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HomePlug: 
standard for PowerLine 

communication 
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Power Line 
Communication (PLC) 

¡ The existing electrical wiring and outlets are used as 
the medium for data communication within the home  

¡ Using power lines as the network infrastructure has 
many advantages over other technologies.  
¡  no new wires are needed 

¡  there are many access points (power sockets) in a home/
building (four or more per room) 

¡  the cost to build a power line network is low compared to that 
of other technologies  

¡ power line communication (PLC) as specified by the 
HomePlug 1.0 standard provides a 14 Mb/s raw data 
rate 
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PLC in the past 
¡  In the past, power lines were considered unacceptable for signal 

transmission, since the channel is subject to a lot of noise, 
interference, and fading.  

¡  Power lines were not designed for delivering high-frequency 
signals 

¡  The poor quality of a power line is not ideal for signal transmission 
because the channel contains noise and interference.  

¡  The appeal of using the existing power line as a transmission 
medium for data exchange was too great to be ignored.  

¡  The advancement of signal modulation technologies 
(Orthogonal Frequency Division Multiplexing - OFDM), digital 
signal processing, and error control coding has minimized the 
restrictions of channel imperfections, and high-speed signal 
transmission through power lines is now feasible.  
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HomePlug 

¡  HomePlug 1.0 

¡  HomePlug AV: Audio/Video  - 20- 200 Mbps 

¡  HomePlug AV2: Gigabit networking 

¡  HomePlug GP: Green PHY greater distance coverage and lower 
power consumption than HomePlug AV 
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Example 
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HomePlug AV 
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¡  With HomePlug technology the electrical wires in a home 
can distribute broadband Internet, HD video, digital music, 
and smart energy applications  



Fully connected home 
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MAC layer 
¡  Power grid networks usually form a bus or tree topology 

¡  Communication between any pair of terminals is possible 

¡  However, most traffic is expected to be from and to a terminal serving as the 
network gateway  

Internet of Things A.A. 17-18 10 Figure 5.A PLCdistribution network. 

ied protocols for medium a,xess. The main dis- 
advantage of Aloha is the low throughput as 
the offered load increases, as well as its lack of 
support for quality of service. On the contrary, 
polling can handle heavy traffic and inherently 
provides quality of service guarantees. Howev- 
er ,  polling can be inefficient under light o r  
highly asymmetric traffic pat terns  o r  when 
polling lists must he update:d frequently as net- 
work terminals are added cir removed. Similar- 
ly, token passing schemes (token ring, token 
bus) are efficient under heavy symmetric loads, 
but can be expensive to implement and serious 
problems could arise with lost tokens on noisy 
unreliable media such as the power grid used 
in PLC. 

Carrier sense multiple ai:cess (CSMA) is also 
proposed with overload detection. CSMA is effi- 
cient under light to medium traffic loads and for 
many low-dutycycle bursty terminals (i.e., Inter- 
net browsing). The primary advantage of CSMA 
is its low implementation cost, since it is the 
dominant technique in today’s wired data net- 
works. Collision detection (CSMAICD) could 
enhance the performanci: of CSMA, but on 
power line networks the wide variation of the 
received signal and noise kvels makes collision 
detection difficult and unreliable. An alternative 
to collision detection that can he easily employed 
in cases of PLC is collision avoidance 
(CSMAICA), a technique that uses random 
backoffs to further reduce the collision probabil- 
ity. The Bluetooth protocol is another choice, 
and of course proposals on time-division multi- 
ple acccss (TDMA) are found in the literature. 
Generally a detailed treatment of the protocol 
stack is still needed [12-14]. 

In parallel, well-known emor handling mecha- 
nisms can be applied to solve the problem of 
errors, but the use of there mechanisms con- 
sumes part  of the transmission capacity and 
decreases the already limited data rate of PLC 
systems. Application of autcimatic repeat request 
(ARQ) and hybrid schcmei can avoid the influ- 
ence of short-term disturba.nces, while dynamic 
strategies for capacity allociition can successfully 
confront long-term disturbances [IS] (Fig. 6). 

Furthermore, power line networks present a 
number of security challenges duc to their open 
insecure bus structure.  Two services that are 
necessary for those networks arc confidentiality 
and identity authcnticativn. 

STANDARDS AND 
REGULATORY ISSUES 

o n c  of the major issues currently under debate 
is the radiation emission of power lines. Sources 
“f emission from powcrlines networks can he the 
upstrcam signals at customer premises, the 
upstream signals at adjacent customer prcmises, 
and downstream signals at the substation. 

