₁	17.1
s ₂	a ₂	10



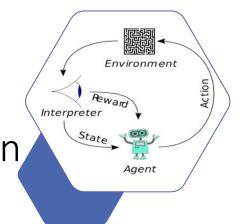
44

Internet of Things A.Y. 18-19

• Relationship between Value function and Q-function (given the state transition $s \rightarrow s'$)

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma V^{\pi}(s')$$

$$Q^{\pi}(s,a) = R(s,a) + \gamma V^{\pi}(s')$$



• Relationship between Value function and Q-function (given the state transition $s \rightarrow s'$)

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma V^{\pi}(s')$$

$$Q^{\pi}(s,a) = R(s,a) + \gamma V^{\pi}(s')$$

46

Environment

Agent

Interpreter

State

• Define $Q^* = Q^{\pi^*}$, where π^* is an optimal policy

$$Q^*(s,a) = R(s,a) + \gamma V^*(s')$$

• Since:

$$V^*(s) = \max_a \{R(s,a) + \gamma V^*(s')\}$$

• Then:

$$V^*(s) = \max_a Q^*(s,a)$$

• And:

$$Q^*(s,a) = R(s,a) + \gamma \max_{a'} Q^*(s',a')$$

Environment Pewand Interpreter State Agent

• The optimal policy π^* is greedy for Q^* , that is

$$\pi^*(s) = \operatorname*{argmax}_{a} Q^*(s, a)$$

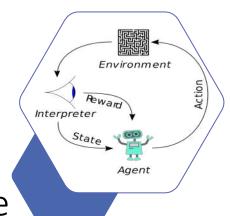
[it follows from
$$V^*(s) = \max_a Q^*(s, a)$$
]

48

Internet of Things A.Y. 18-19

Q-learning Algorithm

- Q is the estimated utility function
 - It tells us how good an action is, given a certain state
 - It includes immediate reward for making an action + best utility (Q) for the resulting state (future utility)
 - It allows to compute the optimal policy.
- Q-learning is based on an online estimation of the Q function $Q(s,a) \leftarrow (1 - \alpha)Q(s,a) + \alpha [r(s,a) + \gamma \max_{a'} Q(s',a')]$



Q-learning Algorithm

State Initialize Q(s, a) arbitrarily Agent Repeat (for each decision epoch) Initialize s Repeat (for each step of episode) Choose a from s using a policy derived from Q <u>Take</u> action a, <u>observe</u> r(s, a), $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[r(s,a) + \gamma \max Q(s',a')\right]$ $s \leftarrow s'$ until s is terminal

50

Environment

Interprete

Exploitation and Exploration

- Q-learning algorithm does not specify what the agent should actually do. The agent learns a *Q*-function that can be used to determine an optimal action.
- There are two things that are useful for the agent to do:
 - exploit the knowledge that it has found at the current state s by taking one of the actions a that maximizes Q[s,a].
 - explore in order to build a better estimate of the optimal Qfunction. That is, it should select a different action from the one that it currently thinks is best.

Environment

Agent

Interprete

State

Exploitation and Exploration

Choose a from s using a policy derived from Q

- Simple Approach: ε-greedy policy
 - ε small number, e.g., 0.1

```
Generate a random number p

if p \le \varepsilon

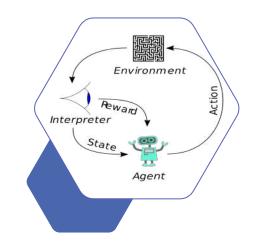
Choose an action at random \rightarrow explore

else

Choose the greedy action

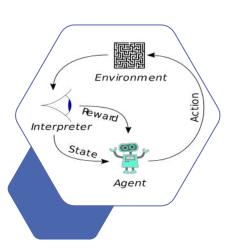
a^* = \arg \max Q(s, a) \rightarrow exploit
```

