
CPSC 211 Data Structures & Implementations (c) Texas A&M University [95]

Compiling and Running a C Program in Unix

Simple scenario in which your program is in a single
file: Suppose you want to name your program test.

1. edit your source code in a file called test.c

2. compile your source code: gcc -o test test.c
The ”-o test” part of the command creates an
executable file called test. (The ”o” stands for
”output”.) If you left off the ”-o test”, the exe-
cutable would be in a file called a.out.

3. if compile time errors are discovered,
then go to step 1

4. run your program simply by typingtest (or a.out)

5. if run time errors are discovered,
then go to step 1

CPSC 211 Data Structures & Implementations (c) Texas A&M University [96]

Structure of a C Program

A C program is a list of function definitions. A func-
tion is the C equivalent of a method in Java.

Every C program must contain one, and only one,
function called main, where execution begins.

Functions are free-standing (not contained inside any
other entity).
#include <stdio.h>
int main() { /* this is a comment */
printf("Hello, world.\n");

}

� The #include tells the compiler to include the
header file stdio.h, which contains various dec-
larations relating to standard input-output.

� For now, ignore the return value of main.
� printf is the function that prints to the screen.
� The \n is the newline character.
� Comments are delimited with /* ... */.

Remember to end your comment!

CPSC 211 Data Structures & Implementations (c) Texas A&M University [97]

A Useful Library

See the Reek book (especially Chapter 16) for a de-
scription of what you can do with built-in libraries. In
addition to stdio.h,

� stdlib.h lets you use functions for, e.g.,

– arithmetic

– random numbers

– ways to terminate execution

– sorting and searching
� math.h provides more advanced math functions

(e.g., trigonometry)
� string.h has string manipulation functions

CPSC 211 Data Structures & Implementations (c) Texas A&M University [98]

Printf

The function printf is used to print the standard out-
put (screen):

� It can take a variable number of arguments.
� The first argument must be a string.
� The first argument might have embedded in it some

“holes” that indicate they are to be filled with data.
� A hole is indicated by a percent sign (%) followed

by a code, which indicates what type of data is to be
written.

� Following the first argument is a series of additional
arguments that supply the data for the holes.

Example:

printf("Name = %s, age = %i, fraction = %f",
"Fred", 30, .333);

Output is:

Name = Fred, age = 30, fraction = 0.333000

CPSC 211 Data Structures & Implementations (c) Texas A&M University [99]

Variables and Arithmetic Expressions

The main numeric data types that we will use are:
� char
� int
� double

Variables are declared and manipulated in arithmetic
expressions pretty much as in Java. For instance,

#include <stdio.h>
int main() {
int a = 3;
int b = 4;
int c = a*b - b/3;
printf("answer is %i\n", c);

}

However, in C, all variable declarations of a block
must precede all statements.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [100]

Reading from the Keyboard

The function scanf reads in data from the keyboard.

int num1, num2;
scanf("%i %i", &num1, &num2);

� scanf takes a variable number of arguments
� The first argument is a string that consists of a series

of “holes”.
� Each hole is indicated by a percent sign (%) fol-

lowed by a code indicating type of data to be read.
� After the first argument is a series of arguments,

corresponding to the holes in the first argument.
� The subsequent arguments must each be preceded

by an ampersand! (Related to pointers.)
� The code for an int is %i; the code for a double

is %lf (not %d, as for printf).

When you run this program, it will wait for you to enter
two integers, and then continue. The integers can be on
the same line separated by a space, or on two lines.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [101]

Functions

Functions in C are pretty much like methods in Java
(dealing only with primitive types). Example:
#include < stdio.h >
double times2 (double x) {
x = 2*x;
return x;

}
main () {
double y = 301.4;
printf("Original value is %f; final value is %f.\n",

y, times2(y));
}

� Functions must be declared before they are invoked.
Requires careful ordering or use of prototypes.

� As in Java, parameters are passed by value. In the
example, the value of y, 301.4, is copied into x. The
change to x does not affect y.

� As in Java, if the function does not return any value,
use void as the return type.

� Parameters and local variables of functions behave
like those in Java.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [102]

Recursive Functions

Recursion is essentially the same as in Java.

The only difference is if you have mutually recursive
functions, also called indirect recursion: for instance,
if function A calls function B, while B calls A.

Then you have a problem with the requirement that
functions be defined before they are used.

You can get around this problem with function proto-
types, which just give the signature of the function (re-
turn type, function name, and list of arguments, with-
out the code body).

You first list the prototype(s), then you can give the
actual function definitions.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [103]

Global Variables and Constants

C also provides global variables.
� A global variable is defined outside all functions,

including main.
� A global variable can be used inside any function

in the same file.

Generally, global variables that can be changed are frowned
upon, as contributing to errors. However, global vari-
ables are very appropriate for constants. Constants are
defined using macros:

#include <stdio.h>
#define INTEREST_RATE .06
main () {
double principal = 10000.;
printf("Amount of interest is %f.\n",

INTEREST_RATE * principal);
}

The #define defines a macro, meaning that the text
“INTEREST RATE” is to be substituted with the text
“.06” at compile time.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [104]

Boolean Expressions

� The operators to compare two values are the same
as in Java: ==, !=, <, etc.

� However, instead of returning a boolean value, they
return either 0 (means false) or 1 (means true).

� Actually, C interprets any non-zero integer as true.

Thus the analog in C of a boolean expression in Java
is any expression that produces an integer. It is in-
terpreted as producing a truth value, by letting 0 mean
false and a non-zero value mean true.

As in Java, boolean expressions can be operated on
with && (conditional and), || (conditional or), and
! (negation). Some examples:

� (10 == 3) evaluates to 0 (false), since 10 does
not equal 3

� !(10 == 3) evaluates to 1 (true), since
��� �� �

� !((x < 4) || (y == 5)) : if x is 10 and
y is 5, then this evaluates to 0 (false), since y is 5

CPSC 211 Data Structures & Implementations (c) Texas A&M University [105]

If Statements and Loops

Given the preceding interpretation of “boolean expres-
sion”, the following statements are the same in C as in
Java:

� if
� if-else
� while
� for

Since Boolean expressions are essentially integers, you
can have a for statement like this in C:
for (int count = 99; count; count--) {
...

}

� count is initialized to 99;
� the loop is executed as long as the expression count

is non-zero (remember that non-zero means true, in
the context of a boolean expression);

� count is decremented by 1 at each iteration.
� This loop is executed 99 times.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [106]

Switch

C has a switch statement that is like that in Java:

switch (<integer-expression>) {
case <integer-constant-1> :

<statements-for-case-1>
break;

case <integer-constant-2> :
<statements-for-case-2>
break;

...
default : <default-statements>

}

Don’t forget the break statements!

The integer expression must produce a value belonging
to any of the integral data types (various size integers
and characters).

CPSC 211 Data Structures & Implementations (c) Texas A&M University [107]

Enumerations

This is something neat that Java does not have.

An enumeration is a way to give mnemonic names to
a group of related integer constants.

For instance, suppose you need to have some codes
in your program to indicate whether a library book is
checked in, checked out, or lost. Intead of

#define CHECKED_IN 0
#define CHECKED_OUT 1
#define LOST 2

you can use an enumeration declaration:

enum {CHECKED_IN, CHECKED_OUT, LOST};

The names in the list are matched up with 0, 1, 2, ...

If you want to give specific values, you can do that too:

enum { Jan = 1, Feb, Mar, Apr };

CPSC 211 Data Structures & Implementations (c) Texas A&M University [108]

Using an Enumeration in a Switch Statement

int status;
/* some code to give status a value */
switch (status) {
case CHECKED_IN :
/* handle a checked in book */
break;

case CHECKED_OUT :
/* handle a checked out book */
break;

case LOST :
/* handle a lost book */
break;

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [109]

Enumeration Data Type

You can give a name to an enumeration and thus create
an enumeration data type. The syntax is:
enum <name-of-enum-type> <actual enumeration>

For example:
enum book_status { CHECKED_IN, CHECKED_OUT, LOST };

Why bother to do this? Because you can then create
variables of the enumeration type:
enum book_status status;

enum book status is the type, analogous to int,
and status is the variable name.

