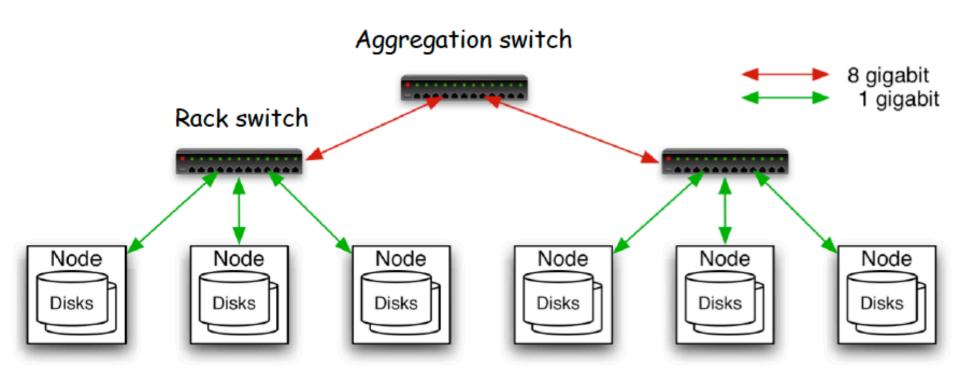
MAPREDUCE A HIGH-LEVEL PROGRAMMING MODEL (WITH A COMPLEX RUNTIME SYSTEM)

Irene Finocchi

Commodity clusters

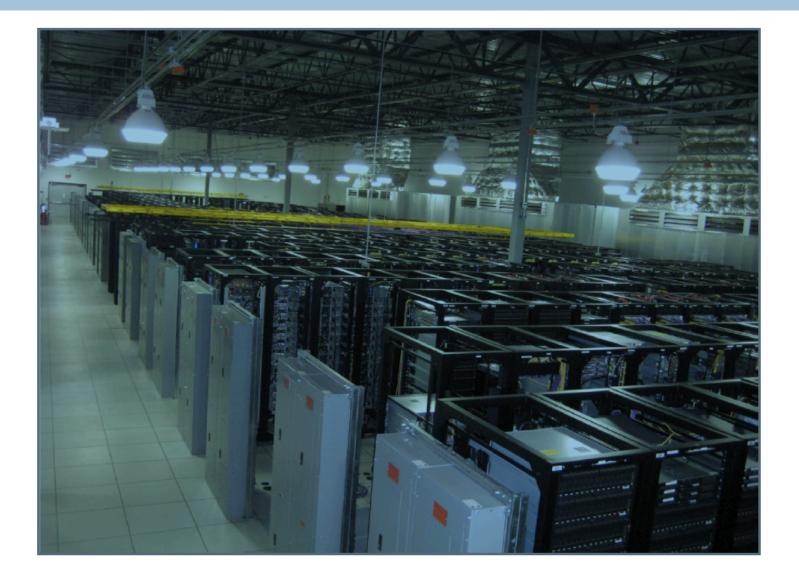
- Cannot mine tens to hundreds of Terabytes of data on a single server
- Standard architecture emerging:
 Cluster of commodity Linux nodes
 Gigabit ethernet interconnections
- How to organize computations on these architectures?
- □ How to program these architectures?
- How to mask issues such as hardware failures in these architectures?

Cluster architecture



- Each rack contains 10/64 nodes
- Sample node configuration: 8 x 2GHz cores, 8 GB RAM, 4 disks (4 TB)

Real cluster architecture



Stable storage

- First order problem: if nodes can fail, how can we store data persistently?
- □ Answer: Distributed File System
 - Provides global file namespace
 - Google GFS; Hadoop HDFS; Kosmix KFS
- Typical usage pattern
 - Huge files (100s of GB to TB)
 - Data is rarely updated in place
 - Reads and appends are common

Distributed file system

Chunk servers

- File is split into contiguous chunks
- Typically each chunk is 16-64MB
- Each chunk replicated (usually 2x or 3x)
- Try to keep replicas in different racks

Master node

- Stores metadata
- Might be replicated
- (a.k.a. Name Node in HDFS)
- Client library for file access
 - Talk to master to find chunk servers
 - Connect directly to chunk servers to access data

Warm up: word count

- □ We have a large corpus of documents, one word per line
- Count the number of times each distinct word occurs in the corpus
 - words(docs/*) | sort | uniq -c
 - where words takes a file and outputs the words in it, one to a line
- Sample application: analyze web server logs to find popular URLs
- The above captures the essence of MapReduce
 Great thing is it is naturally parallelizable

