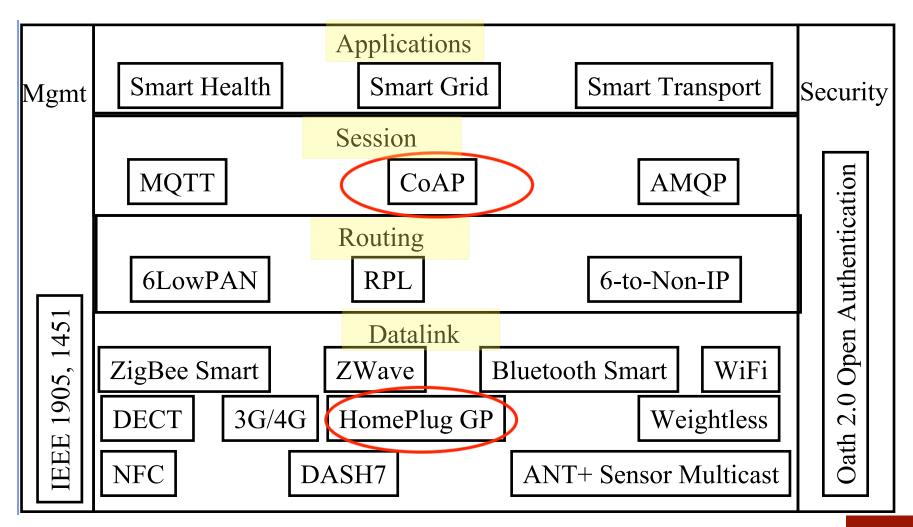


1


IoT: HP and CoAP

Gaia Maselli Dept. of Computer Science

Internet of Things A.A. 17-18

Recent protocols for IoT

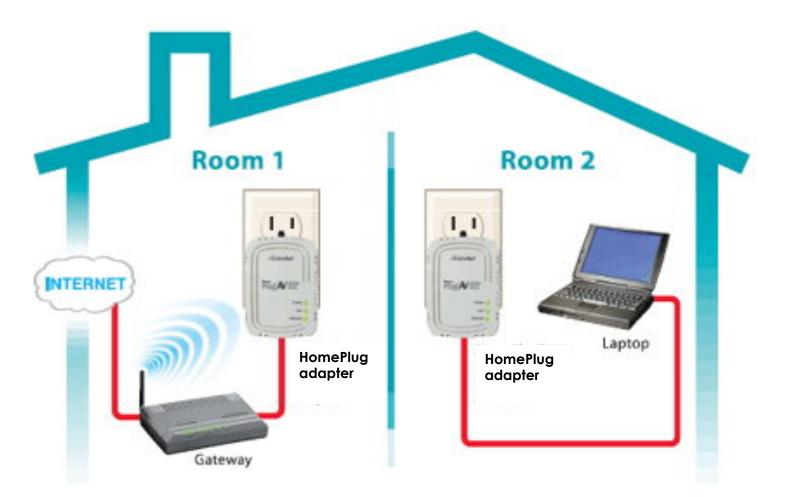
HomePlug: standard for PowerLine communication

Power Line Communication (PLC)

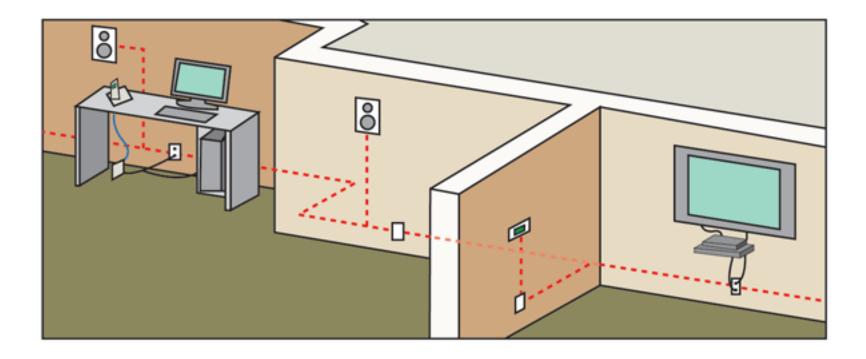
- The existing electrical wiring and outlets are used as the medium for data communication within the home
- Using power lines as the network infrastructure has many advantages over other technologies.
 - no new wires are needed
 - there are many access points (power sockets) in a home/ building (four or more per room)
 - the cost to build a power line network is low compared to that of other technologies
- power line communication (PLC) as specified by the HomePlug 1.0 standard provides a 14 Mb/s raw data rate

