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Commodity clusters 

¨  Cannot mine tens to hundreds of Terabytes of data on a 
single server 

¨  Standard architecture emerging: 
¤ Cluster of commodity Linux nodes 
¤ Gigabit ethernet interconnections 

¨  How to organize computations on these architectures? 
¨  How to program these architectures? 
¨  How to mask issues such as hardware failures in these 

architectures? 



Cluster architecture 

q  Each rack contains 10/64 nodes 
q  Sample node configuration: 8 x 2GHz cores, 8 GB RAM, 4     
   disks (4 TB) 



Real cluster architecture 



Stable storage 

¨  First order problem: if nodes can fail, how can we 
store data persistently?  

¨  Answer: Distributed File System 
¤ Provides global file namespace 
¤ Google GFS; Hadoop HDFS; Kosmix KFS 

¨  Typical usage pattern 
¤ Huge files (100s of GB to TB) 
¤ Data is rarely updated in place 
¤ Reads and appends are common 

 



Distributed file system 

¨  Chunk servers 
¤  File is split into contiguous chunks 
¤  Typically each chunk is 16-64MB 
¤  Each chunk replicated (usually 2x or 3x) 
¤  Try to keep replicas in different racks 

¨  Master node 
¤  Stores metadata 
¤  Might be replicated 
¤  (a.k.a. Name Node in HDFS) 

¨  Client library for file access 
¤  Talk to master to find chunk servers  
¤  Connect directly to chunk servers to access data 



Warm up: word count 

¨  We have a large corpus of documents, one word per line 
¨  Count the number of times each distinct word occurs in the 

corpus 
¤ words(docs/*) | sort | uniq -c 
¤ where words takes a file and outputs the words in it, one to a 

line 

¨  Sample application: analyze web server logs to find 
popular URLs 

¨  The above captures the essence of MapReduce 
¤ Great thing is it is naturally parallelizable 
 



MapReduce 

¨  A novel programming model 
¨  Everything built on top of <key,value> pairs 

¤ Keys and values are user-defined: can be anything 
¨   Only two user-defined functions: 

¤ Map 
n map(k1,v1)            list(k2,v2) 
n given input data <k1,v1>, produce intermediate data v2 

labeled with key k2 

¤ Reduce 
n  reduce(k2, list(v2))             list(v3)            preserves key 
n given a list of values list(v2) associated with a key k2, return a 

list of values list(v3) associated with the same key 



Parallelism in MapReduce 

¨  All mappers in parallel 
¨  All reducers in parallel 
¨  Different pairs transparently distributed across 

available machines 

Shuffle: group values with the same key  
to be passed to a single reducer 

reduce(k2, list(v2))             list(v3)  

map(k1,v1)            list(k2,v2) 



Runtime system 

¨  The underlying runtime system: 
¤   automatically parallelizes the computation across   

large-scale clusters of machines 
¤   handles machine failures 
¤   schedules inter-machine communication to make 

efficient use of the network and disks 



Implementations 

¨  Google MapReduce 
¤ Not available outside Google 

¨  Hadoop: an Apache project 
¤ Open-source implementation in Java 
¤ Uses HDFS for stable storage 
¤ Download: http://lucene.apache.org/hadoop/ 

¨  Aster Data 
¤ Cluster-optimized SQL Database that also implements 

MapReduce 

 
 



THE MapReduce example: WordCount 

map(key, value): 
// key: document name; value: text of document 

 for each word w in value: 
  emit(w, 1) 

 
reduce(key, values): 
// key: a word; value: an iterator over counts 

 result = 0 
 for each count v in values: 
  result += v 
 emit(result) 



WordCount data flow 



A programmer’s perspective 

   The beauty of MapReduce is that any programmer 
can understand it, and its power comes from being 
able to harness thousands of computers behind that 

simple interface. 
 

David Patterson 



Implementation sketch: WordCount again 

map(key, value): 
// key: document name; value: text of document 

 for each word w in value: 
  emit(w, 1) 

 
reduce(key, values): 
// key: a word; value: an iterator over counts 

 result = 0 
 for each count v in values: 
  result += v 
 emit(result) 



WordCount in Hadoop (sketch) 
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WordCount in Hadoop (sketch) 



Cloud computing 

¨  Ability to rent computing by the hour 
¤ Additional services: e.g., persistent storage 

¨  E.g., Amazon Web Services 
¤ Elastic Compute Cloud: EC2 
¤ Persistent storage: S3 
¤ Elastic MapReduce: run Hadoop on EC2  

¨   Big data computing course: free AWS access,  
¨   run your MapReduce apps on EC2 (up to 16  
¨   nodes) 



AWS+Hadoop: a success story 

¨  The New York Times needed to generate PDF files 
for 11,000,000 articles (every article from 
1851-1980) in the form of images scanned from 
the original paper 

¨  Each article composed of numerous TIFF images 
scaled and glued together  

¨  Code for generating PDF quite straightforward 



NYT technologies and results 

¨  4TB of scanned articles sent to Amazon S3 
¨  A cluster of EC2 machines configured to distribute the 

PDF generation via Hadoop 
¨  Using 100 EC2 instances, in 24 hours the New York 

Times was able to convert the 4TB of scanned articles 
into 1.5TB of PDF documents 

¨  Embarrassingly parallel problem 



Another success: sorting on commodity 
clusters 



Sorting on commodity clusters 

¨  Nov 2008: 1TB, 1000 computers, 68 secs 
¤ Previous record: 910 computers, 209 secs 

¨  Nov 2008: 1PB, 4000 computers, 6 h, 48k harddisks 

¨  Sept 2011: 1PB, 8000 computers, 33 m 

¨  Sept 2011: 10PB, 8000 computers, 6 ½ h 



10PB? 



Readings 

¨  J. Leskovec, A. Rajaraman & J. Ullman 
 Mining of massive data sets  
 Chapters 1 and 2 (Sections 2.1 & 2.2) 

 http://i.stanford.edu/~ullman/mmds.html 
  

¨  Jeffrey Dean and Sanjay Ghemawat, 
   MapReduce: Simplified Data Processing on Large 

Clusters 
 http://labs.google.com/papers/mapreduce.html 

 


