
IoT: HP and CoAP
Gaia Maselli
Dept. of Computer Science

1 Internet of Things A.A. 17-18

Recent protocols for IoT

Internet of Things A.A. 17-18 2

12-3
©2015 Raj Jainhttp://www.cse.wustl.edu/~jain/cse570-15/Washington University in St. Louis

Recent Protocols for IoTRecent Protocols for IoT

ZigBee Smart

HomePlug GP

WiFi

6LowPAN RPL 6-to-Non-IP

MQTT

O
at

h
2.

0
O

pe
n

A
ut

he
nt

ic
at

io
n

NFC ANT+ Sensor Multicast

Weightless

Datalink

Routing

Session

SecurityMgmt

Ref: http://tools.ietf.org/html/draft-rizzo-6lo-6legacy-00, http://en.wikipedia.org/wiki/OAuth, http://en.wikipedia.org/wiki/ANT%2B
http://en.wikipedia.org/wiki/Near_field_communication, http://en.wikipedia.org/wiki/Weightless_%28wireless_communications%29

Applications

IE
EE

 1
90

5,
 1

45
1

Smart Health Smart Grid Smart Transport

DASH7

CoAP AMQP

DECT

ZWave Bluetooth Smart

3G/4G

HomePlug:
standard for PowerLine

communication

Internet of Things A.A. 17-18 3

Power Line
Communication (PLC)

¡ The existing electrical wiring and outlets are used as
the medium for data communication within the home

¡ Using power lines as the network infrastructure has
many advantages over other technologies.
¡  no new wires are needed

¡  there are many access points (power sockets) in a home/
building (four or more per room)

¡  the cost to build a power line network is low compared to that
of other technologies

¡ power line communication (PLC) as specified by the
HomePlug 1.0 standard provides a 14 Mb/s raw data
rate

Internet of Things A.A. 17-18 4

PLC in the past
¡  In the past, power lines were considered unacceptable for signal

transmission, since the channel is subject to a lot of noise,
interference, and fading.

¡  Power lines were not designed for delivering high-frequency
signals

¡  The poor quality of a power line is not ideal for signal transmission
because the channel contains noise and interference.

¡  The appeal of using the existing power line as a transmission
medium for data exchange was too great to be ignored.

¡  The advancement of signal modulation technologies
(Orthogonal Frequency Division Multiplexing - OFDM), digital
signal processing, and error control coding has minimized the
restrictions of channel imperfections, and high-speed signal
transmission through power lines is now feasible.

Internet of Things A.A. 17-18 5

HomePlug

¡  HomePlug 1.0

¡  HomePlug AV: Audio/Video - 20- 200 Mbps

¡  HomePlug AV2: Gigabit networking

¡  HomePlug GP: Green PHY greater distance coverage and lower
power consumption than HomePlug AV

Internet of Things A.A. 17-18 6

Example

Internet of Things A.A. 17-18 7

HomePlug
adapter

HomePlug
adapter

HomePlug AV

Internet of Things A.A. 17-18 8

¡  With HomePlug technology the electrical wires in a home
can distribute broadband Internet, HD video, digital music,
and smart energy applications

Fully connected home

Internet of Things A.A. 17-18 9

MAC layer
¡  Power grid networks usually form a bus or tree topology

¡  Communication between any pair of terminals is possible

¡  However, most traffic is expected to be from and to a terminal serving as the
network gateway

Internet of Things A.A. 17-18 10 Figure 5.A PLCdistribution network.

ied protocols for medium a,xess. The main dis-
advantage of Aloha is the low throughput as
the offered load increases, as well as its lack of
support for quality of service. On the contrary,
polling can handle heavy traffic and inherently
provides quality of service guarantees. Howev-
er , polling can be inefficient under light o r
highly asymmetric traffic pat terns o r when
polling lists must he update:d frequently as net-
work terminals are added cir removed. Similar-
ly, token passing schemes (token ring, token
bus) are efficient under heavy symmetric loads,
but can be expensive to implement and serious
problems could arise with lost tokens on noisy
unreliable media such as the power grid used
in PLC.

Carrier sense multiple ai:cess (CSMA) is also
proposed with overload detection. CSMA is effi-
cient under light to medium traffic loads and for
many low-dutycycle bursty terminals (i.e., Inter-
net browsing). The primary advantage of CSMA
is its low implementation cost, since it is the
dominant technique in today’s wired data net-
works. Collision detection (CSMAICD) could
enhance the performanci: of CSMA, but on
power line networks the wide variation of the
received signal and noise kvels makes collision
detection difficult and unreliable. An alternative
to collision detection that can he easily employed
in cases of PLC is collision avoidance
(CSMAICA), a technique that uses random
backoffs to further reduce the collision probabil-
ity. The Bluetooth protocol is another choice,
and of course proposals on time-division multi-
ple acccss (TDMA) are found in the literature.
Generally a detailed treatment of the protocol
stack is still needed [12-14].