PLC in the past

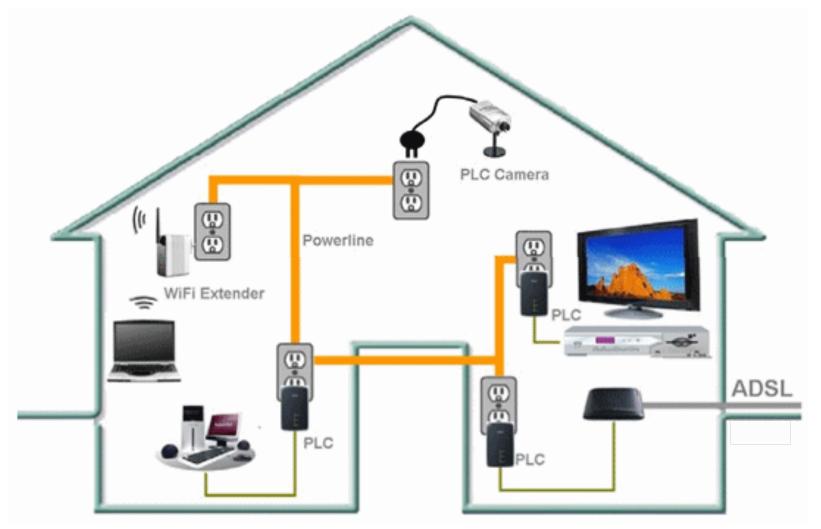
- In the past, power lines were considered unacceptable for signal transmission, since the channel is subject to a lot of noise, interference, and fading.
- Power lines were not designed for delivering high-frequency signals
- The poor quality of a power line is not ideal for signal transmission because the channel contains noise and interference.
- The appeal of using the existing power line as a transmission medium for data exchange was too great to be ignored.
- The advancement of signal modulation technologies (Orthogonal Frequency Division Multiplexing - OFDM), digital signal processing, and error control coding has minimized the restrictions of channel imperfections, and high-speed signal transmission through power lines is now feasible.


HomePlug

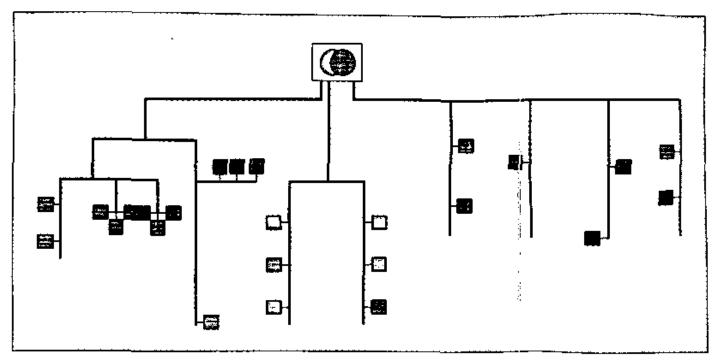
- HomePlug 1.0
- HomePlug AV: Audio/Video 20- 200 Mbps
- HomePlug AV2: Gigabit networking
- HomePlug GP: Green PHY greater distance coverage and lower power consumption than HomePlug AV



Example


HomePlug AV

 With HomePlug technology the electrical wires in a home can distribute broadband Internet, HD video, digital music, and smart energy applications


Fully connected home

MAC layer

- Power grid networks usually form a bus or tree topology
- Communication between any pair of terminals is possible
- However, most traffic is expected to be from and to a terminal serving as the network gateway

MAC layer issues

- CSMA/CD cannot be applied on power line networks as the wide variation of the received signal and noise levels makes collision detection difficult and unreliable.
- An alternative to collision detection that can he easily employed in cases of PLC is collision avoidance (CSMA/CA), a technique that uses random back-offs to further reduce the collision probability
- Time-division multiple access (TDMA) can also be used

HPAV: MAC protocols

- Connection-oriented Contention Free (CF) service
 - to support the QoS requirements (guaranteed bandwidth, latency and jitter requirements) of demanding AV and IP applications.
 - This Contention Free service is based on periodic Time Division Multiple Access (TDMA) allocations of adequate duration to support the QoS requirements of a connection.
- Connectionless prioritized Contention based service
 - to support both best-effort applications and applications that rely on prioritized QoS.
 - This service is based on Collision Sense Multiple Access/Collision Avoidance (CSMA/CA) technology which is applied to only traffic at the highest pending priority level after the pending traffic with lower priority levels has been eliminated during a brief Priority Resolution phase at the beginning of the contention window.

