
lezione13

November 6, 2023

1 Fondamenti di Programmazione
Andrea Sterbini

lezione 13 - 6 novembre 2023

2 RECAP: Immagini
• creazione/load/save
• rotazione
• disegno di linee verticali/orizzontali/diagonali
• disegno di rettangoli ed ellissi

[1]: %load_ext nb_mypy

Version 1.0.5

[2]: from images import load, visd

definiamo qualche colore
black = 0, 0, 0
white = 255, 255, 255
red = 255, 0, 0
green = 0, 255, 0
blue = 0, 0, 255
cyan = 0, 255, 255
yellow= 255, 255, 0
purple= 255, 0, 255
gray = 128, 128, 128

definizione di tipi
Colore = tuple[int,int,int]
Immagine = list[list[Colore]]

def crea_immagine(larghezza : int, altezza : int, colore : Colore=black) ->␣
↪Immagine :

return [[colore]*larghezza
for i in range(altezza)

1

]

def draw_pixel(img : Immagine, x : int, y : int, colore : Colore) -> None:
altezza = len(img)
larghezza = len(img[0])
if 0 <= x < larghezza and 0 <= y < altezza:

img[y][x] = colore

2.1 Ritagliare una immagine (crop)

[3]: # tolgo una striscia attorno all'immagine di spessori dati
def crop_image(img : Immagine, alto : int,basso : int, sx : int, dx :int) ->␣

↪Immagine :
controllo sui parametri
L,A = len(img[0]), len(img)
i valori di crop non devono sommare a più di L ed A
assert 0<= alto <A and 0<= basso <A and 0<= sx <L and 0<= dx <L and␣

↪alto+basso<A and sx+dx<L, f"parametri errati {alto+basso}<{A} {sx+dx}<{L}"
if basso:

fetta = img[alto:-basso] # copio solo il gruppo di righe giuste
else: # se basso==0

fetta = img[alto:] # bisogna scrivere così per arrivare in fondo␣
↪sennò si copia da alto a 0 ovvero nulla

if dx:
return [riga[sx:-dx] for riga in fetta] # per ciascuna riga della␣

↪fetta copio solo la slice di colonne giusta
else: # se dx==0

return [riga[sx:] for riga in fetta] #bisogna scrivere così per␣
↪arrivare in fondo sennò si copia da sx a 0 ovvero nulla

[4]: # carico la foto per gli esempi che seguono
img = load('3cime.png')
esempio
cropped : Immagine = crop_image(img, alto=20, basso=30, sx=20, dx=50)
visd(img), visd(cropped)
None

2

2.2 Copia e incolla parte dell’immagine su un’altra
• con un crop
• e un paste
• con traslazione di coordinate

3

[5]: # per copiare l'immagine (o una sua parte) in un'altra
def cut_paste_img(imgS : Immagine,

imgD : Immagine,
xs1 : int, ys1 : int, xs2 : int, ys2 : int,
XD : int, YD : int) -> None:

FIXME: controllo sui parametri
ATTENZIONE: assumo che i parametri siano corretti
HS = len(imgS)
WS = len(imgS[0])
prima creo il frammento da copiare
FIXME: prima di ritagliare calcoliamo quante righe e quante colonne
entreranno nell'immagine di destinazione e ritagliamo solo quella parte
frammento = crop_image(imgS, ys1, HS-ys2, xs1, WS-xs2)
per tutte le righe da copiare
larghezza = len(frammento[0])
for yF,riga in enumerate(frammento):
uso un assegnamento a slice

imgD[yF+YD][XD:XD+larghezza] = riga

OPPURE senza creare il cropped, copiando solo i pixel giusti (più efficiente)

4

2.2.1 E’ SBAGLIATO usare list.copy sulla immagine

Perchè copia solo la lista esterna di righe

Usate copy.deepcopy oppure una list-comprehension che copia una riga per volta

[6]: from pygraphviz import AGraph
G = AGraph(directed=True, rankdir='TD')
for i in range(5):

G.add_edge(f'img[{i}]', f'riga {i}')
G.add_edge(f'riga {i}', f'copia[{i}]', dir='back')
if i: G.add_edge(f'riga {i-1}', f'riga {i}',color='white')
if i: G.add_edge(f'copia[{i-1}]', f'copia[{i}]',color='white')
if i: G.add_edge(f'img[{i-1}]', f'img[{i}]',color='white')

for i in range(5):
G.subgraph([f'img[{i}]', f'riga {i}', f'copia[{i}]',], rank='same')