In parallel, well-known emor handling mecha-
nisms can be applied to solve the problem of
errors, but the use of there mechanisms con-
sumes part of the transmission capacity and
decreases the already limited data rate of PLC
systems. Application of autcimatic repeat request
(ARQ) and hybrid schcmei can avoid the influ-
ence of short-term disturba.nces, while dynamic
strategies for capacity allociition can successfully
confront long-term disturbances [IS] (Fig. 6).

Furthermore, power line networks present a
number of security challenges duc to their open
insecure bus structure. Two services that are
necessary for those networks arc confidentiality
and identity authcnticativn.

STANDARDS AND
REGULATORY ISSUES

o n c of the major issues currently under debate
is the radiation emission of power lines. Sources
“f emission from powcrlines networks can he the
upstrcam signals at customer premises, the
upstream signals at adjacent customer prcmises,
and downstream signals at the substation.

For mains-bornc communications, there is a
European standard, ENS0065-1:1991 [16]. This
standard actually regularizes PLC but only in a
small frequency band (see introduction). Outside
International Telecommunication Union (ITU)
Rcgion 1 (Europe) there is IEC61000-3-8 for up
to 525 kHz. Also, concrete detector structures
are considered for the analysis.

Above 150 kHz, EN50065-1 specifies much
lower limits that are the same as the Class B lim-
its in the ENS5022 standard for ITE and the
generic emission standard ENS0081-1. Similarly,
above 525 kHz in ITU Regions 2 and 3, the rele-
vant electromagnetic compatibility (EMC) stan-
dards for mains communications systems specify
conducted emission limits that arc the same as
for equipment such as ITE. In both cases, the
limits are small compared to the levels of signal
injection, which would normally be required for
a practical mains-borne communication system,
particularly if communication is required outside
the confines of a single building.

Effor ts are going on in the United States
through the Electronics Industry Association
(EIA), IEEE, and Automatic Meter Reading
Association (AMRA) Committee SCC31, and in
Europe via CENELEC, to develop new EMC
standards for PLC systems from 2 MHz up to 30
MHz. It is doubtful whether practical PLC sys-
tems can operate under the EN55022 regime
because of the trade-off between interference
and p e r f o r m ” .

A CENELECEuropean Telecommunications
Standards Institute (ETSI) joint working group
has been set up to develop EMC requirements
for transmission networks (power line, coaxial,
te lephone) . This group is dealing with the
intended single general EMC emission standard.
This standard covers emission limits and mea-
surement methods for all types of telecommuni-
cation networks t o ensure that the various
technologies are treated cqually.

MARKET
PERSPECTIVES~APPLICATIONS

The PLC market is expanding dynamically
(www.plcforum.org). Some applications a rc
reported in the ISPLC conferences [I].
Advanced energy services include applications
such as automatic mcter reading, programmable
controllers, and demandisupply management.
Traditionally, this application area has been
pushed by energy companies and related manu-
facturers. Permanent cnnncction via PLC offers
utility companies a possibility to get real-time
information that may he of stratcgic relevance,
especially by creating differentiation concepts in
the liberalized energy markets. Numerous prod-

~~

38 IEEE Communications Magazine - April 2003

MAC layer issues

¡ CSMA/CD cannot be applied on power line networks as the wide
variation of the received signal and noise levels makes collision
detection difficult and unreliable.

¡ An alternative to collision detection that can he easily employed
in cases of PLC is collision avoidance (CSMA/CA), a technique
that uses random back-offs to further reduce the collision
probability

¡  Time-division multiple access (TDMA) can also be used

Internet of Things A.A. 17-18 11

HPAV: MAC protocols

¡ Connection-oriented Contention Free (CF) service
¡  to support the QoS requirements (guaranteed bandwidth, latency and

jitter requirements) of demanding AV and IP applications.
¡  This Contention Free service is based on periodic Time Division Multiple

Access (TDMA) allocations of adequate duration to support the QoS
requirements of a connection.

¡ Connectionless prioritized Contention based service
¡  to support both best-effort applications and applications that rely on

prioritized QoS.
¡  This service is based on Collision Sense Multiple Access/Collision

Avoidance (CSMA/CA) technology which is applied to only traffic at
the highest pending priority level after the pending traffic with lower
priority levels has been eliminated during a brief Priority Resolution
phase at the beginning of the contention window.