For mains-bornc communications, there is a 
European standard, ENS0065-1:1991 [16]. This 
standard actually regularizes PLC but only in a 
small frequency band (see introduction). Outside 
International Telecommunication Union (ITU) 
Rcgion 1 (Europe) there is IEC61000-3-8 for up 
to 525 kHz. Also, concrete detector structures 
are considered for the analysis. 

Above 150 kHz, EN50065-1 specifies much 
lower limits that are the same as the Class B lim- 
its in  the ENS5022 standard for  ITE and the 
generic emission standard ENS0081-1. Similarly, 
above 525 kHz in ITU Regions 2 and 3, the rele- 
vant electromagnetic compatibility (EMC) stan- 
dards for mains communications systems specify 
conducted emission limits that arc the same as 
for equipment such as ITE. In both cases, the 
limits are small compared to the levels of signal 
injection, which would normally be required for 
a practical mains-borne communication system, 
particularly if communication is required outside 
the confines of a single building. 

Effor ts  are going on in the United States 
through the Electronics Industry Association 
(EIA), IEEE,  and Automatic Meter Reading 
Association (AMRA) Committee SCC31, and in 
Europe via CENELEC, to develop new EMC 
standards for PLC systems from 2 MHz up to 30 
MHz. It is doubtful whether practical PLC sys- 
tems can operate under the EN55022 regime 
because of the trade-off between interference 
and p e r f o r m ” .  

A CENELECEuropean Telecommunications 
Standards Institute (ETSI) joint working group 
has been set up to develop EMC requirements 
for transmission networks (power line, coaxial, 
te lephone) .  This group is dealing with the 
intended single general EMC emission standard. 
This standard covers emission limits and mea- 
surement methods for all types of telecommuni- 
cation networks t o  ensure that the various 
technologies are treated cqually. 

MARKET 
PERSPECTIVES~APPLICATIONS 

The  PLC market is expanding dynamically 
(www.plcforum.org). Some applications a rc  
reported in the ISPLC conferences [I]. 
Advanced energy services include applications 
such as automatic mcter reading, programmable 
controllers, and demandisupply management. 
Traditionally, this application area has been 
pushed by energy companies and related manu- 
facturers. Permanent cnnncction via PLC offers 
utility companies a possibility to get real-time 
information that may he of stratcgic relevance, 
especially by creating differentiation concepts in  
the liberalized energy markets. Numerous prod- 

~~ 

38 IEEE Communications Magazine - April 2003 



MAC layer issues 

¡ CSMA/CD cannot be applied on power line networks as the wide 
variation of the received signal and noise levels makes collision 
detection difficult and unreliable.  

¡ An alternative to collision detection that can he easily employed 
in cases of PLC is collision avoidance (CSMA/CA), a technique 
that uses random back-offs to further reduce the collision 
probability 

¡  Time-division multiple access (TDMA) can also be used 
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HPAV: MAC protocols 

¡ Connection-oriented Contention Free (CF) service  
¡  to support the QoS requirements (guaranteed bandwidth, latency and 

jitter requirements) of demanding AV and IP applications. 
¡  This Contention Free service is based on periodic Time Division Multiple 

Access (TDMA) allocations of adequate duration to support the QoS 
requirements of a connection. 

¡ Connectionless prioritized Contention based service  
¡  to support both best-effort applications and applications that rely on 

prioritized QoS.  
¡  This service is based on Collision Sense Multiple Access/Collision 

Avoidance (CSMA/CA) technology which is applied to only traffic at 
the highest pending priority level after the pending traffic with lower 
priority levels has been eliminated during a brief Priority Resolution 
phase at the beginning of the contention window. 
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TDMA + CSMA/CA: 
coordination 
¡  To efficiently provide both kinds of communication service, HPAV 

implements a flexible, centrally-managed architecture. 

¡  The central manager is called a Central Coordinator (CCo). The 
CCo establishes a Beacon Period and a schedule which 
accommodates both the Contention Free allocations and the time 
allotted for Contention-based traffic. 

