
A.A. 2015-2016

LECTURE 5

IRENE FINOCCHI

h t t p : / / w w w u s e r s . d i . u n i r o m a 1 . i t / ~ f i n o c c h i /

Programmazione di sistemi
multicore

Hands on code

• I M P L E M E N T A T I O N

• M E A S U R I N G T I M E
²  Real time
²  User time
²  System time

• O B S E R V I N G C P U U S A G E F O R D I F F E R E N T
 N U M B E R S O F T H R E A D S

• M E M O R Y V S . C P U B O U N D E D C O M P U T A T I O N S

2

�  Fork-join programs (thankfully) do not require
much focus on sharing memory among threads

�  But in languages like Java, there is memory being
shared. In our example:
¡  lo, hi, arr fields written by “main” thread, read by helper

thread
¡  ans field written by helper thread, read by “main” thread

�  When using shared memory, you must avoid data
race conditions
¡  output depends on timing of other uncontrollable events
¡  the order in which internal variables are changed determines

the eventual state that the state machine will end up in

Which memory is shared?

3

�  The Thread class defines various methods you could not
implement on your own
¡  For example: start, which calls run in a new thread

�  The join method is valuable for coordinating this kind of
computation
¡  Caller blocks until/unless the receiver is done executing

(meaning the call to run returns)
¡  Else, we would have a race condition on ts[i].ans
¡  While studying parallelism, we will stick with join
¡  With concurrency, we will learn other ways to synchronize

�  This style of parallel programming is called “fork/join”

Join (not the most descriptive word)

4

�  Code has 1 compile error because join may throw
java.lang.InterruptedException

¡  Thrown when a thread is interrupted
¡  Thread could be in either waiting, sleeping or running

state and this exception can be thrown either before or
during a thread’s activity

�  In basic parallel code, should be fine to catch-and-exit
¡  We will throw the InterruptedException to the upper

layer of the calling stack and let the upper layer handle it

A Java implementation detail

Fork/join parallelism

• J A V A T H R E A D S

• U S I N G T H R E A D S T O I M P L E M E N T F O R A L L

• U S I N G J O I N T O S Y N C H R O N I Z E T H R E A D S

• H O W M A N Y T H R E A D S ?

6

Several reasons why this is a poor parallel implementation
1.  Want code to be reusable and efficient across platforms

¡  “Forward-portable” as core count grows
¡  So, at the very least, parameterize by the number of threads

Code portability

int sum(int[] arr, int numTs){
 int ans = 0;
 SumThread[] ts = new SumThread[numTs];
 for(int i=0; i < numTs; i++){
 ts[i] = new SumThread(arr,(i*arr.length)/numTs,
 ((i+1)*arr.length)/numTs);
 ts[i].start();
 }
 for(int i=0; i < numTs; i++) {
 ts[i].join();
 ans += ts[i].ans;
 }
 return ans;
}

7

2.  Want to use (only) processors available to you now
¡  Not used by other programs or threads in your program

÷  Maybe caller is also using parallelism
÷  Available cores can change even while your threads run

¡  With 3 processors available, using 3 threads would take
time X, but creating 4 threads would take time 1.5X!
÷  Example: 12 units of work, 3 processors

¢  Work divided into 3 parts will take 4 units of time
¢  Work divided into 4 parts will take 3*2 units of time

Threads vs. processors/cores

// numThreads == numProcessors is bad
// if some are needed for other things
int sum(int[] arr, int numTs){
 …
}

8

Load balancing

3. Though unlikely for sum, in general subproblems may take
significantly different amounts of time

¡  Typical scenario: Apply a method f to every array
element, but f much slower for some data items

÷  Example: given a large int[], how many elements are prime
numbers? Checking that a number is prime could take longer
than discovering it is not:

¢  need to check all possible divisors in the former case
¢  stop as soon as you find a divisor in the latter case

¡  If we create 4 threads and all the slow data is processed
by 1 of them, we won’t get nearly a 4x speedup
÷  Example of a load imbalance: different helper

threads get different amounts of work

9

A counterintuitive solution!

Use lots of threads,
far more than the number of cores

¡  We'll see that this will require changing our algorithm
¡  And, for constant-factor reasons, abandoning Java’s

threads

 ans0 ans1 … ansN
 ans

10

Previous issues are solved...

�  Forward-portable: code independent of #processors
¡  Lots of helpers, each doing a small piece of work

�  Processors available: just a “big pile” of threads waiting to run
¡  If #processors available changes, that affects only how fast the pile is

processed, but we are always doing useful work with available resources
¡  Example: 120 units of work, 3 or 4 processors. Work divided into X

parts (threads) will take Xp units of time on p processors:
÷ X=3 part lenght=40 X3=40*1 X4=40*1
÷ X=4 part lenght=30 X3=30*2 X4=30*1
÷ X=60 part lenght=2 X3=2*20 X4=2*15
÷ X=120 part lenght=1 X3=1*40 X4=1*30

�  Load balancing: Small pieces of work yields shorter threads
¡  Slow threads are no problem if scheduled early enough

11

... but new issues arise

�  Suppose we create 1 thread to process every 1000 elements
�  Then combining results will have arr.length / 1000 additions

¡  Linear in size of array: Θ(arr.length) time, with constant factor 1/1000
¡  Previously Θ(1) time

�  In the extreme case, if we create 1 thread per element, the loop to
combine partial results has arr.length iterations
¡  Just like the original sequential algorithm!

 int sum(int[] arr){
 …
 int numThreads = arr.length / 1000;
 SumThread[] ts = new SumThread[numThreads];
 …
 for(int i=0; i < numThreads; i++) {
 ts[i].join();
 ans += ts[i].ans;
 }
}

12

... but new issues arise

�  Suppose we create 1 thread to process every 1000 elements
�  Then combining results will have arr.length / 1000 additions

¡  Linear in size of array (Θ(arr.length) time, with constant factor 1/1000)
¡  Previously Θ(1) time

�  In the extreme case, if we create 1 thread per element, the loop to
combine partial results has arr.length iterations
¡ Just like the original sequential algorithm!

int sum(int[] arr){
 …
 int numThreads = arr.length / 1000;
 SumThread[] ts = new SumThread[numThreads];
 …
 for(int i=0; i < numThreads; i++) {
 ts[i].join();
 ans += ts[i].ans;
 }
}

13

Lecture recap

�  Hands on code (again)
¡  Memory vs CPU-bounded computations: practical implications

on speedup
¡  Using a profiler (-prof) to determine percentage of sequential

and parallel code

�  Choosing the appropriate number of threads
¡  Forward portable code
¡  Threads vs (available) processors/cores
¡  Load balancing
¡  Theoretical and practical issues with too may threads

14

�  A Sophomoric Introduction to Shared-Memory Parallelism

and Concurrency, Dan Grossman
 http://www.cs.washington.edu/homes/djg/teachingMaterials

Sources

