

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Internet of Things A.Y. 2017/18

Routing for IoT and Sensor Systems

Federico Ceccarelli PhD Student

The Collection Tree Protocol (CTP)

Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis
Collection Tree Protocol
In Proceedings of SenSys'09, November 2009

Collection

- In a WSN the sensed data are collected by a small number of base stations, called sinks.
- Nodes don't need routes towards all the other network nodes.
 - Just to one sink (anycast communication).
- The routing protocols designed for this problem are called Collection protocols.

The Collection Tree Protocol (CTP)

- The Collection Tree Protocol is widely considered as the main routing protocol for data collection.
- It builds and maintains one or more routing trees, each one rooted in a sink.
- Every node "belongs" to a routing tree and select one of its neighbors as its parent.
 - Parents handle packets received from children nodes and further forward them towards the sink.

CTP (2)

- CTP is a distance vector protocol
- The metric is the Expected number of Transmissions to reach the sink (ETX)
- The ETX of a node depends on:
 - distance in hops from the sink
 - Quality of the communication links

CTP: architecture

Send and receive beacons for tree Forwards packets Detects and repairs loops construction and maintenance Filters duplicate packets Create and update the routing table **Application Layer** Plane Routing Table --- Forwarding Engine Routing Engine Link Estimator Link Layer

Data Plane

CTP: packet frames

Routing Frame

16 bits

Parent

ETX

Reserved

Parent

ETX

Control Route updates

Data Frame

Control

Transport

Loop detection

Duplicate detection

CTP: Parent selection

- Every node needs to assess the quality of the communication links with its neighbors (ETX_{1-hop}).
 - Outgoing link: percentage of acknowledged data packets
 - Ingoing link: percentage of beacon received by the neighbor.
- The ETX via a given neighbor is the sum of ETX_{1-hop} and of the ETX announced by the neighbor with its beacons.
 - The neighbor with the minimum sum is chosen to be the parent.

CTP: Datapath validation

- Datapath validation is how CTP tries to fix routing inconsistencies.
- The next hop should be closer to the sink.
 - The ETX should decrease.
- Because of stale routing information, it can happen that a node sends a packet to a neighbor with a higher ETX.

CTP: Datapath validation (2)

- Every data packet contains the transmitter's ETX.
- When a node receives a packet, it compares the transmitter's ETX with its own.
- If it is not greater than the receiver's ETX:
 - the receiver forwards the packet (to check if there are other inconsistencies)
 - the receiver increase the beacon transmission rate (trying to send updated information to neighbors with stale routes).

CTP: adaptive beaconing

- It is how CTP manage the beacon transmission interval.
- When the topology is stable sending beacon at a high rate is a waste of energy.
 - We can increase the interval.

CTP: adaptive beaconing (2)

It extends the Trickle Algorithm:

- Start with a small interval: t_{min.}
- Double the interval up to t_{max}.
- Reset to t_{min} when inconsistency is detected.

ALBA-R: a cross-layer integrated protocol stack for medium-large scale Wireless Sensor Networks

Chiara Petrioli, Michele Nati, Paolo Casari, Michele Zorzi, Stefano Basagni ALBA-R: Load-Balancing Geographic Routing Around Connectivity Holes in Wireless Sensor Networks IEEE Transactions on Parallel and Distributed Systems, March, 2014

Geographic routing

- Idea: Forward the packet to a node that is geographically closer to the sink.
- Pros:
 - Virtually stateless (needs only knowledge of source's and destination's locations)
- Cons:
 - Requires position estimation
 - Dead ends.

Geographic routing: dead ends

- In this example, a route to the sink is available, but the packets get stuck at the current relay.
 - There are no nodes in the positive advancement area
 - The next hop is not the geographically closest.
- We need to "push back" the packet.

ALBA-R

- ALBA: Adaptive Load-Balancing Algorithm
- Cross-layer protocol
 - MAC (the nodes follows a fixed duty-cycle)
 - Geographic routing
 - Load balancing the traffic among nodes
 - Scheme to deal with dead ends (Rainbow)

ALBA

- Nodes forward packets in bursts (up to M_B packets)
 - The length of the burst is variable
- The forwarder is elected considering:
 - The ability to handle correctly forwarded packets (Queue Priority Index, QPI)
 - Geographic proximity to the sink (Geographic Priority Index, GPI)

ALBA (2)

ALBA(3)

- The metric used for the choice of the relay ensures load balancing because it chooses relay with:
 - Low queue, especially if N_B is high
 - Good forwarding history (through M)

ALBA: relay selection

- Phase 1: Selection of the best QPI
 - Attempt 1 search for QPI=0, Attempt 2 for QPI=0,1 and so on
 - Awaking nodes can participate in this phase
- Phase 2: Selection of the best GPI
 - Tie-breaking if more than one node have the same QPI
 - Awaking nodes cannot participate (to speed up completion)

ALBA: example

- 1) Node A is nearer to the sink (GPI=1) but has a low QPI (M=2); node B, is farther but is more reliable (M); B has a better QPI than A
- 2) If Node B is asleep when the RTS is sent, node A is elected as forwarder

ALBA-R: Rainbow

- A node coloring algorithm for routing out of dead ends and around connectivity holes.
- Idea: allow the nodes to forward packets away from the sink

ALBA-R: Rainbow (2)

- In order to remember whether to seek for relays in the direction of the sink (positive advancement area F) or in the opposite direction (negative advancement area F^C) each node is labeled with a color (from a given list).
- Each node seeks for relays among nodes with its own color or with the preceding color (in the list)

6LoWPAN

6LowPAN

- IPv6 over Low power WPAN (6LoWPAN) is an adaptation layer that allows to route Internet traffic over WSNs.
- Why do we need an adaptation layer?
 - IEEE 802.15.4 is the typical protocol stack for Physical Layer and Data Link Layer for WSNs.
 - Its payload is limited to 127 bytes.
 - IPv6 minimum packet size is 1280 bytes!

6LoWPAN: how does it work?

It uses two strategies:

- Header compression: redundant information in IPv6 header is removed.
- Fragmentation: split the packets into multiple smaller sub-packets.

6LoWPAN: Fragmentation Header

- When an IPv6 packet is split into multiple chunks, 6LoWPAN adds a Fragmentation Header to allow its reconstruction.
- It has the following fields:
 - Datagram size: dimension of the entire IP packet before fragmentation
 - Datagram Tag: identifies univocally the original fragmented IP packet.
 - Datagram Offset: specifies of the offset of the fragment from the beginning of the packet.

6LoWPAN: Header compression

- 6LoWPAN tries to remove from the IPv6 packet header all the fields that can be derived from other headers (added by other protocol stack layers).
- For example:
 - interface addresses are formed with an *Interface Identificator* derived directly from the MAC address.
 - The first 64 bit of both source address and destination can be removed if they are carry a link-local prefix.
 - The payload length can be inferred from the MAC layer or from the Datagram Size field in the fragmentation header.