¡   the Beacon Period is divided into 3 regions: 

1.  Beacon Region 

2.  CSMA Region 

3.  Contention-Free Region 

¡   Messaging in HPAV is direct from station to station; however, the 
CCo monitors the messages. The header of each message contains 
information about how much data is pending for transmission on 
the connection 
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Reading material 

¡  HomePlug Alliance, “HomePlug AV White Paper”, 
http://www.homeplug.org/media/filer_public/b8/68/
b86828d9-7e8a-486f-aa82-179e6e95cab5/hpav-white-
paper_050818.pdf 

¡  “A Power Line Communication Network Infrastructure 
For The Smart Home”, IEEE Wireless Communications, 
December 2002  
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CoAP: 
Constrained Application 

Protocol 
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 Constrained Application 
Protocol (CoAP) 
¡   The IETF Constrained RESTful Environments (CoRE) working group created 

CoAP, which is an application layer protocol for IoT applications 

¡  Specialized web transfer protocol for use with constrained nodes and 
constrained (e.g., low-power, lossy) networks. 

¡  The protocol is designed for machine-to-machine (M2M) applications such as 
smart energy and building automation. 

¡  Provides a request/response interaction model between application 
endpoints 

¡  Supports built-in discovery of services and resources 

¡  Includes key concepts of the Web such as URIs and Internet media types. 

¡   CoAP is designed to easily interface with HTTP for integration with the Web 
while meeting specialized requirements such as multicast support, very low 
overhead, and simplicity for constrained environments. 
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CoAP functionality 
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TABLE III
STANDARDIZATION EFFORTS IN SUPPORT OF THE IOT

Institute of Electrical and Electronics Engineers (IEEE) and
the European Telecommunications Standards Institute (ETSI).
Table III, provides a summary of the most prominent protocols
defined by these groups. In this paper, we classify the IoT
protocols into four broad categories, namely: application pro-
tocols, service discovery protocols, infrastructure protocols and
other influential protocols. However, not all of these protocols
have to be bundled together to deliver a given IoT application.
Moreover, based on the nature of the IoT application, some
standards may not be required to be supported in an application.
In the following subsections, we provide an overview of some
of the common protocols in these categories and their core
functionality.

A. Application Protocols

1) Constrained Application Protocol (CoAP): The IETF
Constrained RESTful Environments (CoRE) working group
created CoAP, which is an application layer protocol [64], [65]
for IoT applications. The CoAP defines a web transfer protocol
based on REpresentational State Transfer (REST) on top of
HTTP functionalities. REST represents a simpler way to ex-
change data between clients and servers over HTTP [66]. REST
can be seen as a cacheable connection protocol that relies on
stateless client-server architecture. It is used within mobile and
social network applications and it eliminates ambiguity by using
HTTP get, post, put, and delete methods. REST enables clients
and servers to expose and consume web services like the Simple
Object Access Protocol (SOAP) but in an easier way using Uni-
form Resource Identifiers (URIs) as nouns and HTTP get, post,
put, and delete methods as verbs. REST does not require XML
for message exchanges. Unlike REST, CoAP is bound to UDP
(not TCP) by default which makes it more suitable for the IoT
applications. Furthermore, CoAP modifies some HTTP func-
tionalities to meet the IoT requirements such as low power con-
sumption and operation in the presence of lossy and noisy
links. However, since CoAP has been designed based on REST,
conversion between these two protocols in REST-CoAP proxies
is straightforward. The overall functionality of CoAP protocol
is demonstrated in Fig. 5.

Fig. 5. CoAP functionality.

CoAP aims to enable tiny devices with low power, compu-
tation and communication capabilities to utilize RESTful inter-
actions. CoAP can be divided into two sub-layers, namely: the
messaging sub-layer and the request/response sub-layer. The
messaging sub-layer detects duplications and provides reliable
communication over the UDP transport layer using exponential
backoff since UDP does not have a built-in error recovery me-
chanism. The request/response sub-layer on the other hand
handles REST communications. CoAP utilizes four types of
messages: confirmable, non-confirmable, reset and acknowl-
edgement. Reliability of CoAP is accomplished by a mix of
confirmable and non-confirmable messages. It also employs
four modes of responses as illustrated in Fig. 6. The separate re-
sponse mode is used when the server needs to wait for a specific
time before replying to the client. In CoAP’s non-confirmable
response mode, the client sends data without waiting for an
ACK message, while message IDs are used to detect duplicates.
The server side responds with a RST message when messages
are missed or communication issues occur. CoAP, as in HTTP,
utilizes methods such as GET, PUT, POST and DELETE to
achieve Create, Retrieve, Update and Delete (CRUD) opera-
tions. For example, the GET method can be used by a server to
inquire the client’s temperature using the piggybacked response
mode. The client sends back the temperature if it exists; other-
wise, it replies with a status code to indicate that the requested
data is not found. CoAP uses a simple and small format to en-
code messages. The first and fixed part of each message is four
bytes of header. Then a token value may appear whose length
ranges from zero to eight bytes. The token value is used for cor-
relating requests and responses. The options and payload are the
next optional fields. A typical CoAP message can be between
10 to 20 bytes [67]. The message format of CoAP packets is
depicted in Fig. 7 [64].

