DATA PRESENTATION

Gaia Maselli maselli@di.uniroma1.it

Overview

- The art of data presentation
 - Guidelines
 - Common mistakes

Data presentation

- One of the important steps in every performance evaluation study is the presentation of final results
- The eventual aim of every performance analysis is to help in decision making
- An analysis whose results cannot be understood by the decision makers is as good as one that was never performed
- The analysis has to be presented as clearly and simply as possible
- Graphic charts are commonly used in presenting performance results
 - A picture is worth a thousand words
 - A graphic chart saves reader' time and present information concisely
 - Figures allow to quickly grasp the main points of the study and read the text only for details

Types of variables

- Qualitative: have states, levels, or categories
- Quantitative: levels can be expressed numerically
 - Discrete: all values of the variable can be counted or put into a one-toone correspondence with some subset or all the set of positive integers
 - Continuous: can take uncountably infinite values

Discrete vs. continuous

- The type of graphic chart to be used depends upon the type of variable
- If x is a discrete variable

 column or bar chart
- If x is a continuous variable → line chart

Command-line driven graphing utility

- http://www.gnuplot.info
- http://gnuplot.sourceforge.net/demo/

Guidelines

(with exceptions depending on the context...)

Require minimum effort from the reader
 Direct labeling vs. legend box

Direct labeling is preferable particularly if the number of curves is large

Guidelines (cont)

- 2. Maximize information: there should be sufficient information on the graph to make it self-sufficient
 - Use key words in place of symbols
 - The axes labels should be as informative as possible
 - Include units in the labels
 - Example: "Daily CPU usage (sec.)"

is better than "CPU usage"

"CPU time in seconds"

Guidelines (cont)

- Minimize ink: present as much information as possible with as little ink as possible
 - No grid lines unless they are required for to accurately read the values
 - Give more information for the same data is preferable

Guidelines (cont)

- Use commonly accepted practices (present what people expect)
 Most people expect
 - the origin to be (0,0)
 - the independent variable or cause to be plotted along the x-axis
 - The dependent variable or effect to be plotted along the y-axis
 - Scales to be linear
 - Scales to increase left to right and bottom to top
- 5. Avoid ambiguity
 - Do not plot multiple variables in the same chart
- N.B. see checklist in box 10.1 (Jain's book) The checklist is arranged so that a "yes" answer to each question, in general, leads to a better graph.
- In practice it is necessary to make several trials before arriving at the final graph

 SAPIFNZA

Common mistakes in preparing charts

- Presenting too many alternatives on a single chart
 Max 5 to 7 messages => Max 6 curves in a line charts, no more than 10 bars in a bar chart, max 8 components in a pie chart
- Presenting many y variables on a single chart

Common mistakes in preparing charts (cont)

Using symbols in place of text

Common mistakes in preparing charts (cont)

- Placing extraneous information on the chart: grid lines, granularity
 of the grid lines (grid lines on a line chart should be there only if
 the reader is expected to read the values precisely)
- Selecting scale ranges improperly: automatic selection by programs may not be appropriate
- Using a line chart in place of column chart: line → Continuity
 the lines joining successive points on a line chart signify the fact
 that the intermediate values can be approximately interpolated

Pictorial games

• Using nonzero origin to emphasize the difference

Pictorial games

 Using double-whammy graph for dramatization: two curves on the same graph can have twice as much impact as one

Pictorial games

Plotting random quantities without showing confidence intervals

 Overlapping confidence intervals are generally enough to deduce that the two random quantities are statistically indifferent