G.layout('dot')
G

[6]:

img[0] riga 0

img[1]

copia[0]

riga 1 copia[1]

img[2] riga 2 copia[2]

img[3] riga 3 copia[3]

img[4] riga 4 copia[4]

[7]: img=load('3cime.png')

5

copio l'immagine delle 3 cime di Lavaredo
img_copiata = crop_image(img, 0,0,0,0)

altro modo di copiare una immagine
def copia(img: Immagine) -> Immagine:

return [riga.copy() for riga in img] # NON BASTA usare solo copy sulla␣
↪lista esterna!!!

oppure
from copy import deepcopy # SE vi è permesso importare da 'copy'

[7]: %time img_copiata = copia(img)

%time img2 = deepcopy(img)
ne copio un pezzettino in un altro punto
cut_paste_img(img, img_copiata, 50,50,100,100, 200,10)
visd(img_copiata), visd(img)

CPU times: user 289 µs, sys: 0 ns, total: 289 µs
Wall time: 292 µs
CPU times: user 58.9 ms, sys: 70 µs, total: 59 ms
Wall time: 59.4 ms

6

[7]: (None, None)

2.3 Aggiungere un bordo
• creiamo una immagine più grande colorata come il bordo
• ci incolliamo la immagine

[8]: # per aggiungere un bordo
def add_border(img : Immagine, spessore : int, colore : Colore) -> Immagine :

L, A = len(img[0]), len(img)
creiamo una immagine più grande col colore del bordo
nuova = crea_immagine(L+2*spessore,A+2*spessore, colore)
ci incolliamo l'immagine originale
cut_paste_img(img,nuova,0,0,L-1,A-1,spessore,spessore)
return nuova

2.3.1 Oppure la creiamo riga per riga

[9]: # oppure la costruiamo riga per riga
def add_border2(img : Immagine, spessore : int, colore : Colore) -> Immagine :

L, A = len(img[0]), len(img)
bordata = []
- prima spessore righe del colore
bordata += [[colore] * (L+2*spessore) for i in range(spessore)]

- poi per ogni riga dell'immagine
for riga in img:

- spessore pixel + riga + spessore pixel
bordata.append([colore]*spessore + riga + [colore]*spessore)

- dopo spessore righe del colore

7

bordata += [[colore] * (L+2*spessore) for i in range(spessore)]
return bordata

[10]: %time bordata = add_border(img, 20, green)
%time bordata2 = add_border2(img, 20, cyan)
visd(bordata) , visd(bordata2)

<cell>3: error: Name "bordata" is not defined
[name-defined]
<cell>3: error: Name "bordata2" is not defined
[name-defined]

CPU times: user 516 µs, sys: 0 ns, total: 516 µs
Wall time: 519 µs
CPU times: user 196 µs, sys: 0 ns, total: 196 µs
Wall time: 198 µs

8

[10]: (None, None)

3 Filtri da applicare ai colori
• ogni pixel della immagine viene trasformato in un nuovo colore. Esempi

– toni di grigio
– negativo
– incremento/riduzione della luminosità
– incremento/riduzione del contrasto

NOTA: questi filtri dipendono solo dal pixel in esame e non dalla sua posizione

3.1 Trasformiamo in una immagine in toni di grigio

[11]: # filtro grigio che trasforma un colore in grigio con la stessa luminosità
def filtro_grigio(colore : Colore) -> Colore :

tutti i pixel devono essere grigi ma con la stessa luminosità totale
ovvero R=G=B e R+G+B uguale a prima, quindi bisogna mediare
media = round(sum(colore)/3) # round torna un intero se il numero di␣

↪cifre decimali è 0
return media, media, media

per trasformare una immagine in livelli di grigio
def grey(img : Immagine) -> Immagine :

la copio
grigia = copia(img)
e sostituisco ogni pixel col grigio corrispondente

9

for y, riga in enumerate(img):
for x, pixel in enumerate(riga):

grigia[y][x] = filtro_grigio(pixel)
return grigia

esempio
img_grigia = grey(img)
visd(img_grigia)

3.2 Cambiamo la luminosità
Amplifichiamo/riduciamo di k volte la luminosità dell’immagine

[12]: from copy import deepcopy

Ci conviene definire una funzione che vincola il risultato
ad essere INTERO ed entro un dato INTERVALLO [m,M] compresi
def bound(canale : float|int, m:int=0, M:int=255) -> int:

"trasformo il valore in intero all'interno di [m..M]"
canale = round(canale)
return min(max(canale, m), M)

def filtro_lumi(colore : Colore, k : float) -> Colore:
"cambiamo la luminosità del pixel di un fattore k su tutti i canali"
R,G,B = colore
mi assicuro che i valori risultanti siano interi nel range 0..255
return bound(R*k), bound(G*k), bound(B*k)

def luminosità(img : Immagine, k : float) -> Immagine:
'per schiarire/scurire una immagine di un fattore k (float)'

10

copia = deepcopy(img) # creo una nuova immagine con deepcopy
tutti i pixel devono avere una luminosità moltiplicata per k
for y, riga in enumerate(img):

for x, colore in enumerate(riga):
copia[y][x] = filtro_lumi(colore, k) # sostituisco il pixel

return copia

[13]: # esempio
img_luminosa = luminosità(img, 1.5)
img_scura = luminosità(img, 0.8)

visd(img_luminosa), visd(img_scura)
None

11

3.3 Generalizziamo l’applicazione del filtro
• definendo una trasformazione generica
• che accetta come parametro la funzione che trasforma il pixel

[14]: from typing import Callable
Filtro = Callable[[Colore], Colore] # funzione che accetta un Colore e␣

↪produce un Colore

def applica_filtro(img : Immagine, filtro : Filtro) -> Immagine:
'creo una nuova immagine in cui ciascun pixel è trasformato con la funzione␣

↪filtro(Colore)->Colore'
copio l'immagine
copia = deepcopy(img)
tutti i pixel vengono sostituiti con il risultato del filtro
for y, riga in enumerate(img):

for x, colore in enumerate(riga):
copia[y][x] = filtro(colore) ### QUI eseguo il filtro sul pixel␣

↪corrente
return copia

[15]: # esempio
img_ingrigita = applica_filtro(img, filtro_grigio)
visd(img_ingrigita)

[16]: # il filtro deve accettare un solo parametro
def piu_scura(pixel):

"scurisco l'immagine dimezzando la luminosità"
return filtro_lumi(pixel, 0.5)

scura1 = applica_filtro(img, piu_scura)

12

oppure posso usare una lambda
scura2 = applica_filtro(img, lambda pixel: filtro_lumi(pixel, 0.5))
visd(scura1), visd(scura2)
None

3.4 Cambiamo il contrasto
• per cambiare il contrasto di un fattore k

– ogni pixel chiaro deve diventare più chiaro
– ogni pixel scuro deve diventare più scuro
– ovvero si devono allontanare/avvicinare di un fattore k dal grigio 128,128,128

13

[17]: def filtro_contrasto(colore : Colore, k : float) -> Colore:
"aumento di un fattore k la distanza del colore da 128, per ciascun canale␣

↪RGB"
return tuple(bound((componente-128)*k+128) for componente in colore)

PROBLEMA! : filtro_contrasto vuole DUE parametri, ma applica_filtro vuole un␣
↪Filtro che ne prende solo 1

NOTA: mypy non sa che la list comprehension è su 3 elementi per cui gli␣
↪sembra sbagliato

<cell>3: error: Incompatible return value type (got
"tuple[int, …]", expected "tuple[int, int, int]")
[return-value]

[18]: # SOLUZIONE : definisco una lambda che aggiunge Kalla chiamata
esempio
img_più_contrastata = applica_filtro(img, lambda colore:␣

↪filtro_contrasto(colore, 1.2))
img_meno_contrastata = applica_filtro(img, lambda colore:␣

↪filtro_contrasto(colore, 0.8))

visd(img_meno_contrastata), visd(img_più_contrastata)
None

14

3.5 effetto Negativo

[19]: def negativo(colore : Colore) -> Colore :
"invertiamo la luminosità di ciascun canale RGB"
return tuple(255-componente for componente in colore)

img_negata = applica_filtro(img, negativo)
visd(img_negata)
di nuovo, mypy non sa dedurre che produrremo sempre una tupla di 3 componenti

<cell>3: error: Incompatible return value type (got
"tuple[int, …]", expected "tuple[int, int, int]")
[return-value]

15

3.6 Sfocatura (blur)
• facciamo la media dei colori fino a distanza k dal pixel

NOTA: questo filtro deve conoscere la posizione del pixel

[20]: # calcolo la media di un gruppo di colori
def colore_medio(listaColori : list[Colore]) -> Colore :

N = len(listaColori)
R,G,B = 0, 0, 0
for r,g,b in listaColori:

R += r
G += g
B += b

return bound(R/N), bound(G/N), bound(B/N)

#oppure
return tuple(map(lambda X: bound(sum(X)/N), zip(*listaColori)))