end



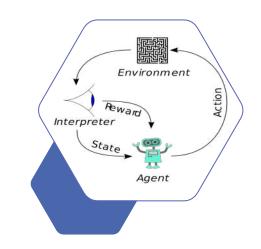
Q-learning Discussion

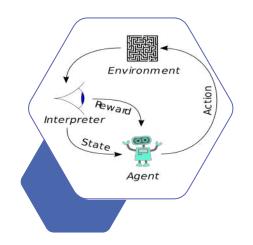
- Q-learning is guaranteed to converge to the optimal Q-values if all Q(s,a) values are updated infinitely often (Watkins and Dayan 1992).
- It follows that exploration is necessary
 - A common approach is the ε-greedy strategy
- Q-learning can be very slow to converge to the optimal policy, especially if the state space is large.
- One of the biggest challenges in the RL field is to *speed up* the learning process.



Learning or Planning?

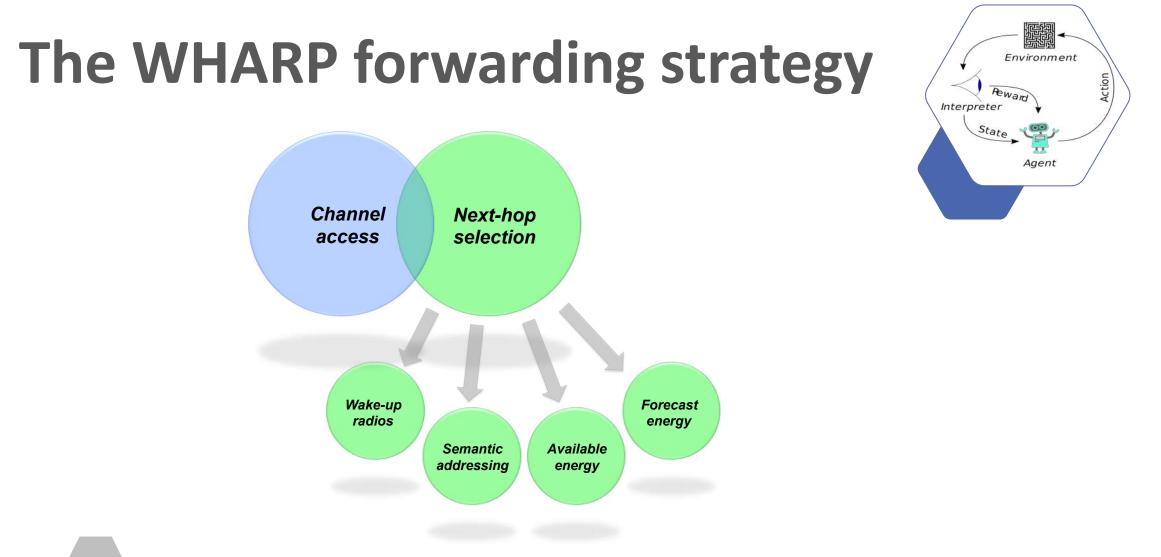
- Classical DP emphasis for optimal control
 - Dynamics and reward structure known
 - Off-line computation
- Traditional RL emphasis
 - Dynamics and/or reward structure initially unknown
 - On-line learning
- Computation of an optimal policy off-line with known dynamics and reward structure can be regarded as planning.





Reinforcement Learning in Practice

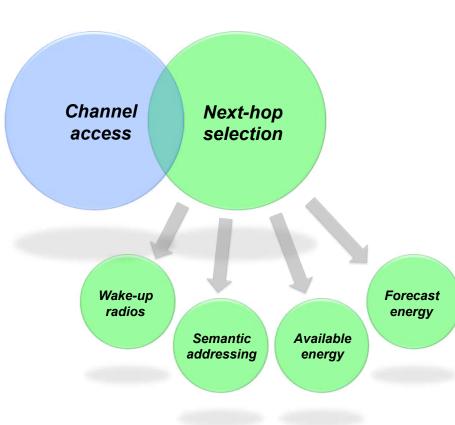
Internet of Things A.Y. 18-19

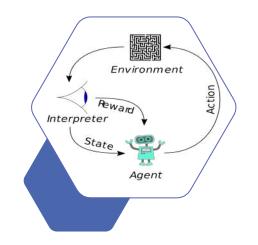


S. Basagni, V. Di Valerio, G. Koutsandria, C. Petrioli, and D. Spenza. "WHARP: A wake-up radio and harvesting-based forwarding strategy for green wireless networks, " in *Proceedings of IEEE MASS 2017*, Orlando, FL, USA, October 22–25 2017. *Internet of Things A.Y. 18-19*

