
Problem Definition

• Given a collection of candidate path sets P under all possible designs, 
how well can we monitor the network using path measurement and 
which design is the best?

• Monitoring performance is measured by the number of nodes that are 
k-identifiable w.r.t P

• The optimal solution is hard due to the exponential number of path 
sets

• We focus on bounding the number of 1-identifiable nodes, since the 
upper bound on 1-identifiable would be an upper bound on k-identifiable 
as well
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the monitoring performance by the number of nodes that are
k-identifiable wrt P , denoted by φk(P ), and formulate this
question as an optimization: ψk(P) ! maxP∈P φk(P ).

Although extensively studied [11], [5], [12], [6], the optimal
solution is hard to obtain due to the (exponentially) large size
of P , and heuristics are used to provide lower bounds. There
is, however, a lack of general upper bounds. In this work we
establish upper bounds on ψk(P) in representative scenarios.
Knowledge of these upper bounds is key to understanding the
fundamental limits of Boolean network tomography, and gives
insights on network design to facilitate network monitoring.

We observe that if a node vi is k-identifiable wrt P for any
k ≥ 1, then vi is also 1-identifiable wrt P , which implies that
an upper bound on the maximum number of nodes that are 1-
identifiable is also an upper bound on the maximum number
of nodes that are k-identifiable, as stated below.
Lemma III.2. For any k ≥ 1 and any candidate sets of
monitoring paths P , ψ1(P) ≥ ψk(P).
Proof. Given the optimal choice P∗∈ P achieving ψk(P), we
have ψ1(P) ≥ φ1(P∗) ≥ φk(P∗) = ψk(P), where the first
inequality is by definition of ψ1(P) and the second inequality
is by Definition III.1.

Therefore, in the sequel, we focus on bounding ψ1(P),
simply denoted by ψ(P), where we will replace P by specific
parameters in each network setting. We hereafter shortly call
the 1-identifiable nodes “identifiable” .

IV. GENERAL NETWORK MONITORING

We initially consider a generic network with a given number
of monitoring paths between any nodes. We analyze two cases:
(i) arbitrary routing, and (ii) consistent routing.
A. Arbitrary routing

1) Identifiability Bound: Under no constraints on the rout-
ing scheme, it holds the following bound.
Theorem IV.1 (Identifiability under arbitrary routing). Given
a network with n nodes and m monitoring paths, the maximum
number of identifiable nodes under arbitrary routing satisfies

ψAR(m,n) ≤ min{n; 2m − 1}.
Proof. By Lemma III.1, every identifiable node v has a dif-
ferent encoding b(v) ̸= 0. The maximum number of different
encodings with m digits, excluding 0, is 2m− 1. Therefore, the
smaller number between 2m− 1 and the total number of nodes
n bounds the maximum number of identifiable nodes.

2) Tightness of the bound and design insights: The bound
in Theorem IV.1 is tight, as we can construct a topology with
m monitoring paths that meets this bound. Given n nodes, we
label min{n; 2m − 1} of them with m-digit binary encodings,
excluding 0, such that all the encodings are distinct. Then we
generate m paths such that path p̂i (i = 1, . . . ,m) is one of the
possible sequences of all the nodes v for which b(v)|i = 1.
Finally, we connect every two nodes v and w with a link
whenever there is a path containing the sub-sequence v, w.
An example of this construction is shown in Figure 1, for
m = 3 and n = 7.

Fig. 1. Network meeting the bound of Theorem IV.1 (arbitrary routing).

B. Consistent routing
1) Identifiability Bound: In the sequel, we assume that

paths satisfy the following property of routing consistency.
Definition IV.1. A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any),
p and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many
practical routing protocols, including but not limited to shortest
path routing (where ties are broken arbitrarily but deterministi-
cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
which each row is the binary encoding of a node on the path,
and rows are sorted according to the sequence p̂i. Notice that
by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.
Lemma IV.1. Under the assumption of consistent routing, if
any two different rows of the matrix M(p̂i) are equal, then
the corresponding nodes are not 1-identifiable.
Proof. Under consistent routing, the path p̂i cannot contain
any cycle, so every row of M(p̂i) corresponds to a different
node. If two different nodes have the same binary encoding,
then by Lemma III.1, the two nodes are not identifiable.