The fields in the header are as follows: Ver is the version of
CoAP, T is the type of Transaction, OC is Option count, and
Code represents the request method (1–10) or response code
(40–255). For example the code for GET, POST, PUT, and
DELETE is 1, 2, 3, and 4, respectively. The Transaction ID in
the header is a unique identifier for matching the response.

Some of the important features provided by CoAP include
[65], [68]:

• Resource observation: On-demand subscriptions to
monitor resources of interest using publish/subscribe
mechanism.

• Block-wise resource transport: Ability to exchange
transceiver data between the client and the server without

¡  CoAP modifies some HTTP functionalities to meet the IoT requirements 
such as low power consumption and operation in the presence of 
lossy and noisy links 

¡  Conversion between these two protocols in REST-CoAP proxies  



CoAP operation 

¡   The interaction model of CoAP is similar to the client/server 
model of HTTP 

¡   machine-to-machine (M2M) interactions typically result in a 
CoAP implementation acting in both client and server roles 

¡   CoAP request is equivalent to that of HTTP and is sent by a client 
to request an action (using a Method Code) on a resource 
(identified by a URI) on a server. 

¡   The server then sends a response with a Response Code; this 
response may include a resource representation. 

¡   Unlike HTTP, CoAP deals with these interchanges asynchronously 
over a datagram-oriented transport such as UDP. 
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Abstract Layering of CoAP  

¡  CoAP logically uses a two-
layer approach  

¡  CoAP messaging layer is 
used to deal with UDP and 
the asynchronous nature of 
the interactions  

¡  the request/response 
interactions using Method 
and Response Codes  

¡  CoAP is however a single 
protocol, with messaging 
and request/response as just 
features of the CoAP 
header.  

Internet of Things A.A. 17-18 19 
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2.  Constrained Application Protocol

   The interaction model of CoAP is similar to the client/server model
   of HTTP.  However, machine-to-machine interactions typically result
   in a CoAP implementation acting in both client and server roles.  A
   CoAP request is equivalent to that of HTTP and is sent by a client to
   request an action (using a Method Code) on a resource (identified by
   a URI) on a server.  The server then sends a response with a Response
   Code; this response may include a resource representation.

   Unlike HTTP, CoAP deals with these interchanges asynchronously over a
   datagram-oriented transport such as UDP.  This is done logically
   using a layer of messages that supports optional reliability (with
   exponential back-off).  CoAP defines four types of messages:
   Confirmable, Non-confirmable, Acknowledgement, Reset.  Method Codes
   and Response Codes included in some of these messages make them carry
   requests or responses.  The basic exchanges of the four types of
   messages are somewhat orthogonal to the request/response
   interactions; requests can be carried in Confirmable and Non-
   confirmable messages, and responses can be carried in these as well
   as piggybacked in Acknowledgement messages.

   One could think of CoAP logically as using a two-layer approach, a
   CoAP messaging layer used to deal with UDP and the asynchronous
   nature of the interactions, and the request/response interactions
   using Method and Response Codes (see Figure 1).  CoAP is however a
   single protocol, with messaging and request/response as just features
   of the CoAP header.

                        +----------------------+
                        |      Application     |
                        +----------------------+
                        +----------------------+  \
                        |  Requests/Responses  |  |
                        |----------------------|  | CoAP
                        |       Messages       |  |
                        +----------------------+  /
                        +----------------------+
                        |          UDP         |
                        +----------------------+

                    Figure 1: Abstract Layering of CoAP
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CoAP messages 
¡  CoAP defines four types of messages  

1.  Confirmable 
2.  Non-confirmable 
3.  Acknowledgement 
4.  Reset 

¡  Method Codes and Response Codes included in some of these 
messages make them carry requests or responses.  

¡  Requests can be carried in Confirmable and Non-confirmable 
messages 

¡  Responses can be carried in Confirmable and Non-confirmable  
messages as well as piggybacked in Acknowledgement messages 

¡  Each message contains a Message ID used to detect duplicates and 
for optional reliability  
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Messaging model: reliable 
Reliable Message Transmission  

¡  Reliability is provided by marking a message as Confirmable 
(CON).  