Internet of Things A.A. 17-18 12

TDMA + CSMA/CA:
coordination
¡  To efficiently provide both kinds of communication service, HPAV

implements a flexible, centrally-managed architecture.

¡  The central manager is called a Central Coordinator (CCo). The
CCo establishes a Beacon Period and a schedule which
accommodates both the Contention Free allocations and the time
allotted for Contention-based traffic.

¡  the Beacon Period is divided into 3 regions:

1.  Beacon Region

2.  CSMA Region

3.  Contention-Free Region

¡  Messaging in HPAV is direct from station to station; however, the
CCo monitors the messages. The header of each message contains
information about how much data is pending for transmission on
the connection

Internet of Things A.A. 17-18 13

Reading material

¡  HomePlug Alliance, “HomePlug AV White Paper”,
http://www.homeplug.org/media/filer_public/b8/68/
b86828d9-7e8a-486f-aa82-179e6e95cab5/hpav-white-
paper_050818.pdf

¡  “A Power Line Communication Network Infrastructure
For The Smart Home”, IEEE Wireless Communications,
December 2002

Internet of Things A.A. 17-18 14

CoAP:
Constrained Application

Protocol

Internet of Things A.A. 17-18 15

 Constrained Application
Protocol (CoAP)
¡  The IETF Constrained RESTful Environments (CoRE) working group created

CoAP, which is an application layer protocol for IoT applications

¡  Specialized web transfer protocol for use with constrained nodes and
constrained (e.g., low-power, lossy) networks.

¡  The protocol is designed for machine-to-machine (M2M) applications such as
smart energy and building automation.

¡  Provides a request/response interaction model between application
endpoints

¡  Supports built-in discovery of services and resources

¡  Includes key concepts of the Web such as URIs and Internet media types.

¡  CoAP is designed to easily interface with HTTP for integration with the Web
while meeting specialized requirements such as multicast support, very low
overhead, and simplicity for constrained environments.

Internet of Things A.A. 17-18 16

CoAP functionality

Internet of Things A.A. 17-18 17

AL-FUQAHA et al.: IOT: SURVEY ON ENABLING TECHNOLOGIES, PROTOCOLS, AND APPLICATIONS 2353

TABLE III
STANDARDIZATION EFFORTS IN SUPPORT OF THE IOT

Institute of Electrical and Electronics Engineers (IEEE) and
the European Telecommunications Standards Institute (ETSI).
Table III, provides a summary of the most prominent protocols
defined by these groups. In this paper, we classify the IoT
protocols into four broad categories, namely: application pro-
tocols, service discovery protocols, infrastructure protocols and
other influential protocols. However, not all of these protocols
have to be bundled together to deliver a given IoT application.
Moreover, based on the nature of the IoT application, some
standards may not be required to be supported in an application.
In the following subsections, we provide an overview of some
of the common protocols in these categories and their core
functionality.

A. Application Protocols

1) Constrained Application Protocol (CoAP): The IETF
Constrained RESTful Environments (CoRE) working group
created CoAP, which is an application layer protocol [64], [65]
for IoT applications. The CoAP defines a web transfer protocol
based on REpresentational State Transfer (REST) on top of
HTTP functionalities. REST represents a simpler way to ex-
change data between clients and servers over HTTP [66]. REST
can be seen as a cacheable connection protocol that relies on
stateless client-server architecture. It is used within mobile and
social network applications and it eliminates ambiguity by using
HTTP get, post, put, and delete methods. REST enables clients
and servers to expose and consume web services like the Simple
Object Access Protocol (SOAP) but in an easier way using Uni-
form Resource Identifiers (URIs) as nouns and HTTP get, post,
put, and delete methods as verbs. REST does not require XML
for message exchanges. Unlike REST, CoAP is bound to UDP
(not TCP) by default which makes it more suitable for the IoT
applications. Furthermore, CoAP modifies some HTTP func-
tionalities to meet the IoT requirements such as low power con-
sumption and operation in the presence of lossy and noisy
links. However, since CoAP has been designed based on REST,
conversion between these two protocols in REST-CoAP proxies
is straightforward. The overall functionality of CoAP protocol
is demonstrated in Fig. 5.

Fig. 5. CoAP functionality.