And why bother to do this? To get compiler support to
help make sure these variables only take on prescribed
values. For instance, the following will be allowed:
status = LOST;

but the following will not:
status = 5;

In fact, some compilers will not even allow
status = 0;

CPSC 211 Data Structures & Implementations (c) Texas A&M University [110]

Type Synonyms

The enumeration type is our first example of a user
defined type in C.

It’s rather unpleasant to have to carry around the word
enum all the time for this type.

Instead, you can give a name to this type you have
created, and subsequently just use that type – without
having to keep repeating enum. For example:

enum book_status { CHECKED_IN, CHECKED_OUT, LOST };
typedef enum book_status BookStatus;
...
BookStatus status;

The typedef statement causes BookStatus to be
a synonym for enum book status.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [111]

Structures

C also gives you a way to create more general types of
your own, as structures These are essentially like ob-
jects in Java, if you just consider the instance variables.
A structure groups together related data items that can
be of different types.

The syntax to define a structure is:

struct <structure-name> {
<first-variable-declaration>;
<second-variable-declaration>;
...

}; /* don’t forget this semi-colon! */

For instance:

struct student {
int age;
double grade_point;

};

Then you can declare a variable whose type is the
student structure:

struct student stu;

CPSC 211 Data Structures & Implementations (c) Texas A&M University [112]

Storage on the Stack

The statement

struct student stu;

causes the entire stu structure to be stored on the
stack:

stu

grade_point

age

(holds a
float)

(holds an int)

stack

CPSC 211 Data Structures & Implementations (c) Texas A&M University [113]

Using typedef with Structures

When using the structure type, you have to carry along
the word struct.

To avoid this, you can use a typedef to declare
a user-defined type, i.e., to provide a name that is a
synonym for struct student. For instance,

struct student {
int age;
double grade_point;

};
typedef struct student Student;

A more concise way to do this is:

typedef struct {
int age;
double grade_point;

} Student;

Now you can create a Student variable:

Student stu;

CPSC 211 Data Structures & Implementations (c) Texas A&M University [114]

Using a Structure

You can access the pieces of a structure using dot no-
tation (analogous to accessing instance variables of an
object in Java) :

stu.age = 20;
stu.grade_point = 3.0;
sum_ages = sum_ages + stu.age;

You can also have the entire struct on either the left or
the right side of the assignment operator:

Student stu1, stu2;
stu2.age = 21;
stu2.grade_point = 3.5;
stu1 = stu2;

The result is like assigning primitive types in Java!
The entire contents of stu2 are copied to stu1.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [115]

Figure for Copying a Structure

stu1

stu2

age

grade_point

age

grade_point

21

3.5

garbage

garbage
stu1

stu2

age

grade_point

age

grade_point

21

3.5

21

3.5

CPSC 211 Data Structures & Implementations (c) Texas A&M University [116]

Passing a Structure to a Function

Structures can be passed as parameters to functions:

void print_info(Student st) {
printf("age is %i, GPA is %f.\n",

st.age, st.grade_point);
return;

}

Then you can call the function:

print_info(stu);

But if you put the following line of code after the printf
in print info:

st.age = 2 * st.age;

the change will NOT be visible back in the main pro-
gram. You will have only changed the formal parame-
ter copy, not the actual parameter.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [117]

Returning a Structure From a Function

You can return a structure from a function also. Sup-
pose you have the following function:

Student initialize
(int old, double gpa) {

Student st; /* local var */
st.age = old;
st.grade_point = gpa;
return st;

}

Now you can call the function:

Student stu;
int young = 18;
double grades = 4.0;
stu = initialize(young, grades);

CPSC 211 Data Structures & Implementations (c) Texas A&M University [118]

Figure for Returning a Structure from a Function

grades

age

grade_point

age

grade_point

stu

young

old

gpa

st

garbage

garbage

18

4.0

18

4.0

4.0

18

The copying of formal parameters and return values
can be avoided by the use of pointers, as we shall see.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [119]

Arrays

To define an array:

<element-type> <array-name> [<size>];

For example:

int ages[100];
� Unlike Java, the size cannot go after the element

type: int[100] age is WRONG!
� Unlike Java, you must specify the size of the ar-

ray at compile time. This means you have to (over)
estimate how big of an array you will need. Some
of the wasted space can be reduced using pointers,
as we will see.

� Unlike Java, all the space for the array is allocated
on the stack!

� As in Java, numbering of entries begins with 0.
� As in Java, the entries are accessed as ages[3].

CPSC 211 Data Structures & Implementations (c) Texas A&M University [120]

Arrays (cont’d)

Two things you CAN do:
� If you have an array of structures, you can access a

particular field of a particular entry like this:

Student roster[100];
roster[0].age = 20;

� You can declare a two-dimensional array (and higher):
e.g.,

double grades[30][3];

As in Java, elements are accessed as grades[i][j].

Two things you CANNOT do:
� You cannot pass an array as a parameter to a

function.
� You cannot return an array from a function.

We’ll see how to accomplish these tasks using point-
ers.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [121]

Pointers in C

Pointers are used in C to
� circumvent call-by-value of parameters so that

– copying of parameters and return values can be
avoided

– lasting changes can be made inside a function
� access array elements in a different way
� allow dynamic memory allocation (e.g., for linked

lists)

For each data type T, there is a type which is “pointer
to type T”. For instance,

int* iptr;

declares iptr to be of type “pointer to int”. iptr
refers to a memory location that holds the address of
a memory location that holds an int.
Actually, most C programmers write it as:

int *iptr;

CPSC 211 Data Structures & Implementations (c) Texas A&M University [122]

Addresses and Indirection

Computer memory is a single very long array of bytes.

Each variable is stored in a sequence of bytes.
The address of the variable is the index of the starting
byte in the array of bytes.

...

iptr
int*

num
int

444 3052 data

variable name
type

address300 304 444 448

� iptr refers to the location of the variable of type
int* (e.g., 300-303)

� *iptr refers to the location whose address is stored
in location iptr (e.g., 444-447).

Applying the * operator is called dereferencing or
indirection.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [123]

The Address-Of Operator

We saw the & operator in scanf. It returns the ad-
dress of the variable to which it is applied.

int i;
int* iptr;
i = 55;
iptr = &i;
*iptr = *iptr + 1;

Last line gets data out of location whose address is in
iptr, adds 1 to that data, and stores result back in
location whose address is in iptr.

55 2024

2024 2028

i iptr
int int*

... ...

To abstract away from the numeric addresses:

55

i iptr
int int*

... ...

CPSC 211 Data Structures & Implementations (c) Texas A&M University [124]

Comparing Indirection and Address-Of Operators

As a rule of thumb:
� Indirection: * is applied to a pointer variable, to

refer to the location whose address is stored inside
the pointer variable.

– It CANNOT be applied to non-pointer variables.

– It CAN appear on either side of an assignment
statement.

� Address-Of: & is applied to a non-pointer variable,
to return the address of the variable.

– It CAN be applied to a pointer variable.

– It CANNOT appear on the lefthand side of an
assignment statement. (You can’t change the ad-
dress of a variable.)

CPSC 211 Data Structures & Implementations (c) Texas A&M University [125]

Pointers and Structures

Remember the struct type Student, which has an
int age and a double grade point:

Student stu;
Student* sptr;
sptr = &stu;

To access variables of the structure:

(*sptr).age
(*sptr).grade_point

There is a “shorthand” for this notation:

sptr->age
sptr->grade_point

CPSC 211 Data Structures & Implementations (c) Texas A&M University [126]

Passing Pointer Variables as Parameters

You can pass pointer variables as parameters.

void printAge(Student* sp) {
printf("Age is %i",sp->age);

}

When this function is called, the actual parameter must
be the address of a Student object:

1. a Student* variable: printAge(sptr);
or

2. apply the & operator to a Student variable:
printAge(&stu);

C still uses call by value to pass pointer parameters,
but because they are pointers, what gets copied are
addresses, not the actual structures. Data coming in
to the function is not copied.

stu
age

grade_point

sptr

sp

CPSC 211 Data Structures & Implementations (c) Texas A&M University [127]

Passing Pointer Variables as Parameters (cont’d)

Now we can make lasting changes inside a function:

void changeAge(Student* sp, int newAge) {
sp->age = newAge;

}

You can also avoid copying data coming out of a func-
tion by using pointers. Old initialize with copy-
ing:

Student initialize(int old, double gpa) {
Student st;
st.age = old;
st.grade_point = gpa;
return st;

}

More efficient initialize using pointers:

void initialize(Student* sp, int old, double gpa) {
sp->age = old;
sp->grade_point = gpa;

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [128]

Passing Pointer Variables as Parameters (cont’d)

Using pointers is an optimization in previous case. But
it is necessary if you want to change two variables,
since you can only return one variable:

void swapAges (Student* sp1, Student* sp2) {
int temp;
temp = sp1->age;
sp1->age = sp2->age;
sp2->age = temp;

}

To call this function:

Student st1, st2;
initialize(&st1, 20, 3.0);
initialize(&st2, 21, 3.1);
swapAges(&st1, &st2);

CPSC 211 Data Structures & Implementations (c) Texas A&M University [129]

Pointers and Arrays

The name of an array is a pointer to the first element
of the array. It is a constant pointer, it cannot be
changed (for instance with ++).

int a[5];

To reference array elements, you can use
� bracket notation a[0], a[1], a[2], ..., or
� pointer notation *a, *(a+1), *(a+2), ...