The WHARP forwarding strategy

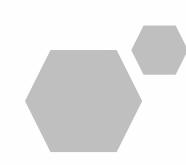
• **Objective**: Optimize energy consumption through a «smart» selection of next-hop relays.





The WHARP forwarding strategy

- Semantic awakenings: Distance from the sink
- Nodes decide whether to participate to the relay selection process based on a proactive Markov Decision Process mechanism
 - 1. Available energy
 - 2. Forecast energy
- MDP solution method: Backward Value Iteration (BVI)



WHARP decisions optimize system performance over time

S. Basagni, V. Di Valerio, G. Koutsandria, C. Petrioli, and D. Spenza. "WHARP: A wake-up radio and harvesting-based forwarding strategy for green wireless networks, " in *Proceedings of IEEE MASS 2017*, Orlando, FL, USA, October 22–25 2017. *Internet of Things A.Y. 18-19*

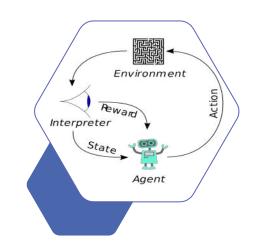
Environment

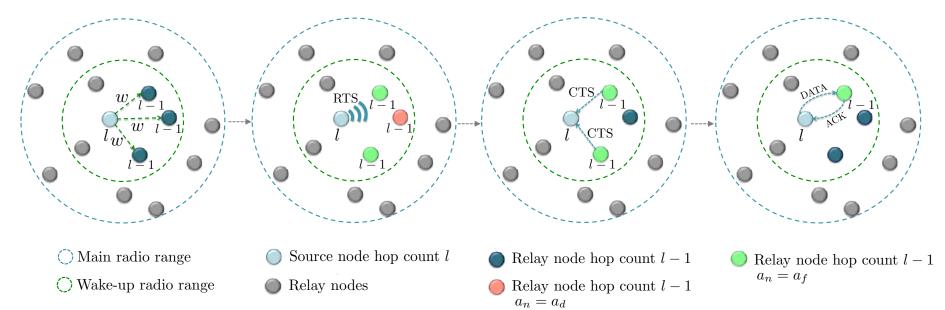
Agent

Interprete

The WHARP forwarding strategy

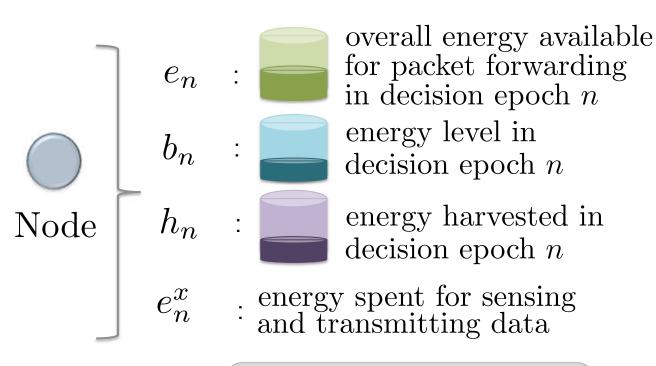
- The MDP policy outputs either green or red.
- Green output: Nodes turn on their main radio
- Red output: Nodes remain asleep





S. Basagni, V. Di Valerio, G. Koutsandria, C. Petrioli, and D. Spenza. "WHARP: A wake-up radio and harvesting-based forwarding strategy for green wireless networks, " in *Proceedings of IEEE MASS 2017*, Orlando, FL, USA, October 22–25 2017. *Internet of Things A.Y. 18-19*