MapReduce

□ A novel programming model

- Everything built on top of <key,value> pairs
 - Keys and values are user-defined: can be anything
- Only two user-defined functions:

Map

- $= map(k_1, v_1) \implies list(k_2, v_2)$
- given input data <k₁,v₁>, produce intermediate data v₂ labeled with key k₂
- Reduce
 - reduce(k₂, list(v₂)) list(v₃) preserves key
 - given a list of values list(v₂) associated with a key k₂, return a list of values list(v₃) associated with the same key

Parallelism in MapReduce

- All mappers in parallel
- All reducers in parallel
- Different pairs transparently distributed across available machines

$$map(k_1,v_1) \implies list(k_2,v_2)$$

Shuffle: group values with the same key to be passed to a single reducer

reduce(
$$k_2$$
, list(v_2)) list(v_3)

Runtime system

□ The underlying runtime system:

- automatically parallelizes the computation across large-scale clusters of machines
- handles machine failures
- schedules inter-machine communication to make efficient use of the network and disks

Implementations

Google MapReduce
 Not available outside Google

Hadoop: an Apache project
 Open-source implementation in Java

- Uses HDFS for stable storage
- Download: <u>http://lucene.apache.org/hadoop/</u>

Aster Data

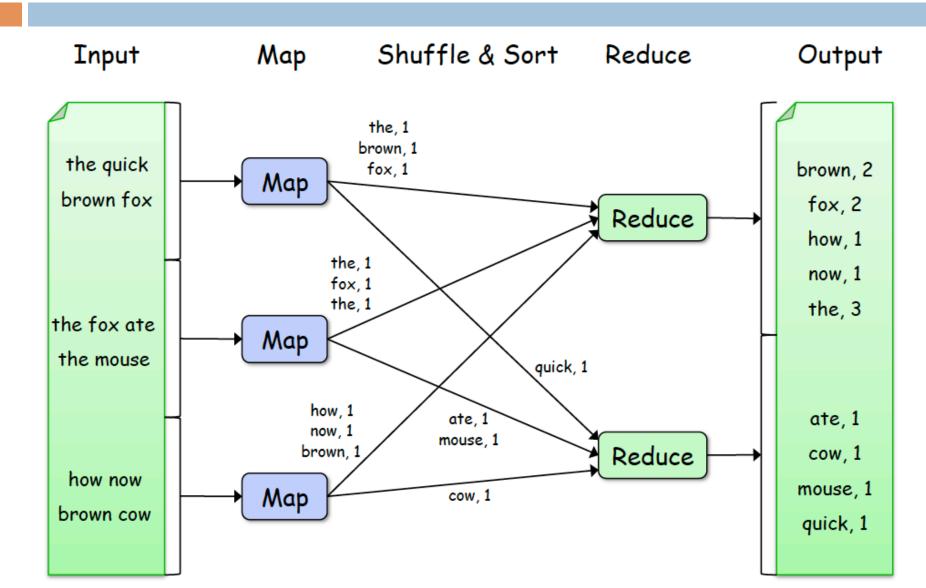
Cluster-optimized SQL Database that also implements MapReduce

THE MapReduce example: WordCount

```
map(key, value):
// key: document name; value: text of document
for each word w in value:
    emit(w, 1)
```

```
reduce(key, values):
// key: a word; value: an iterator over counts
result = 0
for each count v in values:
    result += v
emit(result)
```

WordCount data flow



A programmer's perspective

The beauty of MapReduce is that any programmer can understand it, and its power comes from being able to harness thousands of computers behind that simple interface.

David Patterson

Implementation sketch: WordCount again

```
map(key, value):
// key: document name; value: text of document
for each word w in value:
    emit(w, 1)
```

```
reduce(key, values):
// key: a word; value: an iterator over counts
result = 0
for each count v in values:
    result += v
emit(result)
```

The class org.apache.hadoop.mapreduce.Job

Job is the class used to submit a MapReduce task to the cluster:

Job job = Job.getInstance(new Configuration());
job.setJarByClass(MyJob.class);

// Specify various job-specific parameters
job.setJobName("myjob");

job.setInputPath(new Path("in"));
job.setOutputPath(new Path("out"));

job.setMapperClass(MyJob.MyMapper.class);
job.setReducerClass(MyJob.MyReducer.class);

/* Submit the job, then poll for progress until
 * the job is complete */
job.waitForCompletion(true);