What is going on with the pointer notation?
� a refers to the address of element 0 of the array
� *a refers to the data in element 0 of the array
� a+1 refers to the address of element 1 of the array
� *(a+1) refers to the data in element 1 of the array

This is a SPECIAL meaning of adding 1! It really
means add the number of bytes needed to store an int
(because a is a pointer to an int).

CPSC 211 Data Structures & Implementations (c) Texas A&M University [130]

Pointers and Arrays (cont’d)

You can also refer to array elements with a regular,
non-constant pointer. For example,

int a[5];
int* p;
p = a; /* p = &a[0]; is same */

� p refers to the address of element 0 of the array
� *p refers to the data in element 0 of the array
� p+1 refers to the address of element 1 of the array
� *(p+1) refers to the data in element 1 of the array

Since p is a non-constant pointer, you can also use the
increment and decrement operators:

for (i = 0; i < 5; i++) {
*p = 0;
p++;

}

Warning: NO BOUNDS CHECKING IS DONE IN
C! Compiler WILL let you refer to a[5].

CPSC 211 Data Structures & Implementations (c) Texas A&M University [131]

Passing an Array as a Parameter

To pass an array to a function:

void printAllAges(int a[], int n) {
int i;
for (i = 0; i < n; i++) {
printf("%i \n", a[i]);

}
}

The “array” parameter indicates the element type, but
NOT the size — size must be passed separately! Alter-
native definition:

void printAllAges(int* p, int n) {
int i;
for (i = 0; i < n; i++) {
printf("%i \n", *p);
p++;

}
}

The formal array parameter is a (non-constant) pointer
to the element type. You can call the function like this:

int ages[4];
printAllAges(ages, 4);

CPSC 211 Data Structures & Implementations (c) Texas A&M University [132]

Dynamic Memory Allocation in Java

Java does dynamic memory allocation for you. That
means that while your program is running, memory is
assigned to the process as it is needed. This happens
whenever you call new in Java – the relevant space is
allocated.
In Java there is strict distinction between primitive
types and object types. Every variable is either of prim-
itive type or object type (i.e., a reference).

� memory for variables is always allocated statically,
at the beginning of the block execution, based on
the variable declarations. This memory goes away
when the surrounding block finishes executing.

� memory for variables of primitive type directly hold
the actual contents.

� memory that holds the actual contents of an object
is allocated dynamically, whenever new is called.
This memory goes away after it becomes inaccessi-
ble (handled by the garbage collector)

CPSC 211 Data Structures & Implementations (c) Texas A&M University [133]

Dynamic Memory Allocation in C

In C, there is not the distinction between primitive types
and object types. Every type has the possibility of being
allocated statically (on the stack) or dynamically (on
the heap).

To allocate space statically, you declare a variable of
the type. Space is allocated when that block begins
executing and goes away when it finishes.

To allocate space dynamically, use function malloc:
� It takes one integer parameter indicating the length

of the space to be allocated. Use sizeof operator
to get the length; for instance, sizeof(int)
returns the number of bytes used by an int in the
current implementation of C.

� It returns a pointer to the beginning of the space.
The space allocated is NOT initialized! The pointer
has type void*. You MUST cast it to the appro-
priate type. If malloc fails to allocate the space, it
will return NULL (a macro for 0.)

CPSC 211 Data Structures & Implementations (c) Texas A&M University [134]

malloc Example

To dynamically allocate space for an int:

int* p;
p = (int*) malloc(sizeof(int)); /* cast result

to int* */
if (p == NULL) { /* to be on the safe side */
printf("malloc failed!");

} else {
*p = 33;
printf("%i", *p);

}

Normally, you don’t need to allocate a single integer at
a time. Typically, you would use malloc to:

� allocate an array at run time, whose size depends
on something you’ve discovered at run time. This
could be an array of anything, including structures.

� allocate a structure which will serve as a node in a
linked list.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [135]

Another malloc Example

To dynamically allocate space for a structure:

Student* sptr;
sptr = (Student*) malloc(sizeof(Student));
sptr->age = 20;
sptr->grade_point = 3.4;

sptr age

grade_point

20

3.4

CPSC 211 Data Structures & Implementations (c) Texas A&M University [136]

Allocating a Linked List Node Dynamically

For a singly linked list of students, use this type:

typedef struct Stu_Node{
int age;
double grade_point;
struct Stu_Node* link;

} StuNode;

To allocate a node for the list:

StuNode* sptr;
sptr = (StuNode*) malloc(sizeof(StuNode));

To insert the node pointed to by sptr after the node
pointed to by some other node, say cur:

sptr=>link = cur->link;
cur->link = sptr;

age

grade_point

link age

grade_point

linksptr age

grade_point

cur

link

(1)

(2)

(3)

CPSC 211 Data Structures & Implementations (c) Texas A&M University [137]

Allocating an Array Dynamically

To allocate an array dynamically, multiply the sizeof
parameter to malloc by the desired number of entries
in the array.

int i;
int* p;
p = (int*) malloc(100*sizeof(int)); /* 100 elt array */
/* now p points to the beginning of the array */
for (i = 0; i < 100; i++) /* initialize the array */
p[i] = 0; /* access the elements */

Similarly, you can allocate an array of structures:

int i;
Student* sptr;
sptr = (Student*) malloc(30*sizeof(Student));
for (i = 0; i < 30; i++) {
sptr[i].age = 19;
sptr[i].grade_point = 4.0;

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [138]

Deallocating Memory Dynamically

When memory is allocated using malloc, it remains
until the program finishes, unless you get rid of it
explicitly.
You can get memory leaks because of this:
void sub() {
int *p;
p = (int*) malloc(100*sizeof(int));
return;

}

Although the space for the pointer variable p goes
away when sub finishes executing, the 100 int’s
do NOT go away! But they are completely useless
after sub is done, since there is no way to get to
them.
If you had wanted them to be accessible outside of
sub, you would have to pass back a pointer to them:

int* sub() {
int *p;
p = (int*) malloc(100*sizeof(int));
return p;

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [139]

Using free

To deallocate memory when you are through with it,
you call the function free. It takes as an argument a
pointer to the beginning of a chunk of storage that was
allocated dynamically, and returns nothing. The result
of free is that all the space starting at the designated
location will be returned to the operating system as
available. The system keeps track of the size of this
chunk of storage.
In the function void sub above, just before the re-
turn, you should say:

free(p);

DO NOT DO THE FOLLOWING:

int *p;
p = (int*) malloc(100*sizeof(int));
p++;
free(p); /* BAD! */

Now p is no longer pointing to the beginning of the
allocated space.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [140]

Saving Space with Arrays of Pointers

Suppose you need an array of structures, where each
structure is fairly large. But you are not sure at compile
time how big the array needs to be.

1. Allocate an array of structures that is large enough
to handle the worst case.

Simple but wastes space.

2. Find out at run time how big the array needs to
be and then dynamically allocate the space for the
array of structures.

Good if array size does not change.

3. Allocate an array of POINTERS to the structure,
that is large enough to handle the worst case.

Most flexible. The big array consists only of point-
ers, which are small. Allocate/deallocate the structs
as needed.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [141]

Array of Pointers Example

To implement with the usual Student struct:

int numStudents;
Student* roster[100];

/* code to determine numStudents goes here */

for (i = 0; i < numStudents; i++) {
roster[i] = (Student*) malloc(sizeof(Student));
roster[i]->age = 20;
roster[i]->grade_point = 3.5;

}

numStudents can be obtained at run time from the
user.