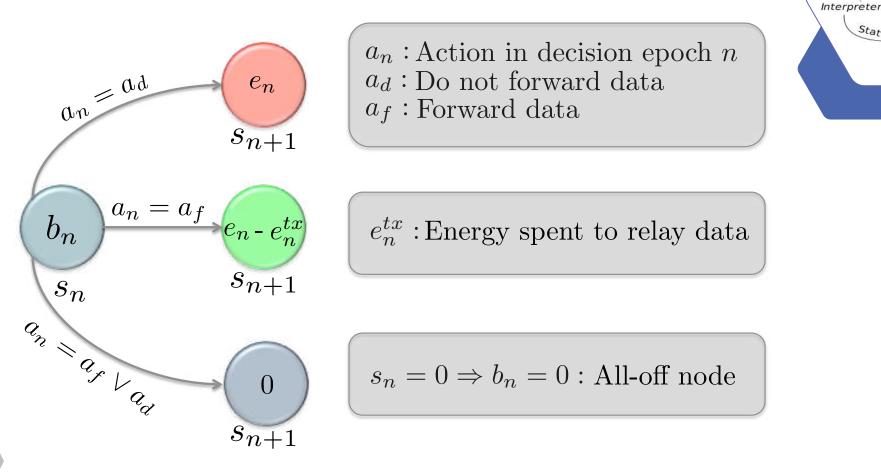
MDP model: States



$$e_n = b_n + h_n - e_n^x$$

S. Basagni, V. Di Valerio, G. Koutsandria, C. Petrioli, and D. Spenza. "WHARP: A wake-up radio and harvesting-based forwarding strategy for green wireless networks, " in *Proceedings of IEEE MASS 2017*, Orlando, FL, USA, October 22–25 2017. *Internet of Things A.Y. 18-19*

MDP model: Actions and Transitions

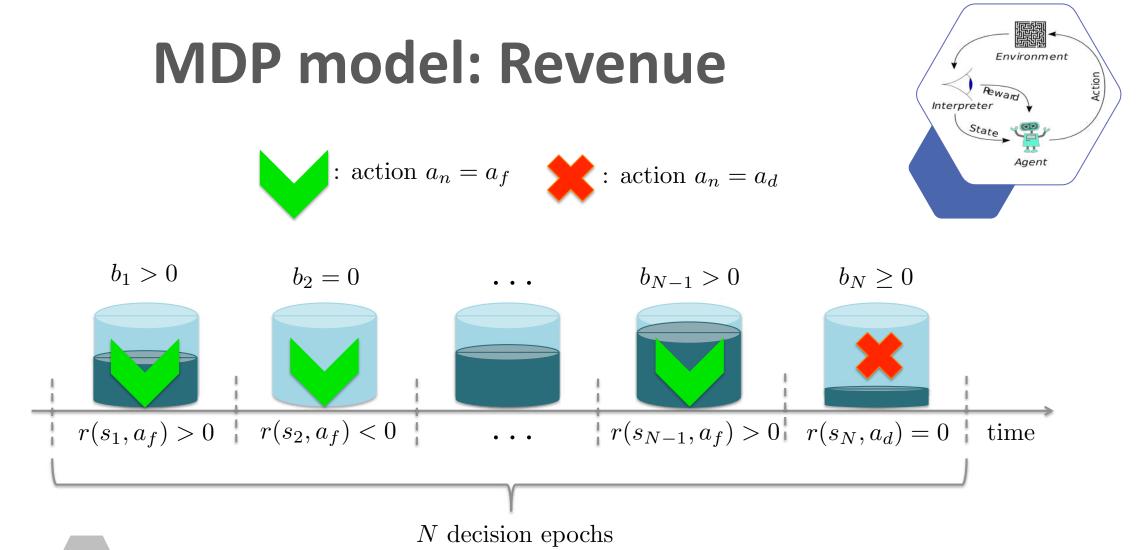


S. Basagni, V. Di Valerio, G. Koutsandria, C. Petrioli, and D. Spenza. "WHARP: A wake-up radio and harvesting-based forwarding strategy for green wireless networks, " in *Proceedings of IEEE MASS* 2017, Orlando, FL, USA, October 22–25 2017. Internet of Things A.Y. 18-19