CoAP aims to enable tiny devices with low power, compu-
tation and communication capabilities to utilize RESTful inter-
actions. CoAP can be divided into two sub-layers, namely: the
messaging sub-layer and the request/response sub-layer. The
messaging sub-layer detects duplications and provides reliable
communication over the UDP transport layer using exponential
backoff since UDP does not have a built-in error recovery me-
chanism. The request/response sub-layer on the other hand
handles REST communications. CoAP utilizes four types of
messages: confirmable, non-confirmable, reset and acknowl-
edgement. Reliability of CoAP is accomplished by a mix of
confirmable and non-confirmable messages. It also employs
four modes of responses as illustrated in Fig. 6. The separate re-
sponse mode is used when the server needs to wait for a specific
time before replying to the client. In CoAP’s non-confirmable
response mode, the client sends data without waiting for an
ACK message, while message IDs are used to detect duplicates.
The server side responds with a RST message when messages
are missed or communication issues occur. CoAP, as in HTTP,
utilizes methods such as GET, PUT, POST and DELETE to
achieve Create, Retrieve, Update and Delete (CRUD) opera-
tions. For example, the GET method can be used by a server to
inquire the client’s temperature using the piggybacked response
mode. The client sends back the temperature if it exists; other-
wise, it replies with a status code to indicate that the requested
data is not found. CoAP uses a simple and small format to en-
code messages. The first and fixed part of each message is four
bytes of header. Then a token value may appear whose length
ranges from zero to eight bytes. The token value is used for cor-
relating requests and responses. The options and payload are the
next optional fields. A typical CoAP message can be between
10 to 20 bytes [67]. The message format of CoAP packets is
depicted in Fig. 7 [64].

The fields in the header are as follows: Ver is the version of
CoAP, T is the type of Transaction, OC is Option count, and
Code represents the request method (1–10) or response code
(40–255). For example the code for GET, POST, PUT, and
DELETE is 1, 2, 3, and 4, respectively. The Transaction ID in
the header is a unique identifier for matching the response.

Some of the important features provided by CoAP include
[65], [68]:

• Resource observation: On-demand subscriptions to
monitor resources of interest using publish/subscribe
mechanism.

• Block-wise resource transport: Ability to exchange
transceiver data between the client and the server without

¡  CoAP modifies some HTTP functionalities to meet the IoT requirements
such as low power consumption and operation in the presence of
lossy and noisy links

¡  Conversion between these two protocols in REST-CoAP proxies

CoAP operation

¡  The interaction model of CoAP is similar to the client/server
model of HTTP

¡  machine-to-machine (M2M) interactions typically result in a
CoAP implementation acting in both client and server roles

¡  CoAP request is equivalent to that of HTTP and is sent by a client
to request an action (using a Method Code) on a resource
(identified by a URI) on a server.

¡  The server then sends a response with a Response Code; this
response may include a resource representation.

¡  Unlike HTTP, CoAP deals with these interchanges asynchronously
over a datagram-oriented transport such as UDP.

Internet of Things A.A. 17-18 18

Abstract Layering of CoAP

¡  CoAP logically uses a two-
layer approach

¡  CoAP messaging layer is
used to deal with UDP and
the asynchronous nature of
the interactions

¡  the request/response
interactions using Method
and Response Codes

¡  CoAP is however a single
protocol, with messaging
and request/response as just
features of the CoAP
header.

Internet of Things A.A. 17-18 19

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

2. Constrained Application Protocol

 The interaction model of CoAP is similar to the client/server model
 of HTTP. However, machine-to-machine interactions typically result
 in a CoAP implementation acting in both client and server roles. A
 CoAP request is equivalent to that of HTTP and is sent by a client to
 request an action (using a Method Code) on a resource (identified by
 a URI) on a server. The server then sends a response with a Response
 Code; this response may include a resource representation.

 Unlike HTTP, CoAP deals with these interchanges asynchronously over a
 datagram-oriented transport such as UDP. This is done logically
 using a layer of messages that supports optional reliability (with
 exponential back-off). CoAP defines four types of messages:
 Confirmable, Non-confirmable, Acknowledgement, Reset. Method Codes
 and Response Codes included in some of these messages make them carry
 requests or responses. The basic exchanges of the four types of
 messages are somewhat orthogonal to the request/response
 interactions; requests can be carried in Confirmable and Non-
 confirmable messages, and responses can be carried in these as well
 as piggybacked in Acknowledgement messages.

 One could think of CoAP logically as using a two-layer approach, a
 CoAP messaging layer used to deal with UDP and the asynchronous
 nature of the interactions, and the request/response interactions
 using Method and Response Codes (see Figure 1). CoAP is however a
 single protocol, with messaging and request/response as just features
 of the CoAP header.

 +----------------------+
 | Application |
 +----------------------+
 +----------------------+ \
 | Requests/Responses | |
 |----------------------| | CoAP
 | Messages | |
 +----------------------+ /
 +----------------------+
 | UDP |
 +----------------------+

 Figure 1: Abstract Layering of CoAP

Shelby, et al. Standards Track [Page 10]

CoAP messages
¡  CoAP defines four types of messages

1.  Confirmable
2.  Non-confirmable
3.  Acknowledgement
4.  Reset

¡  Method Codes and Response Codes included in some of these
messages make them carry requests or responses.

