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2 RECAP: Immagini
• creazione/load/save
• rotazione
• disegno di linee verticali/orizzontali/diagonali
• disegno di rettangoli ed ellissi

[1]: %load_ext nb_mypy

Version 1.0.5

[2]: from images import load, visd

# definiamo qualche colore
black = 0, 0, 0
white = 255, 255, 255
red = 255, 0, 0
green = 0, 255, 0
blue = 0, 0, 255
cyan = 0, 255, 255
yellow= 255, 255, 0
purple= 255, 0, 255
gray = 128, 128, 128

# definizione di tipi
Colore = tuple[int,int,int]
Immagine = list[list[Colore]]

def crea_immagine(larghezza : int, altezza : int, colore : Colore=black) ->␣
↪Immagine :

return [ [ colore ]*larghezza
for i in range(altezza)
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]

def draw_pixel(img : Immagine, x : int, y : int, colore : Colore) -> None:
altezza = len(img)
larghezza = len(img[0])
if 0 <= x < larghezza and 0 <= y < altezza:

img[y][x] = colore

2.1 Ritagliare una immagine (crop)

[3]: # tolgo una striscia attorno all'immagine di spessori dati
def crop_image(img : Immagine, alto : int,basso : int, sx : int, dx :int) ->␣

↪Immagine :
# controllo sui parametri
L,A = len(img[0]), len(img)
# i valori di crop non devono sommare a più di L ed A
assert 0<= alto <A and 0<= basso <A and 0<= sx <L and 0<= dx <L and␣

↪alto+basso<A and sx+dx<L, f"parametri errati {alto+basso}<{A} {sx+dx}<{L}"
if basso:

fetta = img[alto:-basso] # copio solo il gruppo di righe giuste
else: # se basso==0

fetta = img[alto:] # bisogna scrivere così per arrivare in fondo␣
↪sennò si copia da alto a 0 ovvero nulla

if dx:
return [ riga[sx:-dx] for riga in fetta ] # per ciascuna riga della␣

↪fetta copio solo la slice di colonne giusta
else: # se dx==0

return [ riga[sx:] for riga in fetta ] #bisogna scrivere così per␣
↪arrivare in fondo sennò si copia da sx a 0 ovvero nulla

[4]: # carico la foto per gli esempi che seguono
img = load('3cime.png')
# esempio
cropped : Immagine = crop_image(img, alto=20, basso=30, sx=20, dx=50)
visd(img), visd(cropped)
None
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2.2 Copia e incolla parte dell’immagine su un’altra
• con un crop
• e un paste
• con traslazione di coordinate
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[5]: # per copiare l'immagine (o una sua parte) in un'altra
def cut_paste_img(imgS : Immagine,

imgD : Immagine,
xs1 : int, ys1 : int, xs2 : int, ys2 : int,
XD : int, YD : int ) -> None:

# FIXME: controllo sui parametri
# ATTENZIONE: assumo che i parametri siano corretti
HS = len(imgS)
WS = len(imgS[0])
# prima creo il frammento da copiare
# FIXME: prima di ritagliare calcoliamo quante righe e quante colonne
# entreranno nell'immagine di destinazione e ritagliamo solo quella parte
frammento = crop_image(imgS, ys1, HS-ys2, xs1, WS-xs2 )
# per tutte le righe da copiare
larghezza = len(frammento[0])
for yF,riga in enumerate(frammento):
# uso un assegnamento a slice

imgD[yF+YD][XD:XD+larghezza] = riga

# OPPURE senza creare il cropped, copiando solo i pixel giusti (più efficiente)
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2.2.1 E’ SBAGLIATO usare list.copy sulla immagine

Perchè copia solo la lista esterna di righe

Usate copy.deepcopy oppure una list-comprehension che copia una riga per volta

[6]: from pygraphviz import AGraph
G = AGraph(directed=True, rankdir='TD')
for i in range(5):

G.add_edge(f'img[{i}]', f'riga {i}')
G.add_edge(f'riga {i}', f'copia[{i}]', dir='back')
if i: G.add_edge(f'riga {i-1}', f'riga {i}',color='white')
if i: G.add_edge(f'copia[{i-1}]', f'copia[{i}]',color='white')
if i: G.add_edge(f'img[{i-1}]', f'img[{i}]',color='white')

for i in range(5):
G.subgraph([f'img[{i}]', f'riga {i}', f'copia[{i}]', ], rank='same')

G.layout('dot')
G

[6]:

img[0] riga 0

img[1]

copia[0]

riga 1 copia[1]

img[2] riga 2 copia[2]

img[3] riga 3 copia[3]

img[4] riga 4 copia[4]

[7]: img=load('3cime.png')
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# copio l'immagine delle 3 cime di Lavaredo
img_copiata = crop_image(img, 0,0,0,0)

# altro modo di copiare una immagine
def copia(img: Immagine) -> Immagine:

return [ riga.copy() for riga in img ] # NON BASTA usare solo copy sulla␣
↪lista esterna!!!