Definition IV.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path
matrix M(p) has consecutive ones if all the “1”s appear in
consecutive rows, i.e., for any two rows i and j (i < j), if
M(p)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.

Lemma IV.2. Under the assumption of consistent routing, all
the columns in all the path matrices have consecutive ones.
Proof. The assertion is true for M(p̂i)|∗,i since it contains
only ones. Let us consider column M(p̂i)|∗,j , with j ̸= i.
Assume by contradiction that there are two rows k1 < k2
s.t. M(p̂i)|k1,j = M(p̂i)|k2,j = 1 but there is a row h with
k1 < h < k2 for which M(p̂i)|h,i = 0. Let v1, v2, and
vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and
M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
lower. Notice that first, column M(p̂i)|∗,i contains only ones,
second, for any column M(p̂i)|∗,j with j ̸= i, it holds, by
Lemma IV.2, that it has a consecutive ones.

We say that column k has a flip in row r if M(p̂i)|r−1,k ̸=
M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have
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Definition IV.1. A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any),
p and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many
practical routing protocols, including but not limited to shortest
path routing (where ties are broken arbitrarily but deterministi-
cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
which each row is the binary encoding of a node on the path,
and rows are sorted according to the sequence p̂i. Notice that
by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.
Lemma IV.1. Under the assumption of consistent routing, if
any two different rows of the matrix M(p̂i) are equal, then
the corresponding nodes are not 1-identifiable.
Proof. Under consistent routing, the path p̂i cannot contain
any cycle, so every row of M(p̂i) corresponds to a different
node. If two different nodes have the same binary encoding,
then by Lemma III.1, the two nodes are not identifiable.

Definition IV.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path
matrix M(p) has consecutive ones if all the “1”s appear in
consecutive rows, i.e., for any two rows i and j (i < j), if
M(p)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.

Lemma IV.2. Under the assumption of consistent routing, all
the columns in all the path matrices have consecutive ones.
Proof. The assertion is true for M(p̂i)|∗,i since it contains
only ones. Let us consider column M(p̂i)|∗,j , with j ̸= i.
Assume by contradiction that there are two rows k1 < k2
s.t. M(p̂i)|k1,j = M(p̂i)|k2,j = 1 but there is a row h with
k1 < h < k2 for which M(p̂i)|h,i = 0. Let v1, v2, and
vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and
M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
lower. Notice that first, column M(p̂i)|∗,i contains only ones,
second, for any column M(p̂i)|∗,j with j ̸= i, it holds, by
Lemma IV.2, that it has a consecutive ones.

We say that column k has a flip in row r if M(p̂i)|r−1,k ̸=
M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have

the monitoring performance by the number of nodes that are
k-identifiable wrt P , denoted by φk(P ), and formulate this
question as an optimization: ψk(P) ! maxP∈P φk(P ).

Although extensively studied [11], [5], [12], [6], the optimal
solution is hard to obtain due to the (exponentially) large size
of P , and heuristics are used to provide lower bounds. There
is, however, a lack of general upper bounds. In this work we
establish upper bounds on ψk(P) in representative scenarios.
Knowledge of these upper bounds is key to understanding the
fundamental limits of Boolean network tomography, and gives
insights on network design to facilitate network monitoring.

We observe that if a node vi is k-identifiable wrt P for any
k ≥ 1, then vi is also 1-identifiable wrt P , which implies that
an upper bound on the maximum number of nodes that are 1-
identifiable is also an upper bound on the maximum number
of nodes that are k-identifiable, as stated below.
Lemma III.2. For any k ≥ 1 and any candidate sets of
monitoring paths P , ψ1(P) ≥ ψk(P).
Proof. Given the optimal choice P∗∈ P achieving ψk(P), we
have ψ1(P) ≥ φ1(P∗) ≥ φk(P∗) = ψk(P), where the first
inequality is by definition of ψ1(P) and the second inequality
is by Definition III.1.

Therefore, in the sequel, we focus on bounding ψ1(P),
simply denoted by ψ(P), where we will replace P by specific
parameters in each network setting. We hereafter shortly call
the 1-identifiable nodes “identifiable” .