¡ A Confirmable message is retransmitted using a default timeout 
and exponential back-off between retransmissions, until the 
recipient sends an Acknowledgement message (ACK) with the 
same Message ID (in this example, 0x7d34) from the 
corresponding endpoint  
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2.1.  Messaging Model

   The CoAP messaging model is based on the exchange of messages over
   UDP between endpoints.

   CoAP uses a short fixed-length binary header (4 bytes) that may be
   followed by compact binary options and a payload.  This message
   format is shared by requests and responses.  The CoAP message format
   is specified in Section 3.  Each message contains a Message ID used
   to detect duplicates and for optional reliability.  (The Message ID
   is compact; its 16-bit size enables up to about 250 messages per
   second from one endpoint to another with default protocol
   parameters.)

   Reliability is provided by marking a message as Confirmable (CON).  A
   Confirmable message is retransmitted using a default timeout and
   exponential back-off between retransmissions, until the recipient
   sends an Acknowledgement message (ACK) with the same Message ID (in
   this example, 0x7d34) from the corresponding endpoint; see Figure 2.
   When a recipient is not at all able to process a Confirmable message
   (i.e., not even able to provide a suitable error response), it
   replies with a Reset message (RST) instead of an Acknowledgement
   (ACK).

                        Client              Server
                           |                  |
                           |   CON [0x7d34]   |
                           +----------------->|
                           |                  |
                           |   ACK [0x7d34]   |
                           |<-----------------+
                           |                  |

                  Figure 2: Reliable Message Transmission

   A message that does not require reliable transmission (for example,
   each single measurement out of a stream of sensor data) can be sent
   as a Non-confirmable message (NON).  These are not acknowledged, but
   still have a Message ID for duplicate detection (in this example,
   0x01a0); see Figure 3.  When a recipient is not able to process a
   Non-confirmable message, it may reply with a Reset message (RST).
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Messaging model: 
unreliable 
Unreliable Message Transmission  

¡ A message that does not require reliable transmission (for 
example, each single measurement out of a stream of sensor 
data) can be sent as a Non-confirmable message (NON).  

¡  These are not acknowledged, but still have a Message ID for 
duplicate detection (in this example, 0x01a0)  
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                        Client              Server
                           |                  |
                           |   NON [0x01a0]   |
                           +----------------->|
                           |                  |

                 Figure 3: Unreliable Message Transmission

   See Section 4 for details of CoAP messages.

   As CoAP runs over UDP, it also supports the use of multicast IP
   destination addresses, enabling multicast CoAP requests.  Section 8
   discusses the proper use of CoAP messages with multicast addresses
   and precautions for avoiding response congestion.

   Several security modes are defined for CoAP in Section 9 ranging from
   no security to certificate-based security.  This document specifies a
   binding to DTLS for securing the protocol; the use of IPsec with CoAP
   is discussed in [IPsec-CoAP].

2.2.  Request/Response Model

   CoAP request and response semantics are carried in CoAP messages,
   which include either a Method Code or Response Code, respectively.
   Optional (or default) request and response information, such as the
   URI and payload media type are carried as CoAP options.  A Token is
   used to match responses to requests independently from the underlying
   messages (Section 5.3).  (Note that the Token is a concept separate
   from the Message ID.)

   A request is carried in a Confirmable (CON) or Non-confirmable (NON)
   message, and, if immediately available, the response to a request
   carried in a Confirmable message is carried in the resulting
   Acknowledgement (ACK) message.  This is called a piggybacked
   response, detailed in Section 5.2.1.  (There is no need for
   separately acknowledging a piggybacked response, as the client will
   retransmit the request if the Acknowledgement message carrying the
   piggybacked response is lost.)  Two examples for a basic GET request
   with piggybacked response are shown in Figure 4, one successful, one
   resulting in a 4.04 (Not Found) response.
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Messaging model: reset 

¡ When a recipient is not at all able to process a Confirmable or 
a Non Confirmable message (i.e., not even able to provide a 
suitable error response), it replies with a Reset message (RST)  
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CoAP  
request/response model 

¡ CoAP request and response semantics are carried in 
CoAP messages, which include either a Method Code 
or Response Code, respectively 
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Immediate response to a 
CON request  
¡ A request can be carried in a Confirmable (CON) message, and, 

if immediately available, the response to the request can be 
carried in the resulting Acknowledgement (ACK) message.  
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        Client              Server       Client              Server
           |                  |             |                  |
           |   CON [0xbc90]   |             |   CON [0xbc91]   |
           | GET /temperature |             | GET /temperature |
           |   (Token 0x71)   |             |   (Token 0x72)   |
           +----------------->|             +----------------->|
           |                  |             |                  |
           |   ACK [0xbc90]   |             |   ACK [0xbc91]   |
           |   2.05 Content   |             |  4.04 Not Found  |
           |   (Token 0x71)   |             |   (Token 0x72)   |
           |     "22.5 C"     |             |   "Not found"    |
           |<-----------------+             |<-----------------+
           |                  |             |                  |