[21]: # per sfocare una immagine entro una distanza k
genero una nuova immagine
con i pixel che sono la media del gruppo di pixel
attorno a quello indicato fino a distanza k

def blur(img : Immagine, k : int) -> Immagine:
W = len(img[0])
H = len(img)
copia = [riga.copy() for riga in img] # invece che deepcopy
for x in range(W):

for y in range(H):
raccolgo i colori del vicinato (potrei essere sul bordo)
vicinato = []
for X in range(x-k,x+k+1):

for Y in range(y-k, y+k+1):
if 0 <= X < W and 0 <= Y < H: # se sono dentro

vicinato.append(img[Y][X])
copia[y][x] = colore_medio(vicinato)

return copia
blur è una operazione molto lenta

TODO: realizzarlo come filtro che dipende dalla posizione -> vedi sotto

[22]: # esempio
img_sfocata1 = blur(img, 1)
img_sfocata2 = blur(img, 2)
img_sfocata3 = blur(img, 3)
visd(img_sfocata1), visd(img_sfocata2), visd(img_sfocata3)
None

16

17

3.7 Inseriamo del rumore nella immagine
• possiamo aggiungere del colore a ciascun pixel
• oppure scegliere un pixel vicino

[23]: from random import randint

per aggiungere rumore casuale ad una immagine
possiamo aggiungere a ciascun pixel un piccolo valore random

def rumore_casuale(colore : Colore, k : int) -> Colore:
"aggiungiamo a ciascuna componente RGB un piccolo valore in [-k, k]"
return tuple(bound(C + randint(-k,k)) for C in colore)

<cell>7: error: Incompatible return value type (got
"tuple[int, …]", expected "tuple[int, int, int]")
[return-value]

[24]: # esempio
poco_rumore = applica_filtro(img, lambda C: rumore_casuale(C, 20))
tanto_rumore = applica_filtro(img, lambda C: rumore_casuale(C, 50))
visd(img), visd(poco_rumore), visd(tanto_rumore)
None

18

3.8 Filtri che dipendono dalla posizione
Generalizziamo i filtri in modo che conoscano: - la posizione x,y del pixel corrente - l’immagine
sorgente (per leggere altri pixel) - le dimensioni dell’immagine (per evitare di ricalcolarle)

3.9 Esempio: Pixellazione
possiamo colorare tutti i pixel di ciascun quadratino di dimensioni S in modo simile - coloro il pixel
corrente come il centro del suo quadratino - oppure come la media del suo quadratino

[25]: # - devo sapere dove sono nella immagine e avere accesso a tutta l'immagine!
x y img L A
FiltroXY = Callable[[int, int, Immagine, int, int], Colore] # funzione␣

↪filtro che conosce x,y,img,L,A

19

def applica_filtro_XY(img : Immagine, filtro : FiltroXY) -> Immagine:
'applicazione di un filtro che dipende da x,y, dalla immagine e dalle␣

↪dimensioni L,A'
W,H = len(img[0]),len(img)
ricevo nell'argomento 'filtro' una funzione che calcola
per ogni colore e posizione X,Y il nuovo colore
copia = deepcopy(img)
for y in range(H):

for x in range(W):
copia[y][x] = filtro(x, y, img, W, H) ### QUI chiamo il filtro

return copia

[26]: # ad ogni quadrato sostituiamo il colore del suo centro
def pixella(x : int, y : int, img : Immagine, W : int, H : int, S : int) ->␣

↪Colore :
'FiltroXY che legge il pixel al centro del suo quadretto'
X = bound(x-x%S+S/2, 0, W-1) # X del centro
Y = bound(y-y%S+S/2, 0, H-1) # Y del centro
return img[Y][X]

pixellata = applica_filtro_XY(img,
lambda x,y,imm,W,H: pixella(x,y,imm,W,H,5))

visd(pixellata)

[27]: # ad ogni quadrato sostituiamo la *media* dei colori
def pixelmedio(x : int, y : int, img : Immagine, W : int, H : int, S : int) ->␣

↪Colore :
'FiltoXY che fa la media dei pixel del quadretto'
R,G,B, N = 0,0,0, 0

20

minx = x-x%S
miny = y-y%S
vicini = [img[Y][X] for X in range(minx, min(W,minx+S))

for Y in range(miny, min(H,miny+S))]
return colore_medio(vicini)

INEFFICIENTE: ricalcola la media per ogni pixel
MEGLIO: calcolo la media una volta per ogni quadrato
- ad esempio ricordando il risultato per ogni xmin,ymin,xmax,ymax

pixellata2 = applica_filtro_XY(img, lambda x,y,imm,W,H:␣
↪pixelmedio(x,y,imm,W,H,5))

visd(pixellata2)