TDMA + CSMA/CA: coordination

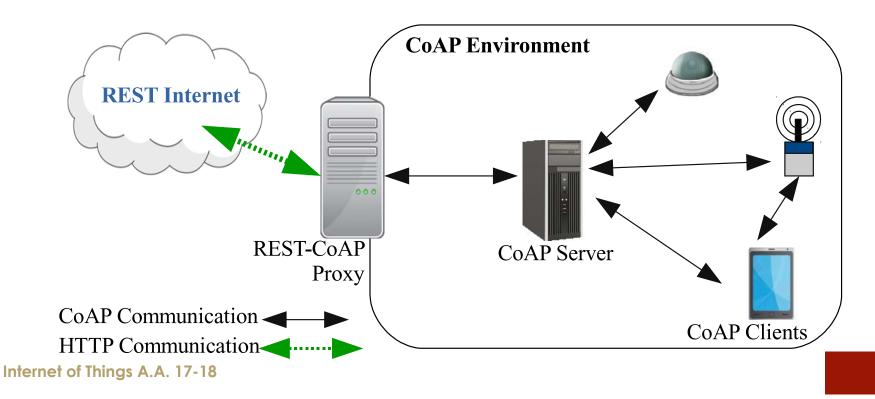
- To efficiently provide both kinds of communication service, HPAV implements a flexible, centrally-managed architecture.
- The central manager is called a Central Coordinator (CCo). The CCo establishes a Beacon Period and a schedule which accommodates both the Contention Free allocations and the time allotted for Contention-based traffic.
- the Beacon Period is divided into 3 regions:
- 1. Beacon Region
- 2. CSMA Region
- 3. Contention-Free Region
- Messaging in HPAV is direct from station to station; however, the CCo monitors the messages. The header of each message contains information about how much data is pending for transmission on the connection

Reading material

- HomePlug Alliance, "HomePlug AV White Paper", http://www.homeplug.org/media/filer_public/b8/68/ b86828d9-7e8a-486f-aa82-179e6e95cab5/hpav-whitepaper_050818.pdf
- "A Power Line Communication Network Infrastructure For The Smart Home", IEEE Wireless Communications, December 2002

CoAP: Constrained Application Protocol

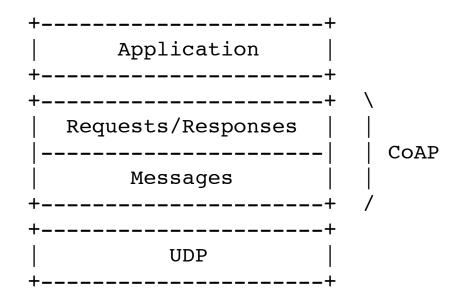
Constrained Application Protocol (CoAP)



- The IETF Constrained RESTful Environments (CoRE) working group created CoAP, which is an application layer protocol for IoT applications
- Specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks.
- The protocol is designed for machine-to-machine (M2M) applications such as smart energy and building automation.
- Provides a request/response interaction model between application endpoints
- Supports built-in discovery of services and resources
- Includes key concepts of the Web such as URIs and Internet media types.
- CoAP is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead, and simplicity for constrained environments.

CoAP functionality

- CoAP modifies some HTTP functionalities to meet the IoT requirements such as low power consumption and operation in the presence of lossy and noisy links
- Conversion between these two protocols in REST-CoAP proxies

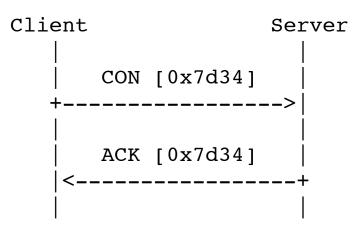

CoAP operation

- The interaction model of CoAP is similar to the client/server model of HTTP
- machine-to-machine (M2M) interactions typically result in a CoAP implementation acting in both client and server roles
- CoAP request is equivalent to that of HTTP and is sent by a client to request an action (using a Method Code) on a resource (identified by a URI) on a server.
- The server then sends a response with a Response Code; this response may include a resource representation.
- Unlike HTTP, CoAP deals with these interchanges asynchronously over a datagram-oriented transport such as UDP.

Abstract Layering of CoAP

- CoAP logically uses a twolayer approach
- CoAP messaging layer is used to deal with UDP and the asynchronous nature of the interactions
- the request/response interactions using Method and Response Codes
- CoAP is however a single protocol, with messaging and request/response as just features of the CoAP header.