IV. GENERAL NETWORK MONITORING

We initially consider a generic network with a given number
of monitoring paths between any nodes. We analyze two cases:
(i) arbitrary routing, and (ii) consistent routing.
A. Arbitrary routing

1) Identifiability Bound: Under no constraints on the rout-
ing scheme, it holds the following bound.
Theorem IV.1 (Identifiability under arbitrary routing). Given
a network with n nodes and m monitoring paths, the maximum
number of identifiable nodes under arbitrary routing satisfies

ψAR(m,n) ≤ min{n; 2m − 1}.
Proof. By Lemma III.1, every identifiable node v has a dif-
ferent encoding b(v) ̸= 0. The maximum number of different
encodings with m digits, excluding 0, is 2m− 1. Therefore, the
smaller number between 2m− 1 and the total number of nodes
n bounds the maximum number of identifiable nodes.

2) Tightness of the bound and design insights: The bound
in Theorem IV.1 is tight, as we can construct a topology with
m monitoring paths that meets this bound. Given n nodes, we
label min{n; 2m − 1} of them with m-digit binary encodings,
excluding 0, such that all the encodings are distinct. Then we
generate m paths such that path p̂i (i = 1, . . . ,m) is one of the
possible sequences of all the nodes v for which b(v)|i = 1.
Finally, we connect every two nodes v and w with a link
whenever there is a path containing the sub-sequence v, w.
An example of this construction is shown in Figure 1, for
m = 3 and n = 7.

Fig. 1. Network meeting the bound of Theorem IV.1 (arbitrary routing).
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We remark that routing consistency is satisfied by many
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path routing (where ties are broken arbitrarily but deterministi-
cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
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and rows are sorted according to the sequence p̂i. Notice that
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Proof. The assertion is true for M(p̂i)|∗,i since it contains
only ones. Let us consider column M(p̂i)|∗,j , with j ̸= i.
Assume by contradiction that there are two rows k1 < k2
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M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
lower. Notice that first, column M(p̂i)|∗,i contains only ones,
second, for any column M(p̂i)|∗,j with j ̸= i, it holds, by
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ferent encoding b(v) ̸= 0. The maximum number of different
encodings with m digits, excluding 0, is 2m− 1. Therefore, the
smaller number between 2m− 1 and the total number of nodes
n bounds the maximum number of identifiable nodes.

2) Tightness of the bound and design insights: The bound
in Theorem IV.1 is tight, as we can construct a topology with
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excluding 0, such that all the encodings are distinct. Then we
generate m paths such that path p̂i (i = 1, . . . ,m) is one of the
possible sequences of all the nodes v for which b(v)|i = 1.
Finally, we connect every two nodes v and w with a link
whenever there is a path containing the sub-sequence v, w.
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paths satisfy the following property of routing consistency.
Definition IV.1. A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any),
p and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many
practical routing protocols, including but not limited to shortest
path routing (where ties are broken arbitrarily but deterministi-
cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
which each row is the binary encoding of a node on the path,
and rows are sorted according to the sequence p̂i. Notice that
by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.
Lemma IV.1. Under the assumption of consistent routing, if
any two different rows of the matrix M(p̂i) are equal, then
the corresponding nodes are not 1-identifiable.
Proof. Under consistent routing, the path p̂i cannot contain
any cycle, so every row of M(p̂i) corresponds to a different
node. If two different nodes have the same binary encoding,
then by Lemma III.1, the two nodes are not identifiable.

Definition IV.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path
matrix M(p) has consecutive ones if all the “1”s appear in
consecutive rows, i.e., for any two rows i and j (i < j), if
M(p)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.

Lemma IV.2. Under the assumption of consistent routing, all
the columns in all the path matrices have consecutive ones.
Proof. The assertion is true for M(p̂i)|∗,i since it contains
only ones. Let us consider column M(p̂i)|∗,j , with j ̸= i.
Assume by contradiction that there are two rows k1 < k2
s.t. M(p̂i)|k1,j = M(p̂i)|k2,j = 1 but there is a row h with
k1 < h < k2 for which M(p̂i)|h,i = 0. Let v1, v2, and
vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and
M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
lower. Notice that first, column M(p̂i)|∗,i contains only ones,
second, for any column M(p̂i)|∗,j with j ̸= i, it holds, by
Lemma IV.2, that it has a consecutive ones.

We say that column k has a flip in row r if M(p̂i)|r−1,k ̸=
M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have
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the monitoring performance by the number of nodes that are
k-identifiable wrt P , denoted by φk(P ), and formulate this
question as an optimization: ψk(P) ! maxP∈P φk(P ).