The Mapper and Reducer classes

The way to define what a Job should do is to assign it with our custom Mapper and Reducer subclasses:

The Mapper class:

The Reducer class:

Methods of the Mapper class

protected void setup(Context context) throws
IOException, InterruptedException { }

protected void cleanup(Context context) throws
IOException, InterruptedException { }

Methods of the Reducer class

protected void setup(Context context) throws
IOException, InterruptedException { }

protected void cleanup(Context context) throws
IOException, InterruptedException { }

The Context(s)

Finally we should consider the Context classes. These are inner classes of the Mapper and Reducer classes. We are interested in the method:

write(KEYOUT, VALUEOUT)

(inherited from org.apache.hadoop.mapreduce. TaskInputOutputContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT>)

Missing parts

• MyMapper fields:

```
private final static IntWritable one =
    new IntWritable(1);
private Text word = new Text();
```

• MyMapper map function body:

```
Scanner scanner = new Scanner(value.toString());
scanner.useDelimiter(" ");
while (scanner.hasNext()) {
    word.set(scanner.next());
    context.write(word, one);
}
scanner.close();
```

• MyReducer reduce function body:

```
int sum = 0;
for(IntWritable value : values) {
    sum += value.get();
}
context.write(key, new IntWritable(sum));
```

Cloud computing

Ability to rent computing by the hour
 Additional services: e.g., persistent storage

E.g., Amazon Web Services
 Elastic Compute Cloud: EC2
 Persistent storage: S3
 Elastic MapReduce: run Hadoop on EC2

Big data computing course: free AWS access, run your MapReduce apps on EC2 (up to 16 nodes)

AWS+Hadoop: a success story

- The New York Times needed to generate PDF files for 11,000,000 articles (every article from 1851-1980) in the form of images scanned from the original paper
- Each article composed of numerous TIFF images scaled and glued together
- Code for generating PDF quite straightforward

NYT technologies and results

- □ 4TB of scanned articles sent to Amazon S3
- A cluster of EC2 machines configured to distribute the PDF generation via Hadoop
- Using 100 EC2 instances, in 24 hours the New York Times was able to convert the 4TB of scanned articles into 1.5TB of PDF documents
- Embarrassingly parallel problem

Another success: sorting on commodity clusters

Sorting 1PB with MapReduce

November 22, 2008 at 1:55 AM

Q +1 16

At Google we are fanatical about organizing the world's information. As a result, we spend a lot of time finding better ways to sort information using <u>MapReduce</u>, a key component of our software infrastructure that allows us to run multiple processes simultaneously. MapReduce is a perfect solution for many of the computations we run daily, due in large part to its simplicity, applicability to a wide range of real-world computing tasks, and natural translation to highly scalable distributed implementations that harness the power of thousands of computers.

Sorting on commodity clusters

- Nov 2008: 1TB, 1000 computers, 68 secs
 Previous record: 910 computers, 209 secs
- Nov 2008: 1PB, 4000 computers, 6 h, 48k harddisks
- □ Sept 2011: 1PB, 8000 computers, 33 m
- □ Sept 2011: 10PB, 8000 computers, 6 ½ h

10PB?

Metric prefixes						
Prefix	Symbol	1000 ^{<i>m</i>}	10 ^{<i>n</i>}	Decimal	English word ^[n 1]	Since ^[n 2]
yotta	Y	1000 ⁸	10 ²⁴	1 000 000 000 000 000 000 000 000	septillion	1991
zetta	Z	1000 ⁷	10 ²¹	1 000 000 000 000 000 000 000	sextillion	1991
exa	Е	1000 ⁶	10 ¹⁸	1 000 000 000 000 000 000	quintillion	1975
peta	Р	1000 ⁵	10 ¹⁵	1 000 000 000 000 000	quadrillion	1975
tera	т	1000 ⁴	10 ¹²	1 000 000 000 000	trillion	1960
giga	G	1000 ³	10 ⁹	1 000 000 000	billion	1960
mega	М	1000 ²	10 ⁶	1 000 000	million	1960

J. Leskovec, A. Rajaraman & J. Ullman
 Mining of massive data sets
 Chapters 1 and 2 (Sections 2.1 & 2.2)
 http://i.stanford.edu/~ullman/mmds.html

 Jeffrey Dean and Sanjay Ghemawat,
 MapReduce: Simplified Data Processing on Large Clusters

http://labs.google.com/papers/mapreduce.html