           Figure 4: Two GET Requests with Piggybacked Responses

   If the server is not able to respond immediately to a request carried
   in a Confirmable message, it simply responds with an Empty
   Acknowledgement message so that the client can stop retransmitting
   the request.  When the response is ready, the server sends it in a
   new Confirmable message (which then in turn needs to be acknowledged
   by the client).  This is called a "separate response", as illustrated
   in Figure 5 and described in more detail in Section 5.2.2.

                        Client              Server
                           |                  |
                           |   CON [0x7a10]   |
                           | GET /temperature |
                           |   (Token 0x73)   |
                           +----------------->|
                           |                  |
                           |   ACK [0x7a10]   |
                           |<-----------------+
                           |                  |
                           ... Time Passes  ...
                           |                  |
                           |   CON [0x23bb]   |
                           |   2.05 Content   |
                           |   (Token 0x73)   |
                           |     "22.5 C"     |
                           |<-----------------+
                           |                  |
                           |   ACK [0x23bb]   |
                           +----------------->|
                           |                  |

             Figure 5: A GET Request with a Separate Response
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Two GET Requests with Piggybacked Responses 



CON message with 
separate response 

¡  If the server is not able to 
respond immediately to a 
request carried in a 
Confirmable message, it 
simply responds with an 
Empty Acknowledgement 
message so that the client 
can stop retransmitting the 
request.  

¡ When the response is ready, 
the server sends it in a new 
Confirmable message (which 
then in turn needs to be 
acknowledged by the client).  
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        Client              Server       Client              Server
           |                  |             |                  |
           |   CON [0xbc90]   |             |   CON [0xbc91]   |
           | GET /temperature |             | GET /temperature |
           |   (Token 0x71)   |             |   (Token 0x72)   |
           +----------------->|             +----------------->|
           |                  |             |                  |
           |   ACK [0xbc90]   |             |   ACK [0xbc91]   |
           |   2.05 Content   |             |  4.04 Not Found  |
           |   (Token 0x71)   |             |   (Token 0x72)   |
           |     "22.5 C"     |             |   "Not found"    |
           |<-----------------+             |<-----------------+
           |                  |             |                  |

           Figure 4: Two GET Requests with Piggybacked Responses

   If the server is not able to respond immediately to a request carried
   in a Confirmable message, it simply responds with an Empty
   Acknowledgement message so that the client can stop retransmitting
   the request.  When the response is ready, the server sends it in a
   new Confirmable message (which then in turn needs to be acknowledged
   by the client).  This is called a "separate response", as illustrated
   in Figure 5 and described in more detail in Section 5.2.2.

                        Client              Server
                           |                  |
                           |   CON [0x7a10]   |
                           | GET /temperature |
                           |   (Token 0x73)   |
                           +----------------->|
                           |                  |
                           |   ACK [0x7a10]   |
                           |<-----------------+
                           |                  |
                           ... Time Passes  ...
                           |                  |
                           |   CON [0x23bb]   |
                           |   2.05 Content   |
                           |   (Token 0x73)   |
                           |     "22.5 C"     |
                           |<-----------------+
                           |                  |
                           |   ACK [0x23bb]   |
                           +----------------->|
                           |                  |

             Figure 5: A GET Request with a Separate Response
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Non-confirmable request/
response 

¡  If a request is sent in a Non-
confirmable message, then the 
response is sent using a new 
Non-confirmable message, 
although the server may 
instead send a Confirmable 
message.  
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   If a request is sent in a Non-confirmable message, then the response
   is sent using a new Non-confirmable message, although the server may
   instead send a Confirmable message.  This type of exchange is
   illustrated in Figure 6.