...

0

1

2

99

age

grade_point

age

grade_point

numStudents

roster
2

CPSC 211 Data Structures & Implementations (c) Texas A&M University [142]

Information Hiding in C

Java provides support for information hiding by
� class construct
� visibility modifiers

Advantages of data abstraction, including the use of
constructor and accessor (set and get) functions:

� push details out of sight and out of mind
� easier to find where data is manipulated, aiding de-

bugging
� easy to augment what you do with a structure
� easy to improve how data is stored

C does not provide the same level of compiler support
as Java, but you can achieve the same effect with some
self-discipline.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [143]

Information Hiding in C (cont’d)

A “constructor” in C would be a function that
� calls malloc to get the desired space
� initializes the space appropriately
� returns a pointer to the space

For example:

Student* constructStudent(int age, double gpa) {
Student* sptr;
sptr = (Student*) malloc(sizeof(Student));
sptr->age = age;
sptr->grade_point = gpa;
return stpr;

}

Use constructor function to improve readability, main-
tainability (suppose you want to change how things are
initialized), etc:

Student* roster[100];
for (i = 0; i < numStudents; i++) {
roster[i] = contructStudent(20, 3.5);

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [144]

Information Hiding in C (cont’d)

The analog of a Java instance method in C would be
a function whose first parameter is the “object” to be
operated on.

You can write set and get functions in C:

int getAge(Student* sptr) {
return sptr->age;

}
double getGPA(Student* sptr) {
return sptr->grade_point

}
void setAge(Student* sptr, int newAge) {
sptr->age = newAge;

}
void setGPA(Student* sptr, double newGPA) {
sptr->age = newGPA;

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [145]

Information Hiding in C (cont’d)

You can use the set and get functions to swap the
ages for two student objects:

Student* s1;
Student* s2;
int temp;
s1 = constructStudent(20, 3.5);
s2 = constructStudent(21, 3.6);
temp = getAge(s2);
setAge(s2,getAge(s1));
setAge(s1,temp);

When should you provide set and get functions and
when should you not? They obviously impose some
overhead in terms of additional function calls. A
good rule of thumb is to provide them when the detailed
implementation of a structure might change.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [146]

Strings in C

� There is no explicit string type in C.
� A string in C is an array of characters that is

terminated with the null character.
� The length of the array is one greater than the num-

ber of (real) characters in the string.
� The null character is denoted ’\0’. It is used to

mark the end of the string, instead of storing length
information somewhere.

� A sequence of characters enclosed in double quotes
causes an array of those characters to be created on
the heap, ending with the null character.

char* namePtr;
namePtr = "Fred";

’F’ ’r’ ’e’ ’d’ ’\0’
431 20

namePtr

CPSC 211 Data Structures & Implementations (c) Texas A&M University [147]

Strings in C (cont’d)

� You can also declare a character array as for any
kind of array:

char name[20];

This declaration causes space to be allocated on the
stack for 20 chars, and name is the address of the
start of this space.

To initialize name, do not assign to a string literal!
Instead, either explicitly assign to each entry in the
array or use a string manipulation function.

� Access elements using the brackets notation:

char firstLetter;
name[3] = ’a’;
firstLetter = name[0];
namePtr[3] = ’b’;
firstLetter = namePtr[0];

CPSC 211 Data Structures & Implementations (c) Texas A&M University [148]

Passing Strings to and from Funtions

To pass a string into a function or return one from a
function, you must use pointers.
Passing in a string:

void printString(char* s) {
printf("Input is %s", s);

}

Notice the use of %s in the printf statement. The
matching data must be a char pointer.

Returning a string:

char* getString() {
return "Gig ’em!";

}

You can call these functions like this:

char* str;
str = getString();
printString(str);

CPSC 211 Data Structures & Implementations (c) Texas A&M University [149]

Reading in a String from the User

To read in a string from the user, call:

scanf("%s", name);
� Notice the use of %s in scanf. The corresponding

data must be a char pointer.
� scanf reads a string from the input stream up to

the first whitespace (space, tab or carriage return).
� The letters are read into successive locations, start-

ing with name, and then ’\0’ is put at the end.
� You must make sure that you have a large enough

array to hold the string. How much space is needed?
The number of characters in the string plus 1 (for the
null character at the end).

� If you don’t have enough space, whatever follows
the array will be overwritten, so BE CAREFUL!

CPSC 211 Data Structures & Implementations (c) Texas A&M University [150]

String Manipulation Functions

There are some useful string manipulation functions
provided for you in C. These include:

� strlen, which takes a string as an argument and
returns the length of the string, not counting the
null character at the end. I.e., it counts how many
characters it encounters before reaching ’\0’.

� strcpy, which takes two strings as arguments and
copies its second argument to its first argument.

First, to use them, you need to include headers for the
string handling library:

#include <string.h>

To demonstrate the use of strlen and strcpy, sup-
pose you want to add a name component to the Student
structure and change the constructor so that it asks the
user interactively for the name:

CPSC 211 Data Structures & Implementations (c) Texas A&M University [151]

String Manipulation Functions Example

typedef struct {
char* name;
int age;
double grade_point;

} Student;

Student* constructStudent(int age, double gpa) {
char inputBuffer[100]; /* read name into this */
Student* sptr;
sptr = (Student*) malloc(sizeof(Student));
sptr->age = age;
sptr->grade_point = gpa;

/* here’s the new part: */
printf("Enter student’s name: ");
scanf("%s", inputBuffer);

/* allocate just enough space for the name */
sptr->name = (char*) malloc (

(strlen (inputBuffer) + 1)*sizeof(char));
/* copy name into new space */
strcpy (sptr->name, inputBuffer);
return sptr;

}

When constructor returns, inputBuffer goes away.
Space allocated for Student object is an int, a double,
and just enough space for the actual name.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [152]

Other Kinds of Character Arrays

Not every character array has to be used to represent a
string. You may want a character array that holds all
possible letter grades, for instance:

char grades[5];
grades[0] = ’A’;
grades[1] = ’B’;
grades[2] = ’C’;
grades[3] = ’D’;
grades[4] = ’F’;

In this case, there is no reason for the last array entry
to be the null character, and in fact, it is not.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [153]

File Input and Output

File I/O is much simpler than in Java.
� Include stdio.h to use built-in file functions and

types
� Declare a pointer to a type called FILE (provided

by the system)
� Call fopen to open the file for reading or writing

— returns pointer to the file
� Writing to a file is done with fprintf (analogous

to printf.
� Reading from a file is done with fscanf (analo-

gous to scanf.
� Call fclose to close the file.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [154]

File I/O Example

/* to use the built in file functions */
#include <stdio.h>
main () {
/* create a pointer to a struct called FILE; */
/* it is system dependent */
FILE* fp;
char line[80];
int i;

/* open the file for writing */
fp = fopen("testfile", "w");

/* write into the file */
fprintf(fp,"Line %i ends \n", 1);
fprintf(fp,"Line %i ends \n", 2);

/* close the file */
fclose(fp);

/* open the file for reading */
fp = fopen("testfile", "r");

/* read six strings from the file */
for (i = 1; i < 7; i++) {
fscanf(fp,"%s", line);
printf("got from the file: %s \n", line);

}
/* close the file
fclose(fp);

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [155]

Motivation for Stacks

Some examples of last-in, first-out (LIFO) behavior:
� Web browser’s “back” button retraces your steps in

the reverse order in which you visited the sites.
� Text editors often provide an “undo” mechanism

that will cancel editing changes, starting with the
most recent one you made.

� The most recent pending method/function call is
the current one to execute.

� To evaluate an arithmetic expression, you need to
finish evaluating the current sub-expression before
you can finish evaluating the previous one.

A stack is a sequence of elements, to which elements
can be added (push) and removed (pop): elements
are removed in the reverse order in which they were
added.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [156]

Specifying an ADT with an Abstract State

We would like a specification to be as independent of
any particular implementation as possible.