# oppure
from copy import deepcopy # SE vi è permesso importare da 'copy'

[7]: %time img_copiata = copia(img)

%time img2 = deepcopy(img)
# ne copio un pezzettino in un altro punto
cut_paste_img(img, img_copiata, 50,50,100,100, 200,10 )
visd(img_copiata), visd(img)

CPU times: user 289 µs, sys: 0 ns, total: 289 µs
Wall time: 292 µs
CPU times: user 58.9 ms, sys: 70 µs, total: 59 ms
Wall time: 59.4 ms
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[7]: (None, None)

2.3 Aggiungere un bordo
• creiamo una immagine più grande colorata come il bordo
• ci incolliamo la immagine

[8]: # per aggiungere un bordo
def add_border(img : Immagine, spessore : int, colore : Colore ) -> Immagine :

L, A = len(img[0]), len(img)
# creiamo una immagine più grande col colore del bordo
nuova = crea_immagine(L+2*spessore,A+2*spessore, colore)
# ci incolliamo l'immagine originale
cut_paste_img(img,nuova,0,0,L-1,A-1,spessore,spessore)
return nuova

2.3.1 Oppure la creiamo riga per riga

[9]: # oppure la costruiamo riga per riga
def add_border2(img : Immagine, spessore : int, colore : Colore ) -> Immagine :

L, A = len(img[0]), len(img)
bordata = []
# - prima spessore righe del colore
bordata += [ [colore] * (L+2*spessore) for i in range(spessore) ]

# - poi per ogni riga dell'immagine
for riga in img:

# - spessore pixel + riga + spessore pixel
bordata.append( [colore]*spessore + riga + [colore]*spessore )

# - dopo spessore righe del colore
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bordata += [ [colore] * (L+2*spessore) for i in range(spessore) ]
return bordata

[10]: %time bordata = add_border(img, 20, green)
%time bordata2 = add_border2(img, 20, cyan)
visd(bordata) , visd(bordata2)

<cell>3: error: Name "bordata" is not defined
[name-defined]
<cell>3: error: Name "bordata2" is not defined
[name-defined]

CPU times: user 516 µs, sys: 0 ns, total: 516 µs
Wall time: 519 µs
CPU times: user 196 µs, sys: 0 ns, total: 196 µs
Wall time: 198 µs

8



[10]: (None, None)

3 Filtri da applicare ai colori
• ogni pixel della immagine viene trasformato in un nuovo colore. Esempi

– toni di grigio
– negativo
– incremento/riduzione della luminosità
– incremento/riduzione del contrasto

NOTA: questi filtri dipendono solo dal pixel in esame e non dalla sua posizione

3.1 Trasformiamo in una immagine in toni di grigio

[11]: # filtro grigio che trasforma un colore in grigio con la stessa luminosità
def filtro_grigio(colore : Colore) -> Colore :

# tutti i pixel devono essere grigi ma con la stessa luminosità totale
# ovvero R=G=B e R+G+B uguale a prima, quindi bisogna mediare
media = round(sum(colore)/3) # round torna un intero se il numero di␣

↪cifre decimali è 0
return media, media, media

# per trasformare una immagine in livelli di grigio
def grey(img : Immagine) -> Immagine :

# la copio
grigia = copia(img)
# e sostituisco ogni pixel col grigio corrispondente
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for y, riga in enumerate(img):
for x, pixel in enumerate(riga):

grigia[y][x] = filtro_grigio(pixel)
return grigia

# esempio
img_grigia = grey(img)
visd(img_grigia)

3.2 Cambiamo la luminosità
Amplifichiamo/riduciamo di k volte la luminosità dell’immagine

[12]: from copy import deepcopy

# Ci conviene definire una funzione che vincola il risultato
# ad essere INTERO ed entro un dato INTERVALLO [m,M] compresi
def bound(canale : float|int, m:int=0, M:int=255 ) -> int:

"trasformo il valore in intero all'interno di [m..M]"
canale = round(canale)
return min(max(canale, m), M)

def filtro_lumi(colore : Colore, k : float) -> Colore:
"cambiamo la luminosità del pixel di un fattore k su tutti i canali"
R,G,B = colore
# mi assicuro che i valori risultanti siano interi nel range 0..255
return bound(R*k), bound(G*k), bound(B*k)

def luminosità(img : Immagine, k : float) -> Immagine:
'per schiarire/scurire una immagine di un fattore k (float)'
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copia = deepcopy(img) # creo una nuova immagine con deepcopy
# tutti i pixel devono avere una luminosità moltiplicata per k
for y, riga in enumerate(img):

for x, colore in enumerate(riga):
copia[y][x] = filtro_lumi(colore, k) # sostituisco il pixel

return copia

[13]: # esempio
img_luminosa = luminosità(img, 1.5)
img_scura = luminosità(img, 0.8)

visd(img_luminosa), visd(img_scura)
None
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3.3 Generalizziamo l’applicazione del filtro
• definendo una trasformazione generica
• che accetta come parametro la funzione che trasforma il pixel

[14]: from typing import Callable
Filtro = Callable[[Colore], Colore] # funzione che accetta un Colore e␣

↪produce un Colore

def applica_filtro( img : Immagine, filtro : Filtro ) -> Immagine:
'creo una nuova immagine in cui ciascun pixel è trasformato con la funzione␣

↪filtro(Colore)->Colore'
# copio l'immagine
copia = deepcopy(img)
# tutti i pixel vengono sostituiti con il risultato del filtro
for y, riga in enumerate(img):

for x, colore in enumerate(riga):
copia[y][x] = filtro(colore) ### QUI eseguo il filtro sul pixel␣

↪corrente
return copia

[15]: # esempio
img_ingrigita = applica_filtro(img, filtro_grigio)
visd(img_ingrigita)

[16]: # il filtro deve accettare un solo parametro
def piu_scura(pixel):

"scurisco l'immagine dimezzando la luminosità"
return filtro_lumi(pixel, 0.5)

scura1 = applica_filtro(img, piu_scura)
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# oppure posso usare una lambda
scura2 = applica_filtro(img, lambda pixel: filtro_lumi(pixel, 0.5))
visd(scura1), visd(scura2)
None

3.4 Cambiamo il contrasto
• per cambiare il contrasto di un fattore k

– ogni pixel chiaro deve diventare più chiaro
– ogni pixel scuro deve diventare più scuro
– ovvero si devono allontanare/avvicinare di un fattore k dal grigio 128,128,128
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[17]: def filtro_contrasto(colore : Colore, k : float) -> Colore:
"aumento di un fattore k la distanza del colore da 128, per ciascun canale␣

↪RGB"
return tuple( bound((componente-128)*k+128) for componente in colore)

# PROBLEMA! : filtro_contrasto vuole DUE parametri, ma applica_filtro vuole un␣
↪Filtro che ne prende solo 1

# NOTA: mypy non sa che la list comprehension è su 3 elementi per cui gli␣
↪sembra sbagliato

<cell>3: error: Incompatible return value type (got
"tuple[int, …]", expected "tuple[int, int, int]")
[return-value]

[18]: # SOLUZIONE : definisco una lambda che aggiunge Kalla chiamata
# esempio
img_più_contrastata = applica_filtro(img, lambda colore:␣

↪filtro_contrasto(colore, 1.2))
img_meno_contrastata = applica_filtro(img, lambda colore:␣

↪filtro_contrasto(colore, 0.8))

visd(img_meno_contrastata), visd(img_più_contrastata)
None
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3.5 effetto Negativo

[19]: def negativo(colore : Colore ) -> Colore :
"invertiamo la luminosità di ciascun canale RGB"
return tuple( 255-componente for componente in colore )

img_negata = applica_filtro(img, negativo)
visd(img_negata)
# di nuovo, mypy non sa dedurre che produrremo sempre una tupla di 3 componenti

<cell>3: error: Incompatible return value type (got
"tuple[int, …]", expected "tuple[int, int, int]")
[return-value]
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3.6 Sfocatura (blur)
• facciamo la media dei colori fino a distanza k dal pixel