¡  Requests can be carried in Confirmable and Non-confirmable
messages

¡  Responses can be carried in Confirmable and Non-confirmable
messages as well as piggybacked in Acknowledgement messages

¡  Each message contains a Message ID used to detect duplicates and
for optional reliability

Internet of Things A.A. 17-18 20

Messaging model: reliable
Reliable Message Transmission

¡  Reliability is provided by marking a message as Confirmable
(CON).

¡ A Confirmable message is retransmitted using a default timeout
and exponential back-off between retransmissions, until the
recipient sends an Acknowledgement message (ACK) with the
same Message ID (in this example, 0x7d34) from the
corresponding endpoint

Internet of Things A.A. 17-18 21

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

2.1. Messaging Model

 The CoAP messaging model is based on the exchange of messages over
 UDP between endpoints.

 CoAP uses a short fixed-length binary header (4 bytes) that may be
 followed by compact binary options and a payload. This message
 format is shared by requests and responses. The CoAP message format
 is specified in Section 3. Each message contains a Message ID used
 to detect duplicates and for optional reliability. (The Message ID
 is compact; its 16-bit size enables up to about 250 messages per
 second from one endpoint to another with default protocol
 parameters.)

 Reliability is provided by marking a message as Confirmable (CON). A
 Confirmable message is retransmitted using a default timeout and
 exponential back-off between retransmissions, until the recipient
 sends an Acknowledgement message (ACK) with the same Message ID (in
 this example, 0x7d34) from the corresponding endpoint; see Figure 2.
 When a recipient is not at all able to process a Confirmable message
 (i.e., not even able to provide a suitable error response), it
 replies with a Reset message (RST) instead of an Acknowledgement
 (ACK).

 Client Server
 | |
 | CON [0x7d34] |
 +----------------->|
 | |
 | ACK [0x7d34] |
 |<-----------------+
 | |

 Figure 2: Reliable Message Transmission

 A message that does not require reliable transmission (for example,
 each single measurement out of a stream of sensor data) can be sent
 as a Non-confirmable message (NON). These are not acknowledged, but
 still have a Message ID for duplicate detection (in this example,
 0x01a0); see Figure 3. When a recipient is not able to process a
 Non-confirmable message, it may reply with a Reset message (RST).

Shelby, et al. Standards Track [Page 11]

Messaging model:
unreliable
Unreliable Message Transmission

¡ A message that does not require reliable transmission (for
example, each single measurement out of a stream of sensor
data) can be sent as a Non-confirmable message (NON).

¡  These are not acknowledged, but still have a Message ID for
duplicate detection (in this example, 0x01a0)

Internet of Things A.A. 17-18 22

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

 Client Server
 | |
 | NON [0x01a0] |
 +----------------->|
 | |

 Figure 3: Unreliable Message Transmission

 See Section 4 for details of CoAP messages.

 As CoAP runs over UDP, it also supports the use of multicast IP
 destination addresses, enabling multicast CoAP requests. Section 8
 discusses the proper use of CoAP messages with multicast addresses
 and precautions for avoiding response congestion.

 Several security modes are defined for CoAP in Section 9 ranging from
 no security to certificate-based security. This document specifies a
 binding to DTLS for securing the protocol; the use of IPsec with CoAP
 is discussed in [IPsec-CoAP].

2.2. Request/Response Model

 CoAP request and response semantics are carried in CoAP messages,
 which include either a Method Code or Response Code, respectively.
 Optional (or default) request and response information, such as the
 URI and payload media type are carried as CoAP options. A Token is
 used to match responses to requests independently from the underlying
 messages (Section 5.3). (Note that the Token is a concept separate
 from the Message ID.)

 A request is carried in a Confirmable (CON) or Non-confirmable (NON)
 message, and, if immediately available, the response to a request
 carried in a Confirmable message is carried in the resulting
 Acknowledgement (ACK) message. This is called a piggybacked
 response, detailed in Section 5.2.1. (There is no need for
 separately acknowledging a piggybacked response, as the client will
 retransmit the request if the Acknowledgement message carrying the
 piggybacked response is lost.) Two examples for a basic GET request
 with piggybacked response are shown in Figure 4, one successful, one
 resulting in a 4.04 (Not Found) response.