But since people naturally think in terms of state, a
popular way to specify an ADT is with an abstract,
or high-level, “implementation”:

1. describe an abstract version of the state, and

2. describe the effect of each operation on the abstract
state.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [157]

Specifying the Stack ADT with an Abstract State

1. A stack’s state is modeled as a sequence of ele-
ments.

2. Initially the state of the stack is the empty sequence.

3. The effect of a push(x) operation is to append x to
the end of the sequence that represents the state of
the stack. This operation returns nothing.

4. The effect of a pop operation is to delete the last
element of the sequence that represents the state of
the stack. This operation returns the element that
was deleted. If the stack is empty, it should return
some kind of error indication.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [158]

Specifying an ADT with Operation Sequences

But a purist might complain that a state-based spec-
ification is, implicitly, suggesting a particular imple-
mentation. To be even more abstract, one can specify
an ADT simply by the allowable sequences of opera-
tions.

For instance:
� push(a) pop(a): allowable
� pop(a): not allowable since stack is empty initially
� push(a) push(b) push(c) pop(c) pop(b) push(d) pop(d):

allowable
� push(a) push(b) pop(a): not allowable since a is no

longer the top of the stack

But it is more involved to give a precise and complete
definition of the allowable sequences without reference
to an abstract state.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [159]

Additional Stack Operations

Other operations that you sometimes want to provide:

� peek: return the top element of the stack, but do
not remove it from the stack; sometimes called top

� size: return number of elements in stack

� empty: tells whether or not the stack is empty

Java provides a Stack class, in java.util, with
methods push, pop, empty, peek, and search.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [160]

Balanced Parentheses

Recursive definition of a sequence of parentheses that
is balanced:

� the sequence “()” is balanced.
� if the sequence “s” is balanced, then so are the

sequences “s ()” and “() s” and “(s)”.

According to this definition:
� () : balanced

� (() (())) : balanced

� (())) () : not balanced

� ()) (: not balanced

CPSC 211 Data Structures & Implementations (c) Texas A&M University [161]

Algorithm to Check for Balanced Parentheses

Key observations:

1. There must be the same total number of left parens
as right parens.

2. In any prefix, the number of right parens can never
exceed the number of left parens.

Pseudocode:

create an empty stack
for each char in the string

if char = (then push (onto the stack
if char =) then pop (off the stack
if the pop causes an error then unbalanced

endfor
if stack is empty then balanced else unbalanced

CPSC 211 Data Structures & Implementations (c) Texas A&M University [162]

Java Method to Check for Balanced Parentheses

Using java.util.Stack class (which manipulates
objects):

import java.util.*;

boolean isBalanced(char[] parens) {
Stack S = new Stack();
try { // pop might throw an exception
for (int i = 0; i < parens.length; i++) {
if (parens[i] == ’(’)
S.push(new Character(’(’));

else
S.pop(); // discard popped object

}
return S.empty();

}
catch (EmptyStackException e) {
return false;

}
}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [163]

Checking for Multiple Kinds of Balanced Parens

Suppose there are 3 different kinds of parentheses:
(and), [and],

�
and � .

Modify the program:
When we encounter a), we should pop off a (.
When we encounter a], we should pop off a [.
When we encounter a � , we should pop off a

�
.

boolean isBalanced3(char[] parens) {
Stack S = new Stack();
try {
for (int i = 0; i < parens.length; i++) {
if (leftParen(parens[i]) // (or [or {
S.push(new Character(parens[i]));

else {
char leftp = ((Character)S.pop()).charValue();
if (!match(leftp,parens[i])) return false;

}
}
return S.empty();

} // end try
catch (EmptyStackException e) {
return false;

}
}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [164]

Multiple Kinds of Parentheses (cont’d)

boolean leftParen(char c) {
return ((c == ’(’) || (c == ’[’) || c == ’{’));

}

boolean match(char lp, char rp) {
if ((lp == ’(’) && (rp == ’)’) return true;
if ((lp == ’[’) && (rp == ’]’) return true;
if ((lp == ’{’) && (rp == ’}’) return true;
return false;

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [165]

Postfix Expressions

We normally write arithmetic expressions using infix
notation: the operator (such as +) goes in between the
operands (the two numbers being added).

Another way to write arithmetic expressions is to use
postfix notation: the two operands come first, and the
operator comes after.
For example,

� 3 4 + is same as 3 + 4
� 1 2 - 5 - 6 5 / + is same as
((1 - 2) - 5) + (6 / 5)

One advantage of postfix is that you don’t need paren-
theses to indicate the order of evaluation.
For instance,

� (1 + 2) * 3 becomes 1 2 + 3 *
� 1 + (2 * 3) becomes 1 2 3 * +

CPSC 211 Data Structures & Implementations (c) Texas A&M University [166]

Using a Stack to Evaluate Postfix Expressions

Pseudocode:

while input has more tokens do
if the token is an operand then

push it on the stack
if the token is an operator then

pop operand x off the stack
pop operand y off the stack
apply the operator to x and y
push the result back on the stack

end while
return the value left on the stack

This works when all operators are binary (take two
operands).

CPSC 211 Data Structures & Implementations (c) Texas A&M University [167]

StringTokenizer Class

Java’s StringTokenizer class is very helpful to
break up the input string into operators and operands
— called “parsing”.

� Create a StringTokenizer object out of the in-
put string. It converts the string into a sequence of
tokens which are separated by specified delimiters.

� Use instance method hasMoreTokens to test
whether there are more tokens.

� Use instance method nextToken to get the next
token from the input string.

� Second argument to constructor indicates that, in
addition to the whitespace characters (blank, new-
line, tab, and carriage return), the following are also
used as delimiters: +, -, *, and /.

� Third argument to constructor indicates that all de-
limiters are to be returned as tokens.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [168]

Java Method to Evaluate Postfix Expressions

public static double evalPostFix(String postfix)
throws EmptyStackException {

Stack S = new Stack();
StringTokenizer parser = new StringTokenizer

(postfix, " \n\t\r+-*/", true);
while (parser.hasMoreTokens()) {
String token = parser.nextToken();
char c = token.charAt(0);
if (isOperator(c)) {
double y = ((Double)S.pop()).doubleValue();
double x = ((Double)S.pop()).doubleValue();
switch (c) {
case ’+’:
S.push(new Double(x+y)); break;

case ’-’:
S.push(new Double(x-y)); break;

case ’*’:
S.push(new Double(x*y)); break;

case ’/’:
S.push(new Double(x/y)); break;

} // end switch
} // end if
else if (!isWhiteSpace(c)) // token is operand
S.push(Double.valueOf(token));

} // end while
return ((Double)S.pop()).doubleValue();

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [169]

Evaluating Postfix (cont’d)

public static boolean isOperator(char c) {
return ((c == ’+’) || (c == ’-’) ||

(c == ’*’) || (c == ’/’));
}

public static boolean isWhiteSpace(char c) {
return ((c == ’ ’) || (c == ’\n’) ||

(c == ’\t’) || (c == ’\r’));
}

Does not handle negative numbers in the input: it
interprets �

� as the binary minus operator, followed
by 3, instead of the unary minus applied to 3.

Does no error checking to see if operands are well-
formed, or if the postfix expression itself is well-formed.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [170]

Implementing a Stack with an Array

Since Java supplies a Stack class, why bother? Basic
understanding; other languages.

Idea: As elements are pushed, they are stored se-
quentially in an array, keeping track of the last element
entered. To pop, return the element at the end of the
active part of the array.