NOTA: questo filtro deve conoscere la posizione del pixel

[20]: # calcolo la media di un gruppo di colori
def colore_medio(listaColori : list[Colore]) -> Colore :

N = len(listaColori)
R,G,B = 0, 0, 0
for r,g,b in listaColori:

R += r
G += g
B += b

return bound(R/N), bound(G/N), bound(B/N)

#oppure
# return tuple(map(lambda X: bound(sum(X)/N), zip(*listaColori)))

[21]: # per sfocare una immagine entro una distanza k
# genero una nuova immagine
# con i pixel che sono la media del gruppo di pixel
# attorno a quello indicato fino a distanza k

def blur(img : Immagine, k : int) -> Immagine:
W = len(img[0])
H = len(img)
copia = [ riga.copy() for riga in img ] # invece che deepcopy
for x in range(W):

for y in range(H):
# raccolgo i colori del vicinato (potrei essere sul bordo)
vicinato = []
for X in range(x-k,x+k+1):

for Y in range(y-k, y+k+1):
if 0 <= X < W and 0 <= Y < H: # se sono dentro

vicinato.append(img[Y][X])
copia[y][x] = colore_medio(vicinato)

return copia
# blur è una operazione molto lenta ....

# TODO: realizzarlo come filtro che dipende dalla posizione -> vedi sotto

[22]: # esempio
img_sfocata1 = blur(img, 1)
img_sfocata2 = blur(img, 2)
img_sfocata3 = blur(img, 3)
visd(img_sfocata1), visd(img_sfocata2), visd(img_sfocata3)
None
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3.7 Inseriamo del rumore nella immagine
• possiamo aggiungere del colore a ciascun pixel
• oppure scegliere un pixel vicino

[23]: from random import randint

# per aggiungere rumore casuale ad una immagine
# possiamo aggiungere a ciascun pixel un piccolo valore random

def rumore_casuale(colore : Colore, k : int) -> Colore:
"aggiungiamo a ciascuna componente RGB un piccolo valore in [-k, k]"
return tuple( bound(C + randint(-k,k)) for C in colore )

<cell>7: error: Incompatible return value type (got
"tuple[int, …]", expected "tuple[int, int, int]")
[return-value]

[24]: # esempio
poco_rumore = applica_filtro(img, lambda C: rumore_casuale(C, 20))
tanto_rumore = applica_filtro(img, lambda C: rumore_casuale(C, 50))
visd(img), visd(poco_rumore), visd(tanto_rumore)
None
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3.8 Filtri che dipendono dalla posizione
Generalizziamo i filtri in modo che conoscano: - la posizione x,y del pixel corrente - l’immagine
sorgente (per leggere altri pixel) - le dimensioni dell’immagine (per evitare di ricalcolarle)

3.9 Esempio: Pixellazione
possiamo colorare tutti i pixel di ciascun quadratino di dimensioni S in modo simile - coloro il pixel
corrente come il centro del suo quadratino - oppure come la media del suo quadratino

[25]: # - devo sapere dove sono nella immagine e avere accesso a tutta l'immagine!
# x y img L A
FiltroXY = Callable[[int, int, Immagine, int, int], Colore] # funzione␣

↪filtro che conosce x,y,img,L,A
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def applica_filtro_XY( img : Immagine, filtro : FiltroXY ) -> Immagine:
'applicazione di un filtro che dipende da x,y, dalla immagine e dalle␣

↪dimensioni L,A'
W,H = len(img[0]),len(img)
# ricevo nell'argomento 'filtro' una funzione che calcola
# per ogni colore e posizione X,Y il nuovo colore
copia = deepcopy(img)
for y in range(H):

for x in range(W):
copia[y][x] = filtro(x, y, img, W, H) ### QUI chiamo il filtro

return copia

[26]: # ad ogni quadrato sostituiamo il colore del suo centro
def pixella(x : int, y : int, img : Immagine, W : int, H : int, S : int) ->␣

↪Colore :
'FiltroXY che legge il pixel al centro del suo quadretto'
X = bound(x-x%S+S/2, 0, W-1) # X del centro
Y = bound(y-y%S+S/2, 0, H-1) # Y del centro
return img[Y][X]

pixellata = applica_filtro_XY(img,
lambda x,y,imm,W,H: pixella(x,y,imm,W,H,5))

visd(pixellata)

[27]: # ad ogni quadrato sostituiamo la *media* dei colori
def pixelmedio(x : int, y : int, img : Immagine, W : int, H : int, S : int) ->␣