Environment

Agent

State

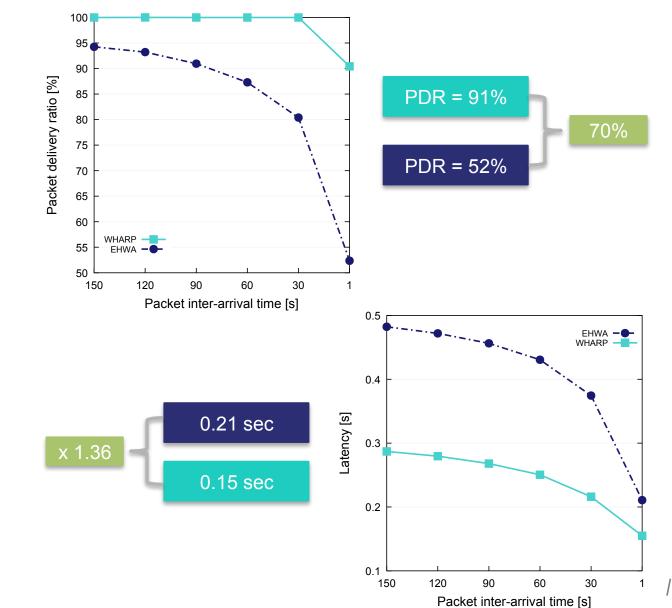


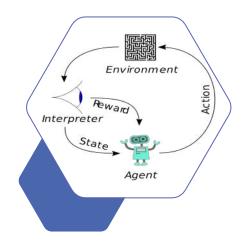
S. Basagni, V. Di Valerio, G. Koutsandria, C. Petrioli, and D. Spenza. "WHARP: A wake-up radio and harvesting-based forwarding strategy for green wireless networks, " in *Proceedings of IEEE MASS 2017*, Orlando, FL, USA, October 22–25 2017. *Internet of Things A.Y. 18-19*

WHARP: Performance Evaluation

- Scenario: WHARP vs. EHWA
 - GreenCastalia Simulator
 - M=120; Grid: 200 x 200 m²
 - R = 60m; R_w = 45m
 - Energy model: Magonode++ mote