Issues for Java implementation:
� elements in the array are to be of type Object
� throw exception if try to pop an empty stack
� dynamically increase the size of the array to avoid

overflow

To handle the last point, we’ll do the following:
� initially, the size of the array is, say, 16.
� if array is full and a push occurs, use new to create

an array twice the size of current array, and copy
everything in old array to new array.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [171]

Implementing a Stack with an Array in Java

class Stack {
private Object[] A;
private int next;

public Stack () {
A = new Object[16];
next = 0;

}
public void push(Object obj) {
if (next == A.length) {
// array is full, double its size
Object[] newA = new Object[2*A.length];
for (int i = 0; i < next; i++) // copy
newA[i] = A[i];

A = newA; // old A can now be garbage collected
}
A[next] = obj;
next++;

}
public Object pop() throws EmptyStackException {
if (next == 0)
throw new EmptyStackException();

else {
next--;
return A[next];

}
}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [172]

Implementing a Stack with an Array in Java (cont’d)

public boolean empty() {
return (next == 0);

}

public Object peek() throws EmptyStackException {
if (next == 0)
throw new EmptyStackException();

else
return A[next-1];

}
} // end Stack class

class EmptyStackException extends Exception {

public EmptyStackException() {
super();

}
}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [173]

Time Performance of Array Implementation

� push:
� � ���

UNLESS array is full; then it is
� ��� �

plus time for system to allocate space (more later)
� pop:

� � ���

� empty:
� � ���

� peek:
� � ���

CPSC 211 Data Structures & Implementations (c) Texas A&M University [174]

Impementing a Stack with a Linked List in Java

Idea: a push causes a new node to be inserted at the
beginning of the list, and a pop causes the first node of
the list to be removed and returned.

class StackNode {
Object item;
StackNode link;

}

class Stack {

private StackNode top; // first node in list, the top of the stack

public Stack () {
top = null;

}

public void push(Object obj) {
StackNode node = new StackNode();
node.item = obj;
node.link = top;
top = node;

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [175]

Implementing a Stack with a Linked List in Java
(cont’d)

public Object pop() throws EmptyStackException {

if (top == null)
throw new EmptyStackException();

else {
StackNode temp = top;
top = top.link;
return temp.item;

}
}

public boolean empty() {
return (top == null);

}

public Object peek() throws EmptyStackException {
if (top == null)
throw new EmptyStackException();

else
return top.item;

}
}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [176]

Time Performance of Linked List Implementation

� push:
� � ���

plus time for system to allocate space
(more later)

� pop:
� � ���

� empty:
� � ���

� peek:
� � ���

CPSC 211 Data Structures & Implementations (c) Texas A&M University [177]

Interchangeability of Implementations

If you have done things right, you can:
� write a program using the built-in Stack class
� compile and run that program
� then make available your own Stack class, using

the array implementation (e.g., put Stack.class
in the same directory

� WITHOUT CHANGING OR RECOMPILING YOUR
PROGRAM, run your program — it will use the lo-
cal Stack implementation and will still be correct!

� then replace the array-based Stack.class file with
your own linked-list-based Stack.class file

� again, WITHOUT CHANGING OR RECOMPIL-
ING YOUR PROGRAM, run your program — it
will use the local Stack implementation and will
still be correct!

CPSC 211 Data Structures & Implementations (c) Texas A&M University [178]

Motivation for Queues

Some examples of first-in, first-out (FIFO) behavior:
� waiting in line to check out at a store
� cars on a street waiting to go through a light
� making a phone call – calls are handled by the phone

system in the order they are made

A queue is a sequence of elements, to which elements
can be added (enqueue) and removed (dequeue): el-
ements are removed in the same order in which they
were added.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [179]

Specifying the Queue ADT

Using the abstract state style of specification:
� The state of a queue is modeled as a sequence of

elements.
� Initially the state of the queue is the empty se-

quence.
� The effect of an enqueue(x) operation is to append

x to the end (rear or tail) of the sequence that repre-
sents the state of the queue. This operation returns
nothing.

� The effect of a dequeue operation is to delete the
first element (front or head) of the sequence that
represents the state of the queue. This operation
returns the element that was deleted. If the queue
is empty, it should return some kind of error indica-
tion.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [180]

Specifying the Queue ADT (cont’d)

Alternative specification using allowable sequences would
give some rules (an “algebra”). Some specific exam-
ples:

� enqueue(a) dequeue(a): allowable
� dequeue(a): not allowable, since the queue is ini-

tially empty
� enqueue(a) enqueue(b) enqueue(c) dequeue(a) en-

queue(d) dequeue(b): allowable
� enqueue(a) enqueue(b) dequeue(b): not allowable,

a should be returned, not b

Other popular queue operations:
� peek: return the front (head) element of the queue,

but do not remove it from the queue
� size: return number of elements in queue
� empty: tells whether or not the queue is empty

CPSC 211 Data Structures & Implementations (c) Texas A&M University [181]

Applications of Queues in Operating Systems

The text discusses some applications of queues in op-
erating systems:

� to buffer data coming from a running process going
to a printer: the process can typically generate data
to be printed much faster than the printer can print
it, so the data is saved in order in a “print queue”

� a printer may be shared between several computers
that are networked together. Jobs running concur-
rently may all want to access the printer. Their print
jobs need to be queued up, to prevent them from
colliding; only one at a time can be printed.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [182]

Application of Queues in Discrete Event Simulators

A simulation program is a program that mimics, or
“simulates”, the behavior of some complicated real-
world situation, such as

� the telephone system
� vehicular traffic
� weather

These systems are typically too complicated to be mod-
eled exactly mathematically, so instead, they are sim-
ulated: events take place in them according to some
random number generator. For instance,

� at random times, new calls are placed or some ex-
isting calls finish

� at random times, some more cars enter the streets
� at random times, some turbulence occurs

Some of these situations are particularly well described
using queues; they are characterized by entities that are
stored in queues while waiting for service, for instance,
the telephone system and traffic.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [183]

Using a Queue to Convert Infix to Postfix

First attempt: Assume infix expression is fully paren-
thesized.
For example:

�
� � � ������� ��� � � 	 ��

�

� � �

�
� �

�

� � � � 	 � ���
 � 	 ���
�

� ����� � � � �

Pseudocode:

create queue Q to hold postfix expression
create stack S to hold operators not yet

added to postfix expression
while there are more tokens do

get next token t
if t is a number then enqueue t on Q
else if t is an operator then push t on S
else if t is (then skip
else if t is) then pop S and enqueue result on Q

endwhile
return Q

CPSC 211 Data Structures & Implementations (c) Texas A&M University [184]

Converting Infix to Postfix (cont’d)

Examples:
�

� � � ������� ��� � � 	 ��

�

� � �

Q:

S:

�
� �

�

� � � � 	 � ���
 � 	 ���
�

� ����� � � � �

Q:

S:

CPSC 211 Data Structures & Implementations (c) Texas A&M University [185]

Converting Infix to Postfix with Precedence

It is too restrictive to require parentheses around every-
thing.

Instead, precedence conventions tell which opera-
tions to do first, in the absence of parentheses.

For instance,
� 	 � � �

equals
� � � � � � �

, not
� 	
 � � �

.

We need to modify the above algorithm to handle op-
erator precedence.

� * and / have higher precedence
� + and - have lower precedence
� (has lowest precedence (a hack)

CPSC 211 Data Structures & Implementations (c) Texas A&M University [186]

Converting Infix to Postfix with Precedence (cont’d)

create queue Q to hold postfix expression
create stack S to hold operators not yet

added to the postfix expression
while there are more tokens do

get next token t
if t is a number then enqueue t on Q
else if S is empty then push t on S
else if t is (then push t on S
else if t is) then

while top of S is not (do
pop S and enqueue result on Q

endwhile
pop S // get rid of (that ended while

else // t is real operator and S not empty)
while prec(t) <= prec(top of S) do

pop S and enqueue result on Q
endwhile
push t on S

endif
endwhile
while S is not empty do

pop S and enqueue result on Q
endwhile
return Q

CPSC 211 Data Structures & Implementations (c) Texas A&M University [187]

Converting Infix to Postfix with Precedence (cont’d)

For example:
�

� � ����� � � � 	 ��

�

� �

Q:

S:

�
�

�

� � 	 � �
 � 	 ���
�

����� �

Q:

S:

CPSC 211 Data Structures & Implementations (c) Texas A&M University [188]

Implementing a Queue with an Array

State is represented with:
� array A to hold the queue elements
� integer head that holds the index of A containing

the oldest element (which will be returned by the
next dequeue); initially 0

� integer tail that holds the index of A containing
the newest element (the most recent element to be
enqueued); initially -1

Operation implementations:
� enqueue(x): tail++; A[tail]:= x
� dequeue(x): head++; return A[head-1]
� empty: return (tail < head)
� peek: return A[head]
� size: return tail - head + 1

Problem: you will march off the end of the array after
very many operations, even if the size of the queue is
always small compared to the size of A.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [189]

Implementing a Queue with a Circular Array

Wrap around to reuse the vacated space at the begin-
ning of the array in a circular fashion, using mod oper-
ator %.