Shelby, et al. Standards Track [Page 12]

Messaging model: reset

¡ When a recipient is not at all able to process a Confirmable or
a Non Confirmable message (i.e., not even able to provide a
suitable error response), it replies with a Reset message (RST)

Internet of Things A.A. 17-18 23

CoAP
request/response model

¡ CoAP request and response semantics are carried in
CoAP messages, which include either a Method Code
or Response Code, respectively

Internet of Things A.A. 17-18 24

Immediate response to a
CON request
¡ A request can be carried in a Confirmable (CON) message, and,

if immediately available, the response to the request can be
carried in the resulting Acknowledgement (ACK) message.

Internet of Things A.A. 17-18 25

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

 Client Server Client Server
 | | | |
 | CON [0xbc90] | | CON [0xbc91] |
 | GET /temperature | | GET /temperature |
 | (Token 0x71) | | (Token 0x72) |
 +----------------->| +----------------->|
 | | | |
 | ACK [0xbc90] | | ACK [0xbc91] |
 | 2.05 Content | | 4.04 Not Found |
 | (Token 0x71) | | (Token 0x72) |
 | "22.5 C" | | "Not found" |
 |<-----------------+ |<-----------------+
 | | | |

 Figure 4: Two GET Requests with Piggybacked Responses

 If the server is not able to respond immediately to a request carried
 in a Confirmable message, it simply responds with an Empty
 Acknowledgement message so that the client can stop retransmitting
 the request. When the response is ready, the server sends it in a
 new Confirmable message (which then in turn needs to be acknowledged
 by the client). This is called a "separate response", as illustrated
 in Figure 5 and described in more detail in Section 5.2.2.

 Client Server
 | |
 | CON [0x7a10] |
 | GET /temperature |
 | (Token 0x73) |
 +----------------->|
 | |
 | ACK [0x7a10] |
 |<-----------------+
 | |
 ... Time Passes ...
 | |
 | CON [0x23bb] |
 | 2.05 Content |
 | (Token 0x73) |
 | "22.5 C" |
 |<-----------------+
 | |
 | ACK [0x23bb] |
 +----------------->|
 | |

 Figure 5: A GET Request with a Separate Response

Shelby, et al. Standards Track [Page 13]

Two GET Requests with Piggybacked Responses

CON message with
separate response

¡  If the server is not able to
respond immediately to a
request carried in a
Confirmable message, it
simply responds with an
Empty Acknowledgement
message so that the client
can stop retransmitting the
request.

¡ When the response is ready,
the server sends it in a new
Confirmable message (which
then in turn needs to be
acknowledged by the client).

Internet of Things A.A. 17-18 26

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

 Client Server Client Server
 | | | |
 | CON [0xbc90] | | CON [0xbc91] |
 | GET /temperature | | GET /temperature |
 | (Token 0x71) | | (Token 0x72) |
 +----------------->| +----------------->|
 | | | |
 | ACK [0xbc90] | | ACK [0xbc91] |
 | 2.05 Content | | 4.04 Not Found |
 | (Token 0x71) | | (Token 0x72) |
 | "22.5 C" | | "Not found" |
 |<-----------------+ |<-----------------+
 | | | |

 Figure 4: Two GET Requests with Piggybacked Responses

 If the server is not able to respond immediately to a request carried
 in a Confirmable message, it simply responds with an Empty
 Acknowledgement message so that the client can stop retransmitting
 the request. When the response is ready, the server sends it in a
 new Confirmable message (which then in turn needs to be acknowledged
 by the client). This is called a "separate response", as illustrated
 in Figure 5 and described in more detail in Section 5.2.2.

 Client Server
 | |
 | CON [0x7a10] |
 | GET /temperature |
 | (Token 0x73) |
 +----------------->|
 | |
 | ACK [0x7a10] |
 |<-----------------+
 | |
 ... Time Passes ...
 | |
 | CON [0x23bb] |
 | 2.05 Content |
 | (Token 0x73) |
 | "22.5 C" |
 |<-----------------+
 | |
 | ACK [0x23bb] |
 +----------------->|
 | |

 Figure 5: A GET Request with a Separate Response

Shelby, et al. Standards Track [Page 13]

A GET Request with a
Separate Response

Non-confirmable request/
response

¡  If a request is sent in a Non-
confirmable message, then the
response is sent using a new
Non-confirmable message,
although the server may
instead send a Confirmable
message.

Internet of Things A.A. 17-18 27

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

 If a request is sent in a Non-confirmable message, then the response
 is sent using a new Non-confirmable message, although the server may
 instead send a Confirmable message. This type of exchange is
 illustrated in Figure 6.