3.10 Blur come filtro
• per ogni pixel calcolo la media del vicinato

[28]: def blur_filter(x : int, y : int, img : Immagine, W : int, H : int, k : int) ->␣
↪Colore:

"calcolo la media dei vicini fino a distanza k"
vicini = []
for X in range(bound(x-k,0,W),bound(x+k+1, 0, W)):

for Y in range(bound(y-k,0,H),bound(y+k+1, 0, H)):
vicini.append(img[Y][X])

ne torno la media
return colore_medio(vicini)

[29]: # Esempio con k=3

21

sfumata = applica_filtro_XY(img, lambda x,y,imm,W,H: blur_filter(x,y,imm,W,H, 3␣
↪))

visd(sfumata)

3.11 immagine rumorosa per spostamento di pixels
• scegliamo a caso un pixel entro una distanza k dal pixel da colorare

[30]: # sostituiamo ciascun pixel con un suo vicino preso a caso
def scegli_vicino_a_caso(x : int, y : int, img : Immagine, W : int, H : int, k :

↪ int) -> Colore:
"FiltroXY che legge un pixel a caso entro una distanza k, ma tenendosi␣

↪dentro l'immagine"
dx = randint(-k, k)
dy = randint(-k, k)
X = bound(x+dx, 0, W-1) # mi tengo dentro l'immagine
Y = bound(y+dy, 0, H-1) # mi tengo dentro l'immagine
return img[Y][X]

Esempio con k=5
rumore = applica_filtro_XY(img, lambda x, y, imm, W, H: scegli_vicino_a_caso(x,␣

↪y, imm, W, H, 2))
visd(rumore)

22

3.12 Effetto lente
Voglio ingrandire/rimpicciolire una zona: - centrata alle coordinate x,y - di un raggio r - in-
grandendo/rimpicciolendo di un fattore k - fuori dalla zona lasciamo l’immagine com’è

23

[31]: from math import dist
per dare l'effetto lente

nella zona della lente
fino a un raggio r
mettiamo dei pixel che stanno a distanza K volte
la loro distanza dal centro x1,y1 della lente

def lente(x : int, y : int, img : Immagine, W : int, H : int,
x1 : int, y1 : int, r : int, k : float) -> Colore:

"FiltroXY che allontana/avvicina i pixel attrorno al centro x,y di un␣
↪fattore k"

D = dist((x,y), (x1,y1)) # distanza dal centro
if D > r: # se siamo fuori dal raggio

return img[y][x] # lasciamo il pixel com'è (lo leggiamo)
altrimenti amplifichiamo le due proiezioni dx e dy di un fattore k
dx = (x-x1)*k
dy = (y-y1)*k
ci assicuriamo di essere nella immagine
X = bound(x1+dx,0,W-1) # alla peggio prendo il pixel del bordo più␣

↪vicino
Y = bound(y1+dy,0,H-1)
return img[Y][X] # e torniamo il pixel più lontano/vicino al␣

↪centro

[32]: # esempio
se k<1 prendo i pixel più vicini al centro e l'effetto lente INGRANDISCE (qui␣

↪k=0.5)
ingrandita = applica_filtro_XY(img,

lambda x, y, img, W, H: lente(x, y, img, W, H, 100, 100, 100, 0.
↪5))

se k>1 prendo i pixel più lontani dal centro e l'effetto lente RIMPICCIOLISCE␣
↪(qui k=2)

rimpicciolita = applica_filtro_XY(img,
lambda x, y, img, W, H: lente(x, y, img, W, H, 100, 100, 100, 2␣

↪))

visd(ingrandita), visd(rimpicciolita)
None

24

25

	Fondamenti di Programmazione
	RECAP: Immagini
	Ritagliare una immagine (crop)
	Copia e incolla parte dell'immagine su un'altra
	E' SBAGLIATO usare list.copy sulla immagine

	Aggiungere un bordo
	Oppure la creiamo riga per riga

	Filtri da applicare ai colori
	Trasformiamo in una immagine in toni di grigio
	Cambiamo la luminosità
	Generalizziamo l'applicazione del filtro
	Cambiamo il contrasto
	effetto Negativo
	Sfocatura (blur)
	Inseriamo del rumore nella immagine
	Filtri che dipendono dalla posizione
	Esempio: Pixellazione
	Blur come filtro
	immagine rumorosa per spostamento di pixels
	Effetto lente