� enqueue(x):
tail = (tail + 1) % A.length;
A[tail] = x;

� dequeue(x):
temp = A[head];
head = (head + 1) % A.length;
return temp;

� empty: return (tail < head); ???

The problem is that tail can wrap around and be in
front of head, when the queue is not empty.

� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �

	 	 	
	 	 	
	 	 	
	 	 	

� � �
� � �
� � �
� � �0 1 2 3 4 5 6 7 8

headtail
To get around this problem, add state component:

� integer count to keep track of number of elements

CPSC 211 Data Structures & Implementations (c) Texas A&M University [190]

Expanding Size of Queue Dynamically

To avoid overflow problem in circular array implemen-
tation of a queue, use same idea as for array implemen-
tation of stack:
If array is discovered to be full during an enqueue,

� allocate a new array that is twice the size of the old
one,

� copy the old array to the new one,
� enqueue new data item onto the new array, and
� free old array (if necessary)

One complication with the queue, though, is that the
contents of the queue might be in two sections:

1. from head to the end of the array, and

2. then from the beginning of the array to tail.

Copying the new array must take this into account.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [191]

Performance of Circular Array

Performance of the circular array implementation of a
queue:

� Time: All operations take O(1) time, except for
enqueue in the case that the array is full

� space: the array allocated might be significantly
larger than the size of the queue being represented.
Potentially wasteful.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [192]

Implementing a Queue with a Linked List

State representation:
� Data items are kept in a linked list.
� Pointer head points to the first node in the list,

which is the oldest element.
� Pointer tail points to the last node in the list,

which is the newest element.

Operation implementations:
� To enqueue an item, insert a node containing it at

the end of the list, which can be found using the
tail pointer.

� To dequeue an item, remove the node at the begin-
ning of the list, which can be found using the head
pointer.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [193]

Implementing a Queue with a Linked List (cont’d)

class Queue {

private QueueNode head;
private QueueNode tail;

public Queue() {
head = null;
tail = null;

}

public boolean empty() {
return (head == null);

}

public void enqueue(Object obj) {
QueueNode node = new QueueNode(obj);
if empty() {
head = node;
tail = node;

} else {
tail.link = node;
tail = node;

}
}

// continued on next slide

CPSC 211 Data Structures & Implementations (c) Texas A&M University [194]

Implementing a Queue with a Linked List (cont’d)

// continued from previous slide

public Object dequeue() {
if (empty())
return null; // or throw an EmptyQueueException

else {
Object returnItem = head.item;
head = head.link; // remove first node from list
if (head == null) // fix tail pointer if needed
tail = null;

return returnItem;
}

}
}

Every operation always takes constant time (ignoring
time for dynamic memory allocation). No overflow
problem and simple code.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [195]

Motivation for the List ADT

This ADT is good for modeling a series of data items
that have a linear relationship.

Some sample applications:
� the LISP language

� Strings and StringBuffers in Java

� managing heap storage (aka memory management)

CPSC 211 Data Structures & Implementations (c) Texas A&M University [196]

Specifying the List ADT

The state of a list object is a sequence of items.

Typical operations on a list are:
� create: makes an empty list
� empty: returns whether or not the list has no items
� length: returns the number of items in the list
� select(i): returns i-th item in list
� replace(i,x): replace i-th item in list with item x
� delete(x): delete item x from the list (or a variant

would be delete(i): delete the i-th item)
� insert(x): insert item x into list; variants would be

to insert

– at the front

– at the end

– after a particular item

– before a particular item

CPSC 211 Data Structures & Implementations (c) Texas A&M University [197]

Implementing the List ADT

Array implementation:
� Keep a counter indicating the next free index of the

array.
� To select or replace at some location, use the ran-

dom access feature of arrays.
� To insert at some location, shift the later items

down.
� To delete at some location, shift the later items up.

Linked list implementation:
� Keep a count of the number of nodes and a pointer

to the first node in the list.
� To select, replace, delete or insert an item, traverse

the list to get to the appropriate spot.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [198]

Comparing the Times of List Implementations

Time for various operations, on a list of
�

data items:

list singly
operation linked list array

empty
� � ��� � � ���

length
� � ��� � � ���

select(
�
)

� � � � � � ���

replace(
�
)

� � � � � � ���

delete(
�
)

� � � � � � �
�

� �

insert(
�
)

� � � � � � �
�

� �

The time for insert in an array assumes no overflow
occurs. If overflow occurs, then

� ��� �
time is needed

to copy the old array to the new, larger, one.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [199]

Comparing the Space of List Implementations

Space requirements:
� If the array holds pointers to the items, then there is

the space overhead of � pointers, where � is the
size of the array allocated.

� If the array holds the items themselves, then there is
the space overhead of �

�

�
(unused) items, where�

is the current number of items in the list.
� In both kinds of arrays, there is also the overhead of

the counter (containing the next free index).
� If you use a linked list, then the space overhead is

for
�

“link” pointers, and the header information.

To quantify the space tradeoffs between the array of
items and linked list representations:

� Let � be the number of bytes to store a pointer
� Let � be the number of bytes to store an item
� Let � be the number of elements in the allocated

array.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [200]

Comparing the Space (cont’d)

To hold
�

items,
� the array representation uses � � � bytes,
� the linked list representation uses

�
�
�

�
�

�
�

bytes.

The tradeoff point is when � � � � �
�
�

�
�

�
�
, that is,

when
� � � � � � �

�
�

�
�
.

� When
� � � � � � �

�
�

�
�
, the linked list is better.

� When
� �

� � � � �
�
�

�
�
, the array is better.

� When the item size, � , is much larger than the pointer
size, � , the linked list representation beats the array
representation for smaller values of

�
.

� When the item size, � , is closer to the pointer size,
� , the linked list representation beats the array rep-
resentation for larger values of

�
.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [201]

Generalized Lists

A generalized list is a list of items, where each item
might be a list itself.

Example:
� ������� ��� � ��� �
	 � ��� � ��
�� ��� � � � �

.

There are five elements in the (top level) list:

1. �

2. �

3. the list
��� � ��� �
	 � ��� �

4.

5. the list
��� � � �

Items which are not lists are called atoms (they cannot
be further subdivided).

CPSC 211 Data Structures & Implementations (c) Texas A&M University [202]

Sample Java Code for Generalized List

class Node {
Object item;
Node link;
Node (Object obj) { item = obj; }

}
class GenList {
private Node first;
GenList() { first = null; }
void insert(Object newItem) {
Node node = new Node(newItem);
node.link = first;
first = node;

}
void print() {
System.out.print("(");
Node node = first;
while (node != null) {
if (node.item instanceof GenList)
((GenList)node.item).print();

else S.o.p(node.item);
node = node.link;
if (node != null) S.o.p(", ");

}
S.o.p(")");

}
}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [203]

Sample Java Code (cont’d)

Notice:
� o instanceof C returns true if

– object � is an instance of class
�

, or

– object � implements interface
�

, or

– object � is an instance of a subclass of
�

, or

– object � is an instance of a subclass of some class
that implements interface

�

� casts node.item to type GenList, if appropri-
ate

� recursive call of the GenList method print
� implicit use of the toStringmethod of every class,

in the call to System.out.print

Don’t confuse the print method of System.out
with the print method we are defining for class
GenList.)

CPSC 211 Data Structures & Implementations (c) Texas A&M University [204]

Sample Java Code (cont’d)

How do we know that print is well-defined and won’t
get into an infinite loop?

The print method is recursive and uses a while loop.
� The while loop steps through all the (top-level) items

in the current list.
� If an item is not a generalized list, then it simply

prints it.
� If an item is itself a generalized list, then the print

method recursively calls itself on the current item.
� The while loop stops when you reach the end of the

current list.

Each recursive call takes you deeper into the nesting of
the generalized list.

� Assume there are no repeated objects in the gener-
alized list.

� The stopping case for the recursion is when you
reach the most deeply nested list.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [204]

� Each recursive call takes you closer to a stopping
case.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [205]

Generalized List Pitfalls

Warning! If there is a cycle in the generalized list,
print will go into an infinite loop. For instance:

first

(GenList)
(Node) (Node) (Node)

Be careful about shared sublists. For instance,

b

first

(GenList)
(Node)

first

(GenList)

(Node) (Node)

(Node)(Node)

x y

If you change the first sublist, you will automatically
change the second sublist in this case.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [206]

Application of Generalized Lists: LISP

Generalized lists are
� highly flexible
� good for applications where data structures grow

and shrink in highly unpredictable ways during ex-
ecution.