 Client Server
 | |
 | NON [0x7a11] |
 | GET /temperature |
 | (Token 0x74) |
 +----------------->|
 | |
 | NON [0x23bc] |
 | 2.05 Content |
 | (Token 0x74) |
 | "22.5 C" |
 |<-----------------+
 | |

 Figure 6: A Request and a Response Carried in Non-confirmable
 Messages

 CoAP makes use of GET, PUT, POST, and DELETE methods in a similar
 manner to HTTP, with the semantics specified in Section 5.8. (Note
 that the detailed semantics of CoAP methods are "almost, but not
 entirely unlike" [HHGTTG] those of HTTP methods: intuition taken from
 HTTP experience generally does apply well, but there are enough
 differences that make it worthwhile to actually read the present
 specification.)

 Methods beyond the basic four can be added to CoAP in separate
 specifications. New methods do not necessarily have to use requests
 and responses in pairs. Even for existing methods, a single request
 may yield multiple responses, e.g., for a multicast request
 (Section 8) or with the Observe option [OBSERVE].

 URI support in a server is simplified as the client already parses
 the URI and splits it into host, port, path, and query components,
 making use of default values for efficiency. Response Codes relate
 to a small subset of HTTP status codes with a few CoAP-specific codes
 added, as defined in Section 5.9.

Shelby, et al. Standards Track [Page 14]

A Request and a Response Carried

in Non-confirmable Messages

CoAP methods

¡ CoAP, as in HTTP, utilizes methods such as GET, PUT, POST and
DELETE to achieve Create, Retrieve, Update and Delete (CRUD)
operations.

¡  Example: the GET method can be used by a server to inquire
the client’s temperature using the piggybacked response
mode. The client sends back the temperature if it exists;
otherwise, it replies with a status code to indicate that the
requested data is not found.

Internet of Things A.A. 17-18 28

CoAP messages
¡  CoAP uses a simple and small format to encode messages.

¡  4 bytes of header + token (0-8 bytes) + options + payload

¡  The token value is used for correlating requests and responses.
The options and payload are the next optional fields.

¡ A typical CoAP message can be between 10 to 20 bytes

Internet of Things A.A. 17-18 29

2354 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 4, FOURTH QUARTER 2015

Fig. 6. CoAP message types [64]. (a) Confirmable. (b) Non-confirmable. (c) Piggybacked responses. (d) Separate response.

Fig. 7. CoAP message format.

the need to update the whole data to reduce the commu-
nication overhead.

• Resource discovery: Server utilizes well-known URI
paths based on the web link fields in CoRE link format to
provide resource discovery for the client.

• Interacting with HTTP: Flexibility of communicating
with several devices because the common REST ar-
chitecture enables CoAP to interact easily with HTTP
through a proxy.

• Security: CoAP is a secure protocol since it is built
on top of datagram transport layer security (DTLS)
to guarantee integrity and confidentiality of exchanged
messages.

As an example of how an application protocol works in an
IoT environment, we provided a sample code in [69]. Since the
cloud service for this project, Nimbits, does not support CoAP
currently, we used HTTP REST to integrate with Nimbits.

2) Message Queue Telemetry Transport (MQTT): MQTT is
a messaging protocol that was introduced by Andy Stanford-
Clark of IBM and Arlen Nipper of Arcom (now Eurotech) in
1999 and was standardized in 2013 at OASIS [70]. MQTT aims
at connecting embedded devices and networks with applica-
tions and middleware. The connection operation uses a routing
mechanism (one-to-one, one-to-many, many-to-many) and ena-
bles MQTT as an optimal connection protocol for the IoT
and M2M.

MQTT utilizes the publish/subscribe pattern to provide tran-
sition flexibility and simplicity of implementation as depicted in
Fig. 8. Also, MQTT is suitable for resource constrained devices
that use unreliable or low bandwidth links. MQTT is built on
top of the TCP protocol. It delivers messages through three lev-
els of QoS. Two major specifications exist for MQTT: MQTT
v3.1 and MQTT-SN [71] (formerly known as MQTT-S) V1.2.
The latter was defined specifically for sensor networks and de-
fines a UDP mapping of MQTT and adds broker support for in-
dexing topic names. The specifications provide three elements:
connection semantics, routing, and endpoint.

Fig. 8. The architecture of MQTT.

Fig. 9. Publish/subscribe process utilized by MQTT [70].