                        Client              Server
                           |                  |
                           |   NON [0x7a11]   |
                           | GET /temperature |
                           |   (Token 0x74)   |
                           +----------------->|
                           |                  |
                           |   NON [0x23bc]   |
                           |   2.05 Content   |
                           |   (Token 0x74)   |
                           |     "22.5 C"     |
                           |<-----------------+
                           |                  |

       Figure 6: A Request and a Response Carried in Non-confirmable
                                 Messages

   CoAP makes use of GET, PUT, POST, and DELETE methods in a similar
   manner to HTTP, with the semantics specified in Section 5.8.  (Note
   that the detailed semantics of CoAP methods are "almost, but not
   entirely unlike" [HHGTTG] those of HTTP methods: intuition taken from
   HTTP experience generally does apply well, but there are enough
   differences that make it worthwhile to actually read the present
   specification.)

   Methods beyond the basic four can be added to CoAP in separate
   specifications.  New methods do not necessarily have to use requests
   and responses in pairs.  Even for existing methods, a single request
   may yield multiple responses, e.g., for a multicast request
   (Section 8) or with the Observe option [OBSERVE].

   URI support in a server is simplified as the client already parses
   the URI and splits it into host, port, path, and query components,
   making use of default values for efficiency.  Response Codes relate
   to a small subset of HTTP status codes with a few CoAP-specific codes
   added, as defined in Section 5.9.
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A Request and a Response Carried 

in Non-confirmable Messages 



CoAP methods 

¡ CoAP, as in HTTP, utilizes methods such as GET, PUT, POST and 
DELETE to achieve Create, Retrieve, Update and Delete (CRUD) 
operations. 

¡  Example: the GET method can be used by a server to inquire 
the client’s temperature using the piggybacked response 
mode. The client sends back the temperature if it exists; 
otherwise, it replies with a status code to indicate that the 
requested data is not found. 
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CoAP messages 
¡   CoAP uses a simple and small format to encode messages.  

¡  4 bytes of header + token (0-8 bytes) + options + payload 

¡   The token value is used for correlating requests and responses. 
The options and payload are the next optional fields.  

¡ A typical CoAP message can be between 10 to 20 bytes 
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Fig. 6. CoAP message types [64]. (a) Confirmable. (b) Non-confirmable. (c) Piggybacked responses. (d) Separate response.

Fig. 7. CoAP message format.

the need to update the whole data to reduce the commu-
nication overhead.

• Resource discovery: Server utilizes well-known URI
paths based on the web link fields in CoRE link format to
provide resource discovery for the client.

• Interacting with HTTP: Flexibility of communicating
with several devices because the common REST ar-
chitecture enables CoAP to interact easily with HTTP
through a proxy.

• Security: CoAP is a secure protocol since it is built
on top of datagram transport layer security (DTLS)
to guarantee integrity and confidentiality of exchanged
messages.

As an example of how an application protocol works in an
IoT environment, we provided a sample code in [69]. Since the
cloud service for this project, Nimbits, does not support CoAP
currently, we used HTTP REST to integrate with Nimbits.

2) Message Queue Telemetry Transport (MQTT): MQTT is
a messaging protocol that was introduced by Andy Stanford-
Clark of IBM and Arlen Nipper of Arcom (now Eurotech) in
1999 and was standardized in 2013 at OASIS [70]. MQTT aims
at connecting embedded devices and networks with applica-
tions and middleware. The connection operation uses a routing
mechanism (one-to-one, one-to-many, many-to-many) and ena-
bles MQTT as an optimal connection protocol for the IoT
and M2M.

MQTT utilizes the publish/subscribe pattern to provide tran-
sition flexibility and simplicity of implementation as depicted in
Fig. 8. Also, MQTT is suitable for resource constrained devices
that use unreliable or low bandwidth links. MQTT is built on
top of the TCP protocol. It delivers messages through three lev-
els of QoS. Two major specifications exist for MQTT: MQTT
v3.1 and MQTT-SN [71] (formerly known as MQTT-S) V1.2.
The latter was defined specifically for sensor networks and de-
fines a UDP mapping of MQTT and adds broker support for in-
dexing topic names. The specifications provide three elements:
connection semantics, routing, and endpoint.

Fig. 8. The architecture of MQTT.

Fig. 9. Publish/subscribe process utilized by MQTT [70].