� the key structuring paradigm in the programming
language LISP (LISt Processing language).

LISP is a functional language: every statement is
a function, taking some arguments and producing a
result.

Each function call is represented as a list, with the
name of the function coming first, and the arguments
coming after it:

(FUNCTION ARG1 ARG2 ...)

Each argument could itself be the result of invoking
some other function with its own list of arguments, etc.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [207]

LISP-like Approach to Arithmetic Expressions

Apply this approach to evaluating arithmetic expres-
sions:

Use prefix notation (as opposed to postfix), with paren-
theses to delimit the sublists:

(* (+ 3 4) (+ 8 6))

is equal to (3 + 4) * (8 + 6).

Using the parentheses is useful if we want to allow
different numbers of arguments. For instance, let plus
have more than 2 arguments:

(* (+ 3 4 5) (+ 8 6))

CPSC 211 Data Structures & Implementations (c) Texas A&M University [208]

Strings and StringBuffers

Java differentiates between Strings, which are im-
mutable (cannot be changed) and StringBuffers,
which are mutable (can be changed). They are both a
kind of list.

There are no methods that change an existingString.

If you want to change the characters in a string, use a
StringBuffer. Some key features are:

� change a character at a particular index in the string
buffer

� append a string at the end of a string buffer
� insert a string somewhere in the middle of a string

buffer

The StringBuffer class can be implemented using
an array of characters. The ideas are not complicated.
You just have to create new arrays and do copying at
appropriate times, so it is not particularly fast to do
these operations. See Section 7.5 of Standish.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [209]

The Heap

When you use new or malloc to dynamically allo-
cate some space, the run-time system handles the me-
chanics of actually finding the required free space of
the necessary size.

When you make an object inaccessible (in Java) or use
free (in C), again the run-time system handles the
mechanics of reclaiming the space.

We are now going to look at HOW one could imple-
ment dynamic allocation of objects from the heap. The
reasons are:

� Basic understanding.
� Techniques are useful in other applications.
� Not all languages provide dynamic allocation, in-

cluding Fortran 66 and assembler. You can use these
ideas to “simulate” it.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [210]

What is the Heap?

The heap is an area of memory used to store objects
that will by dynamically allocated and deallocated.

Memory can be viewed as one long array of memory
locations, where the address of a memory location is
the index of the location in the array.

Thus we can view the heap as a long array of bytes.

Contiguous locations in the heap (array) are grouped
together into blocks. Blocks can be different sizes.

When a request arrives to allocate
�

bytes, the system
� finds an available block of size at least

�
,

� allocates the
�

bytes requested from that block, and
� returns the address of the starting byte allocated.

Blocks are classified as either free or allocated.

Initially, the heap consists of a single, free, block con-
taining the entire array.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [211]

Heap Data Structures

Once blocks are allocated, the heap might get chopped
up into alternating allocated and free blocks of varying
sizes.

We need a way to locate all the free blocks.

This will be done by keeping the free blocks in a linked
list, called the free list.

The linked list is implemented using explicit array in-
dices as the “pointers”.

Each block has some header information, which in-
cludes the size of the block and any required “point-
ers”. (For simplicity, we will ignore the space required
for the header.)

CPSC 211 Data Structures & Implementations (c) Texas A&M University [212]

Allocation

When a request arrives to allocate
�

bytes, scan the free
list looking for a block that is big enough.
There are two strategies for choosing the block to use:

� first fit: stop searching as soon as you find a block
that is big enough, OR

� best fit: find the smallest block that is big enough.
If you find a block that is exactly the required size,
you can stop then. If no block is exactly the required
size, then you have to search the whole free list to
find the smallest one that is big enough.

If the block found is bigger than
�

, then break it up into
two blocks, one of size

�
, which will be allocated, and

a new, smaller, free block. The new, smaller, free block
will replace the original block in the free list.

If the block found is exactly of size
�

, then remove it
from the free list.

If no block large enough is found, then can’t allocate.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [213]

Deallocation

When a block is deallocated, as a first cut, simply insert
the block at the front of the free list.

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

p := alloc(10)

q := alloc(20)

free(p)

r := alloc(40)

free(q)

10

100

10 70

10

70

50

10

10

10

20

20

20

50

10

10

40

40

0

free

0

freep

79

79

79300 10

q free

20

p

0

q

30 7910

free

79703010

q

0

rfree

0 10 30 79

rfree

CPSC 211 Data Structures & Implementations (c) Texas A&M University [214]

Fragmentation

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

free(q)

70

10 20 1040

0 10 30 79

rfree

Problem with previous example: If a request comes in
for 30 bytes, the system will check the free list, and
find a block of size 20, then a block of size 10, and
finally a block of size 10. None of the blocks is big
enough and the allocation will fail.

But this is silly! Clearly there is enough free space, in
fact there are 30 contiguous free bytes! The problem is
that the space has been artificially divided into separate
blocks due to the past history of how it was allocated.

This phenomenon is called fragmentation.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [215]

Coalescing

A solution to fragmentation is to coalesce deallocated
blocks with free (physical) neighbors. Be careful about
the use of the word neighbor:

� physical neighbor: actual physical space is adja-
cent

� virtual neighbor: blocks are adjacent in the free
list, but not necessarily in memory.

To facilitate this operation, we will need additional space
overhead in the header, and it will also help to keep
“footer” information at the end of each block to:

� make the free list doubly linked, instead of singly
linked

� indicate whether the block is free or not
� replicate some info in the footer so that the status of

the physical neighbors of a newly deallocated node
can be efficiently determined

...... just freed

footer info header info

CPSC 211 Data Structures & Implementations (c) Texas A&M University [216]

More Insidious Fragmentation

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

free(q)

70

10 20 1040

0 10 30 79

rfree

However, coalescing will not accommodate a request
for 40 bytes. There are 40 free bytes, but they are not
physically contiguous.

The problem is that two of the free blocks are inter-
rupted by the allocated block � .

This is a serious problem with allocation schemes, when
the sizes requested can be arbitrary.

Large free blocks keep getting chopped up into smaller
and smaller blocks, so it gets harder to satisfy large
requests, even if there is enough total space available.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [217]

Compaction

The solution to this problem is called compaction. The
concept is simple: move all the allocated blocks to-
gether at the beginning of the heap, and compact all
the unallocated blocks together into a single large free
block.

The difficulty though is that if you “move” a block, i.e.,
copy the information in a block to another location in
the heap, you change its address. And you already gave
out the original address to the user when the block was
allocated!

CPSC 211 Data Structures & Implementations (c) Texas A&M University [218]

Master Pointers

A solution is to use double indirection, with master
pointers.

� A special area of the heap contains “master” point-
ers, which point to (hold the address of) allocated
blocks.

� The addresses of the master pointers never change
— they are in a fixed part of the heap.

� The address returned by the allocate procedure is
the address of the master pointer.

� The contents of a master pointer can change, so that
when the block being pointed to by a master pointer
is moved as part of a compaction, the address is
updated in the master pointer.

� But the user, who received the master pointer ad-
dress, is unaffected.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [219]

Master Pointers (cont’d)

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

......
q rp

master pointers

rest of heap

Costs:
� Additional space for the master pointers
� Additional time: have to do two pointer derefer-

ences, instead of just one
� Unpredictable “freezing” of execution for a signif-

icant period of time, when the compaction occurs.
It’s hard to predict when compaction will be needed;
while it is going on, the application has to pause;
and it can take quite a while if the memory is large.

But there really isn’t any feasible alternative, if you
want to do compaction.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [220]

Garbage Collection

The above discussion of deallocation assumes the mem-
ory allocation algorithm is somehow informed about
which blocks are no longer in use:

� In C, this is done by the programmer, using free.
� In Java, the run-time system does this automatically.

This process is part of garbage collection:
� identifying inaccessible memory
� management of the free list to reduce the effects of

fragmentation

One of the challenging aspects of garbage collection is
how to correctly identify inaccessible space, especially
how to do it incrementally, so the application does not
suddenly pause while it’s happening.

There are many interesting algorithms for doing garbage
collection with different performance tradeoffs.