MQTT simply consists of three components, subscriber, pub-
lisher, and broker. An interested device would register as a sub-
scriber for specific topics in order for it to be informed by the
broker when publishers publish topics of interest. The publisher
acts as a generator of interesting data. After that, the publisher
transmits the information to the interested entities (subscribers)
through the broker. Furthermore, the broker achieves security
by checking authorization of the publishers and the subscribers
[71]. Numerous applications utilize the MQTT such as health
care, monitoring, energy meter, and Facebook notification.
Therefore, the MQTT protocol represents an ideal messaging
protocol for the IoT and M2M communications and is able to
provide routing for small, cheap, low power and low memory
devices in vulnerable and low bandwidth networks. Fig. 9 illus-
trates the publish/subscribe process utilized by MQTT and
Fig. 10 shows the message format used by the MQTT protocol
[70]. The first two bytes of message are fixed header. In this
format, the value of the Message Type field indicates a variety
of messages including CONNECT (1), CONNACK (2), PUB-
LISH (3), SUBSCRIBE (8) and so on. The DUP flag indicates
that the massage is duplicated and that the receiver may have

Message header

¡ Version (Ver): 2-bit unsigned integer - Indicates the CoAP version
number.

¡  Type (T): 2-bit unsigned integer. Indicates if this message is of
type Confirmable (0), Non-confirmable (1), Acknowledgement
(2), or Reset (3).

¡ OC: 4-bit unsigned integer. Indicates the length of the variable-
length Token field (0-8 bytes).

¡ Code: 8-bit unsigned integer, Code represents the request
method (1–10) or response code (40–255). For example the
code for GET, POST, PUT, and DELETE is 1, 2, 3, and 4, respectively

Internet of Things A.A. 17-18 30

2354 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 4, FOURTH QUARTER 2015

Fig. 6. CoAP message types [64]. (a) Confirmable. (b) Non-confirmable. (c) Piggybacked responses. (d) Separate response.

Fig. 7. CoAP message format.

the need to update the whole data to reduce the commu-
nication overhead.

• Resource discovery: Server utilizes well-known URI
paths based on the web link fields in CoRE link format to
provide resource discovery for the client.

• Interacting with HTTP: Flexibility of communicating
with several devices because the common REST ar-
chitecture enables CoAP to interact easily with HTTP
through a proxy.

• Security: CoAP is a secure protocol since it is built
on top of datagram transport layer security (DTLS)
to guarantee integrity and confidentiality of exchanged
messages.

As an example of how an application protocol works in an
IoT environment, we provided a sample code in [69]. Since the
cloud service for this project, Nimbits, does not support CoAP
currently, we used HTTP REST to integrate with Nimbits.

2) Message Queue Telemetry Transport (MQTT): MQTT is
a messaging protocol that was introduced by Andy Stanford-
Clark of IBM and Arlen Nipper of Arcom (now Eurotech) in
1999 and was standardized in 2013 at OASIS [70]. MQTT aims
at connecting embedded devices and networks with applica-
tions and middleware. The connection operation uses a routing
mechanism (one-to-one, one-to-many, many-to-many) and ena-
bles MQTT as an optimal connection protocol for the IoT
and M2M.

MQTT utilizes the publish/subscribe pattern to provide tran-
sition flexibility and simplicity of implementation as depicted in
Fig. 8. Also, MQTT is suitable for resource constrained devices
that use unreliable or low bandwidth links. MQTT is built on
top of the TCP protocol. It delivers messages through three lev-
els of QoS. Two major specifications exist for MQTT: MQTT
v3.1 and MQTT-SN [71] (formerly known as MQTT-S) V1.2.
The latter was defined specifically for sensor networks and de-
fines a UDP mapping of MQTT and adds broker support for in-
dexing topic names. The specifications provide three elements:
connection semantics, routing, and endpoint.

Fig. 8. The architecture of MQTT.

Fig. 9. Publish/subscribe process utilized by MQTT [70].

MQTT simply consists of three components, subscriber, pub-
lisher, and broker. An interested device would register as a sub-
scriber for specific topics in order for it to be informed by the
broker when publishers publish topics of interest. The publisher
acts as a generator of interesting data. After that, the publisher
transmits the information to the interested entities (subscribers)
through the broker. Furthermore, the broker achieves security
by checking authorization of the publishers and the subscribers
[71]. Numerous applications utilize the MQTT such as health
care, monitoring, energy meter, and Facebook notification.
Therefore, the MQTT protocol represents an ideal messaging
protocol for the IoT and M2M communications and is able to
provide routing for small, cheap, low power and low memory
devices in vulnerable and low bandwidth networks. Fig. 9 illus-
trates the publish/subscribe process utilized by MQTT and
Fig. 10 shows the message format used by the MQTT protocol
[70]. The first two bytes of message are fixed header. In this
format, the value of the Message Type field indicates a variety
of messages including CONNECT (1), CONNACK (2), PUB-
LISH (3), SUBSCRIBE (8) and so on. The DUP flag indicates
that the massage is duplicated and that the receiver may have

Reading material

¡  RFC 7252: The Constrained Application Protocol (CoAP)

Internet of Things A.A. 17-18 31