↪Colore :
'FiltoXY che fa la media dei pixel del quadretto'
R,G,B, N = 0,0,0, 0
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minx = x-x%S
miny = y-y%S
vicini = [ img[Y][X] for X in range(minx, min(W,minx+S))

for Y in range(miny, min(H,miny+S)) ]
return colore_medio(vicini)

## INEFFICIENTE: ricalcola la media per ogni pixel
## MEGLIO: calcolo la media una volta per ogni quadrato
# - ad esempio ricordando il risultato per ogni xmin,ymin,xmax,ymax

pixellata2 = applica_filtro_XY(img, lambda x,y,imm,W,H:␣
↪pixelmedio(x,y,imm,W,H,5))

visd(pixellata2)

3.10 Blur come filtro
• per ogni pixel calcolo la media del vicinato

[28]: def blur_filter(x : int, y : int, img : Immagine, W : int, H : int, k : int) ->␣
↪Colore:

"calcolo la media dei vicini fino a distanza k"
vicini = []
for X in range(bound(x-k,0,W),bound(x+k+1, 0, W)):

for Y in range(bound(y-k,0,H),bound(y+k+1, 0, H)):
vicini.append(img[Y][X])

# ne torno la media
return colore_medio(vicini)

[29]: # Esempio con k=3
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sfumata = applica_filtro_XY(img, lambda x,y,imm,W,H: blur_filter(x,y,imm,W,H, 3␣
↪))

visd(sfumata)

3.11 immagine rumorosa per spostamento di pixels
• scegliamo a caso un pixel entro una distanza k dal pixel da colorare

[30]: # sostituiamo ciascun pixel con un suo vicino preso a caso
def scegli_vicino_a_caso(x : int, y : int, img : Immagine, W : int, H : int, k :

↪ int) -> Colore:
"FiltroXY che legge un pixel a caso entro una distanza k, ma tenendosi␣

↪dentro l'immagine"
dx = randint(-k, k)
dy = randint(-k, k)
X = bound(x+dx, 0, W-1) # mi tengo dentro l'immagine
Y = bound(y+dy, 0, H-1) # mi tengo dentro l'immagine
return img[Y][X]

# Esempio con k=5
rumore = applica_filtro_XY(img, lambda x, y, imm, W, H: scegli_vicino_a_caso(x,␣

↪y, imm, W, H, 2))
visd(rumore)
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3.12 Effetto lente
Voglio ingrandire/rimpicciolire una zona: - centrata alle coordinate x,y - di un raggio r - in-
grandendo/rimpicciolendo di un fattore k - fuori dalla zona lasciamo l’immagine com’è
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[31]: from math import dist
# per dare l'effetto lente

# nella zona della lente
# fino a un raggio r
# mettiamo dei pixel che stanno a distanza K volte
# la loro distanza dal centro x1,y1 della lente

def lente(x : int, y : int, img : Immagine, W : int, H : int,
x1 : int, y1 : int, r : int, k : float) -> Colore:

"FiltroXY che allontana/avvicina i pixel attrorno al centro x,y di un␣
↪fattore k"

D = dist((x,y), (x1,y1)) # distanza dal centro
if D > r: # se siamo fuori dal raggio

return img[y][x] # lasciamo il pixel com'è (lo leggiamo)
# altrimenti amplifichiamo le due proiezioni dx e dy di un fattore k
dx = (x-x1)*k
dy = (y-y1)*k
# ci assicuriamo di essere nella immagine
X = bound(x1+dx,0,W-1) # alla peggio prendo il pixel del bordo più␣

↪vicino
Y = bound(y1+dy,0,H-1)
return img[Y][X] # e torniamo il pixel più lontano/vicino al␣

↪centro

[32]: # esempio
# se k<1 prendo i pixel più vicini al centro e l'effetto lente INGRANDISCE (qui␣

↪k=0.5)
ingrandita = applica_filtro_XY(img,

lambda x, y, img, W, H: lente(x, y, img, W, H, 100, 100, 100, 0.
↪5) )

# se k>1 prendo i pixel più lontani dal centro e l'effetto lente RIMPICCIOLISCE␣
↪(qui k=2)

rimpicciolita = applica_filtro_XY(img,
lambda x, y, img, W, H: lente(x, y, img, W, H, 100, 100, 100, 2␣

↪ ) )

visd(ingrandita), visd(rimpicciolita)
None
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