MQTT simply consists of three components, subscriber, pub-
lisher, and broker. An interested device would register as a sub-
scriber for specific topics in order for it to be informed by the
broker when publishers publish topics of interest. The publisher
acts as a generator of interesting data. After that, the publisher
transmits the information to the interested entities (subscribers)
through the broker. Furthermore, the broker achieves security
by checking authorization of the publishers and the subscribers
[71]. Numerous applications utilize the MQTT such as health
care, monitoring, energy meter, and Facebook notification.
Therefore, the MQTT protocol represents an ideal messaging
protocol for the IoT and M2M communications and is able to
provide routing for small, cheap, low power and low memory
devices in vulnerable and low bandwidth networks. Fig. 9 illus-
trates the publish/subscribe process utilized by MQTT and
Fig. 10 shows the message format used by the MQTT protocol
[70]. The first two bytes of message are fixed header. In this
format, the value of the Message Type field indicates a variety
of messages including CONNECT (1), CONNACK (2), PUB-
LISH (3), SUBSCRIBE (8) and so on. The DUP flag indicates
that the massage is duplicated and that the receiver may have



Message header 

¡ Version (Ver): 2-bit unsigned integer - Indicates the CoAP version 
number.  

¡  Type (T): 2-bit unsigned integer. Indicates if this message is of 
type Confirmable (0), Non-confirmable (1), Acknowledgement 
(2), or Reset (3).  

¡ OC: 4-bit unsigned integer. Indicates the length of the variable-
length Token field (0-8 bytes).  

¡ Code: 8-bit unsigned integer, Code represents the request 
method (1–10) or response code (40–255). For example the 
code for GET, POST, PUT, and DELETE is 1, 2, 3, and 4, respectively 
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Fig. 6. CoAP message types [64]. (a) Confirmable. (b) Non-confirmable. (c) Piggybacked responses. (d) Separate response.

Fig. 7. CoAP message format.

the need to update the whole data to reduce the commu-
nication overhead.

• Resource discovery: Server utilizes well-known URI
paths based on the web link fields in CoRE link format to
provide resource discovery for the client.

• Interacting with HTTP: Flexibility of communicating
with several devices because the common REST ar-
chitecture enables CoAP to interact easily with HTTP
through a proxy.

• Security: CoAP is a secure protocol since it is built
on top of datagram transport layer security (DTLS)
to guarantee integrity and confidentiality of exchanged
messages.

As an example of how an application protocol works in an
IoT environment, we provided a sample code in [69]. Since the
cloud service for this project, Nimbits, does not support CoAP
currently, we used HTTP REST to integrate with Nimbits.

2) Message Queue Telemetry Transport (MQTT): MQTT is
a messaging protocol that was introduced by Andy Stanford-
Clark of IBM and Arlen Nipper of Arcom (now Eurotech) in
1999 and was standardized in 2013 at OASIS [70]. MQTT aims
at connecting embedded devices and networks with applica-
tions and middleware. The connection operation uses a routing
mechanism (one-to-one, one-to-many, many-to-many) and ena-
bles MQTT as an optimal connection protocol for the IoT
and M2M.

MQTT utilizes the publish/subscribe pattern to provide tran-
sition flexibility and simplicity of implementation as depicted in
Fig. 8. Also, MQTT is suitable for resource constrained devices
that use unreliable or low bandwidth links. MQTT is built on
top of the TCP protocol. It delivers messages through three lev-
els of QoS. Two major specifications exist for MQTT: MQTT
v3.1 and MQTT-SN [71] (formerly known as MQTT-S) V1.2.
The latter was defined specifically for sensor networks and de-
fines a UDP mapping of MQTT and adds broker support for in-
dexing topic names. The specifications provide three elements:
connection semantics, routing, and endpoint.

Fig. 8. The architecture of MQTT.

Fig. 9. Publish/subscribe process utilized by MQTT [70].

MQTT simply consists of three components, subscriber, pub-
lisher, and broker. An interested device would register as a sub-
scriber for specific topics in order for it to be informed by the
broker when publishers publish topics of interest. The publisher
acts as a generator of interesting data. After that, the publisher
transmits the information to the interested entities (subscribers)
through the broker. Furthermore, the broker achieves security
by checking authorization of the publishers and the subscribers
[71]. Numerous applications utilize the MQTT such as health
care, monitoring, energy meter, and Facebook notification.
Therefore, the MQTT protocol represents an ideal messaging
protocol for the IoT and M2M communications and is able to
provide routing for small, cheap, low power and low memory
devices in vulnerable and low bandwidth networks. Fig. 9 illus-
trates the publish/subscribe process utilized by MQTT and
Fig. 10 shows the message format used by the MQTT protocol
[70]. The first two bytes of message are fixed header. In this
format, the value of the Message Type field indicates a variety
of messages including CONNECT (1), CONNACK (2), PUB-
LISH (3), SUBSCRIBE (8) and so on. The DUP flag indicates
that the massage is duplicated and that the receiver may have



Reading material 

¡  RFC 7252: The Constrained Application Protocol (CoAP) 
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