A HIGH-LEVEL:PROGRAMMING
MODEL (WITH A COMPLEX
RUNTIME SYSTEM)

Irene Finocchi

Commodity clusters
e

0 Cannot mine tens to hundreds of Terabytes of data on a
single server

0 Standard architecture emerging:
O Cluster of commodity Linux nodes
0 Gigabit ethernet interconnections

0 How to organize computations on these architectures?
0 How to program these architectures?

0 How to mask issues such as hardware failures in these
architectures?

Cluster architecture

|

Node

Disks

Aggregation switch

@

Rack switch A

Each rack contains 10/64 nodes
Sample node configuration: 8 x 2GHz cores, 8 GB RAM, 4
disks (4 TB)

<—» 8 gigabit
<>

1 gigabit

Node

o}

Real cluster architecture

Stable storage
N

0 First order problem: if nodes can fail, how can we
store data persistently?
0 Answer: Distributed File System

0 Provides global file namespace
0 Google GFS; Hadoop HDFS; Kosmix KFS

0 Typical usage pattern
o0 Huge files (100s of GB to TB)
O Data is rarely updated in place

O Reads and appends are common

Distributed file system
N

0 Chunk servers
O File is split into contiguous chunks
o Typically each chunk is 16-64MB
0 Each chunk replicated (usually 2x or 3x)
O Try to keep replicas in different racks

0 Master node

O Stores metadata
O Might be replicated
O (a.k.a. Name Node in HDFS)

0 Client library for file access

0 Talk to master to find chunk servers

o Connect directly to chunk servers to access data

Warm up: word count
N

0 We have a large corpus of documents, one word per line
0 Count the number of times each distinct word occurs in the
corpus
0 words (docs/*) | sort | uniq -c

0 where words takes a file and outputs the words in it, one to a
line

0 Sample application: analyze web server logs to find
popular URLs

0 The above captures the essence of MapReduce

O Great thing is it is naturally parallelizable

MapReduce

0 A novel programming model

-1 Everything built on top of <key,value> pairs

Keys and values are user-defined: can be anything

0 Only two user-defined functions:
Map

® map(k,,v,) 3y list(k,,v,)
= given input data <k,,v,>, produce intermediate data v,
labeled with key k,

Reduce

® reduce(k,, list(v,)) list(v) preserves key

—
= given a list of values list(v,) associated with a key k,, return a
list of values list(v;) associated with the same key

Parallelism in MapReduce

o All mappers in parallel
o1 All reducers in parallel

-1 Different pairs transparently distributed across
available machines

map(k,,v,) T list(k,,v,)

Shuffle: group values with the same key
to be passed to a single reducer

reduce(k,, list(v,)) TE) list(v,)

Runtime system
N

00 The underlying runtime system:

O automatically parallelizes the computation across
large-scale clusters of machines

o handles machine failures

0 schedules inter-machine communication to make
efficient use of the network and disks

Implementations

Google MapReduce

Not available outside Google

Hadoop: an Apache project ‘@ =[a[s5]5)
Open-source implementation in Java

Uses HDFS for stable storage
Download:

Aster Data

Cluster-optimized SQL Database that also implements
MapReduce

THE MapReduce example: WordCount

map(key, value):
// key: document name; value: text of document
for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts
result = 0
for each count v in values:
result +=v
emit(result)

WordCount data flow

Input Map Shuffle & Sort Reduce Output
A the, 1 ﬂ
brown, 1
the quick brown, 2
brown fox fox 2
Reduce }-—+ '
how, 1
now, 1
the, 3
the fox ate i =
the mouse
ate, 1 ate, 1
1
brown, 1 mouse. Reduce }—F cow, 1
how now mouse, 1
brown cow quick, 1

A programmer’s perspective

The beauty of MapReduce is that any programmer

can understand it, and its power comes from being

able to harness thousands of computers behind that
simple interface.

David Patterson

Implementation sketch: WordCount again

map(key, value):
// key: document name; value: text of document
for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts
result = 0
for each count v in values:
result +=v
emit(result)

WordCount in Hadoop (sketch)

The class org.apache.hadoop.mapreduce.Job
Job is the class used to submit a MapReduce task to the cluster:

Job job = Job.getInstance(new Configuration());
job.setJarByClass(MyJob.class) ;

// Specify various job-specific parameters
job.setJobName ("myjob") ;

job.setInputPath(new Path("in"));
job.setOutputPath(new Path("out"));

job.setMapperClass (MyJob.MyMapper.class) ;
job.setReducerClass(MyJob.MyReducer.class) ;

/* Submit the job, then poll for progress until
* the job is complete */
job.waitForCompletion(true) ;

WordCount in Hadoop (sketch)

The Mapper and Reducer classes

The way to define what a Job should do is to assign it with our
custom Mapper and Reducer subclasses:

The Mapper class:

org.apache.hadoop.mapreduce.Mapper
<KEYIN,VALUEIN,KEYOUT, VALUEQUT>

The Reducer class:

org.apache.hadoop.mapreduce.Reducer
<KEYIN,VALUEIN,KEYOUT, VALUEQOUT>

WordCount in Hadoop (sketch)

Methods of the Mapper class

protected void setup(Context context) throws
I0Exception, InterruptedException { }

protected void cleanup(Context context) throws
I0Exception, InterruptedException { }

protected void map(KEYIN key, VALUEIN value,
Context context) throws
I0Exception, InterruptedException { }

WordCount in Hadoop (sketch)

Methods of the Reducer class

protected void setup(Context context) throws
I0Exception, InterruptedException { }

protected void cleanup(Context context) throws
I0Exception, InterruptedException { }

protected void reduce(KEYIN key, Iterable<VALUEIN> value,
Context context) throws
I0Exception, InterruptedException { }

WordCount in Hadoop (sketch)

The Context(s)

Finally we should consider the Context classes.
These are inner classes of the Mapper and Reducer classes.

We are interested in the method:

write (KEYOUT, VALUEOUT)

(inherited from org.apache.hadoop.mapreduce.
TaskInputOutputContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT>)

WordCount in Hadoop (sketch)

Missing parts
e MyMapper fields:

private final static IntWritable one =
new IntWritable(1);
private Text word = new Text();

e MyMapper map function body:

Scanner scanner = new Scanner(value.toString());
scanner.useDelimiter (" ");
while (scanner.hasNext()) {

word.set (scanner.next());

context.write(word, one);

}

scanner.close();
e MyReducer reduce function body:

int sum = 0;
for(IntWritable value : values) {
sum += value.get();

}

context.write(key, new IntWritable(sum));

Cloud computing

0 Ability to rent computing by the hour

Additional services: e.g., persistent storage

0 E.g., Amazon Web Services

i : amazon
Elastic Compute Cloud: EC2 weheervicess

Persistent storage: S3
Elastic MapReduce: run Hadoop on EC2

Big data computing course: free AWS access,

pUBLQW run your MapReduce apps on EC2 (up to 16
I nodes)

AW S+Hadoop: a success story
-

0 The New York Times needed to generate PDF files
for 11,000,000 articles (every article from
1851-1980) in the form of images scanned from
the original paper

0 Each article composed of numerous TIFF images
scaled and glued together

0 Code for generating PDF quite straightforward

NYT technologies and results

1 4TB of scanned articles sent to Amazon S3

0 A cluster of EC2 machines configured to distribute the
PDF generation via Hadoop

0 Using 100 EC2 instances, in 24 hours the New York
Times was able to convert the 4TB of scanned articles
info 1.5TB of PDF documents

0 Embarrassingly parallel problem

Another success: sorting on commodity

clusters
I

Google'" Official Blog

Insights from Googlers into our products,
technology and the Google culture

Search

Sorting 1PB with MapReduce Connect with us

Subscribe to this blog:
November 22, 2008 at 1:55 AM g+ 16 b FeedBurner
At Google we are fanatical about organizing the world's information. As a result, we N\ RSS Feed
spend a lot of time finding better ways to sort information using MapReduce, a key)
component of our software infrastructure that allows us to run multiple processes
simultaneously. MapReduce is a perfect solution for many of the computations we Browse all of Google's
run daily, due in large part to its simplicity, applicability to a wide range of real-world blogs for specific interests

computing tasks, and natural translation to highly scalable distributed & topics:

imnlamantatinne that harnace tha nnuwar nf thniieande nf ranmniitare —

Sorting on commodity clusters

7 Nov 2008: 1TB, 1000 computers, 68 secs

Previous record: 910 computers, 209 secs

7 Nov 2008: 1PB, 4000 computers, 6 h, 48k harddisks
1 Sept 2011: 1PB, 8000 computers, 33 m

0 Sept 2011: TOPB, 8000 computers, 6 /2 h

10PB?

Metric prefixes

English

Prefix Symbol 1000™ 10" Decimal n1 Sincel"?
word

yotta Y 1000® 10°* 1000000 000000000 000000000 septillion 1991
zetta Z 10007 107 1 000 000 000 000 000 000 000 sextillion 1991
exa E 1000° 10'® 1 000 000 000 000 000 000 quintillion 1975
peta P 1000° 10'° 1000 000 000 000 000 quadrillion 1975
tera T 1000* 10'2 1000 000 000 000 trillion 1960
giga G 1000° 10° 1000000000 billion 1960
mega M 1000° 10° 1000000 million 1960

Readings
N

0 J. Leskovec, A. Rajaraman & J. Ullman

Mining of massive data sets
Chapters 1 and 2 (Sections 2.1 & 2.2)
http:/ /i.stanford.edu/~ullman/mmds.html

0 Jeffrey Dean and Sanjay Ghemawat,

MapReduce: Simplified Data Processing on Large
Clusters

http:/ /labs.qgooqgle.com/papers/mapreduce.html