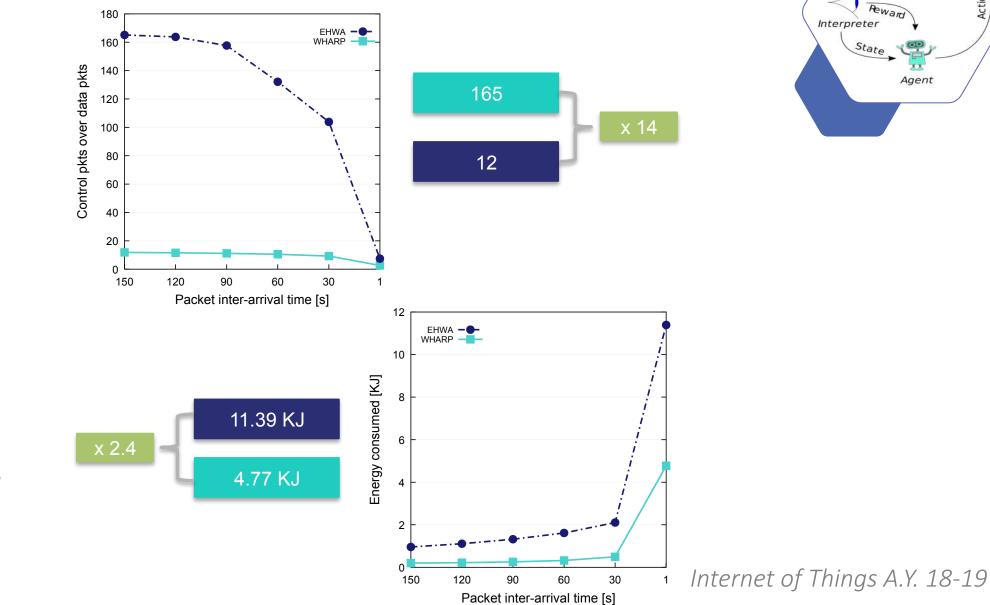
WHARP: Performance Evaluation

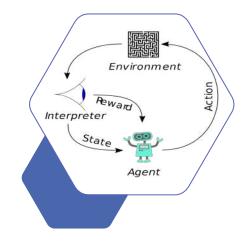


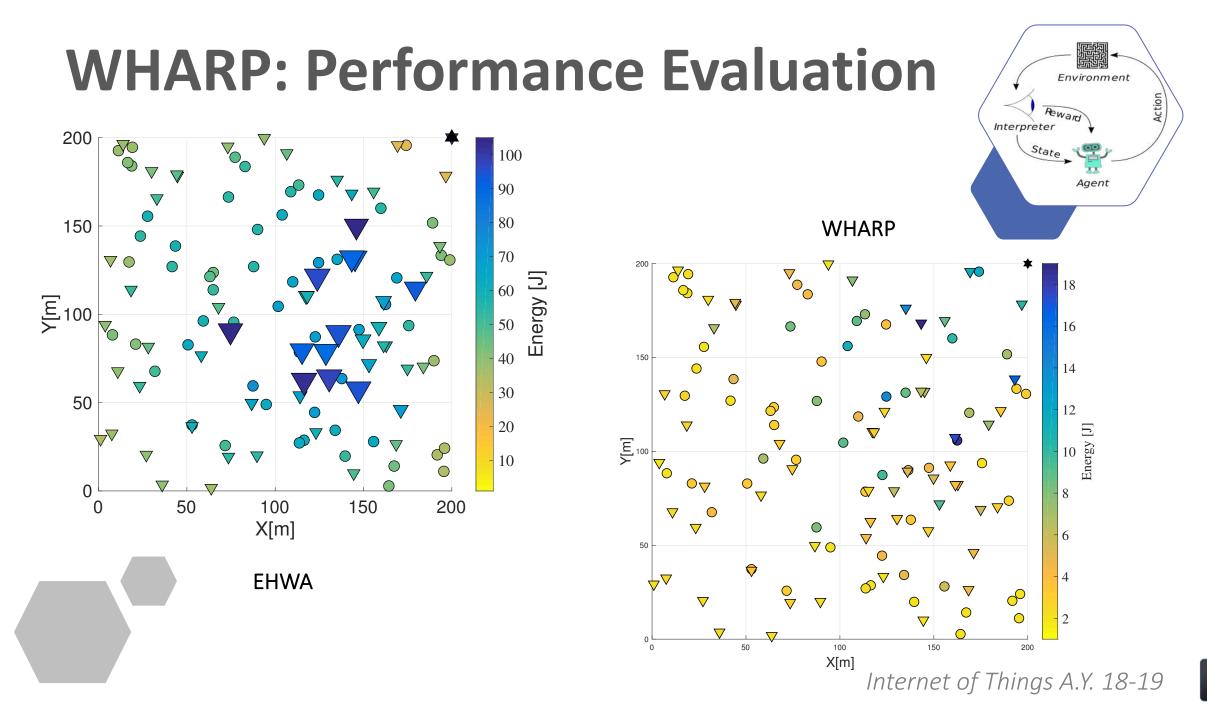


Internet of Things A.Y. 18-19

WHARP: Performance Evaluation







Reinforcement Learning in Practice

Additional Resources

Environment Environment Interpreter State Agent

- An Introduction to Reinforcement Learning, Sutton and Barto, MIT Press 1998
 - Book available free online:

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2nd Ed.pdf

- Algorithms for Reinforcement Learning, Szepesvari, Morgan and Claypool 2010
 - Book available free online:

https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs-lecture.pdf