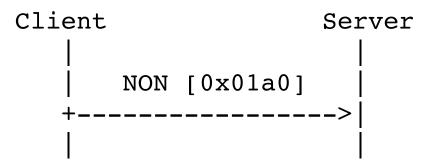
CoAP messages


- CoAP defines four types of messages
 - 1. Confirmable
 - 2. Non-confirmable
 - 3. Acknowledgement
 - 4. Reset
- Method Codes and Response Codes included in some of these messages make them carry requests or responses.
- Requests can be carried in Confirmable and Non-confirmable messages
- Responses can be carried in Confirmable and Non-confirmable messages as well as piggybacked in Acknowledgement messages
- Each message contains a Message ID used to detect duplicates and for optional reliability

Messaging model: reliable

Reliable Message Transmission

- Reliability is provided by marking a message as Confirmable (CON).
- A Confirmable message is retransmitted using a default timeout and exponential back-off between retransmissions, until the recipient sends an Acknowledgement message (ACK) with the same Message ID (in this example, 0x7d34) from the corresponding endpoint



Messaging model: unreliable

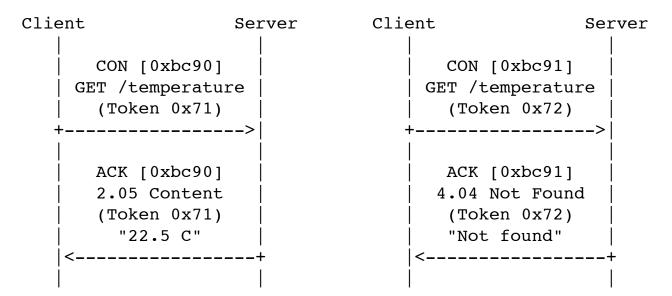
Unreliable Message Transmission

- A message that does not require reliable transmission (for example, each single measurement out of a stream of sensor data) can be sent as a Non-confirmable message (NON).
- These are not acknowledged, but still have a Message ID for duplicate detection (in this example, 0x01a0)

Messaging model: reset

When a recipient is not at all able to process a Confirmable or a Non Confirmable message (i.e., not even able to provide a suitable error response), it replies with a Reset message (RST)

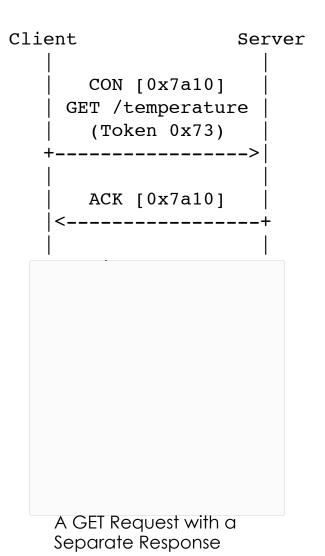
CoAP request/response model



 CoAP request and response semantics are carried in CoAP messages, which include either a Method Code or Response Code, respectively

Immediate response to a CON request

A request can be carried in a Confirmable (CON) message, and, if immediately available, the response to the request can be carried in the resulting Acknowledgement (ACK) message.



Two GET Requests with Piggybacked Responses

CON message with separate response

- If the server is not able to respond immediately to a request carried in a Confirmable message, it simply responds with an Empty Acknowledgement message so that the client can stop retransmitting the request.
- When the response is ready, the server sends it in a new Confirmable message (which then in turn needs to be acknowledged by the client).

Non-confirmable request/ response

 If a request is sent in a Nonconfirmable message, then the response is sent using a new Non-confirmable message, although the server may instead send a Confirmable message.

A Request and a Response Carried in Non-confirmable Messages

CoAP methods

- CoAP, as in HTTP, utilizes methods such as GET, PUT, POST and DELETE to achieve Create, Retrieve, Update and Delete (CRUD) operations.
- Example: the GET method can be used by a server to inquire the client's temperature using the piggybacked response mode. The client sends back the temperature if it exists; otherwise, it replies with a status code to indicate that the requested data is not found.

CoAP messages

- CoAP uses a simple and small format to encode messages.
- 4 bytes of header + token (0-8 bytes) + options + payload
- The token value is used for correlating requests and responses.
 The options and payload are the next optional fields.
- A typical CoAP message can be between 10 to 20 bytes

0 1	23	4567	8	16	31
Ver	Т	OC	Code	Message ID	
Token (if any)					
Options (if any)					
Payload (if any)					

Message header

- Version (Ver): 2-bit unsigned integer Indicates the CoAP version number.
- Type (T): 2-bit unsigned integer. Indicates if this message is of type Confirmable (0), Non-confirmable (1), Acknowledgement (2), or Reset (3).
- OC: 4-bit unsigned integer. Indicates the length of the variablelength Token field (0-8 bytes).
- Code: 8-bit unsigned integer, Code represents the request method (1–10) or response code (40–255). For example the code for GET, POST, PUT, and DELETE is 1, 2, 3, and 4, respectively

Reading material

RFC 7252: The Constrained Application Protocol (CoAP)