Although extensively studied [11], [5], [12], [6], the optimal
solution is hard to obtain due to the (exponentially) large size
of P , and heuristics are used to provide lower bounds. There
is, however, a lack of general upper bounds. In this work we
establish upper bounds on ψk(P) in representative scenarios.
Knowledge of these upper bounds is key to understanding the
fundamental limits of Boolean network tomography, and gives
insights on network design to facilitate network monitoring.

We observe that if a node vi is k-identifiable wrt P for any
k ≥ 1, then vi is also 1-identifiable wrt P , which implies that
an upper bound on the maximum number of nodes that are 1-
identifiable is also an upper bound on the maximum number
of nodes that are k-identifiable, as stated below.
Lemma III.2. For any k ≥ 1 and any candidate sets of
monitoring paths P , ψ1(P) ≥ ψk(P).
Proof. Given the optimal choice P∗∈ P achieving ψk(P), we
have ψ1(P) ≥ φ1(P∗) ≥ φk(P∗) = ψk(P), where the first
inequality is by definition of ψ1(P) and the second inequality
is by Definition III.1.

Therefore, in the sequel, we focus on bounding ψ1(P),
simply denoted by ψ(P), where we will replace P by specific
parameters in each network setting. We hereafter shortly call
the 1-identifiable nodes “identifiable” .

IV. GENERAL NETWORK MONITORING

We initially consider a generic network with a given number
of monitoring paths between any nodes. We analyze two cases:
(i) arbitrary routing, and (ii) consistent routing.
A. Arbitrary routing

1) Identifiability Bound: Under no constraints on the rout-
ing scheme, it holds the following bound.
Theorem IV.1 (Identifiability under arbitrary routing). Given
a network with n nodes and m monitoring paths, the maximum
number of identifiable nodes under arbitrary routing satisfies

ψAR(m,n) ≤ min{n; 2m − 1}.
Proof. By Lemma III.1, every identifiable node v has a dif-
ferent encoding b(v) ̸= 0. The maximum number of different
encodings with m digits, excluding 0, is 2m− 1. Therefore, the
smaller number between 2m− 1 and the total number of nodes
n bounds the maximum number of identifiable nodes.

2) Tightness of the bound and design insights: The bound
in Theorem IV.1 is tight, as we can construct a topology with
m monitoring paths that meets this bound. Given n nodes, we
label min{n; 2m − 1} of them with m-digit binary encodings,
excluding 0, such that all the encodings are distinct. Then we
generate m paths such that path p̂i (i = 1, . . . ,m) is one of the
possible sequences of all the nodes v for which b(v)|i = 1.
Finally, we connect every two nodes v and w with a link
whenever there is a path containing the sub-sequence v, w.
An example of this construction is shown in Figure 1, for
m = 3 and n = 7.

Fig. 1. Network meeting the bound of Theorem IV.1 (arbitrary routing).

B. Consistent routing
1) Identifiability Bound: In the sequel, we assume that

paths satisfy the following property of routing consistency.
Definition IV.1. A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any),
p and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many
practical routing protocols, including but not limited to shortest
path routing (where ties are broken arbitrarily but deterministi-
cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
which each row is the binary encoding of a node on the path,
and rows are sorted according to the sequence p̂i. Notice that
by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.
Lemma IV.1. Under the assumption of consistent routing, if
any two different rows of the matrix M(p̂i) are equal, then
the corresponding nodes are not 1-identifiable.
Proof. Under consistent routing, the path p̂i cannot contain
any cycle, so every row of M(p̂i) corresponds to a different
node. If two different nodes have the same binary encoding,
then by Lemma III.1, the two nodes are not identifiable.

Definition IV.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path
matrix M(p) has consecutive ones if all the “1”s appear in
consecutive rows, i.e., for any two rows i and j (i < j), if
M(p)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.

Lemma IV.2. Under the assumption of consistent routing, all
the columns in all the path matrices have consecutive ones.
Proof. The assertion is true for M(p̂i)|∗,i since it contains
only ones. Let us consider column M(p̂i)|∗,j , with j ̸= i.
Assume by contradiction that there are two rows k1 < k2
s.t. M(p̂i)|k1,j = M(p̂i)|k2,j = 1 but there is a row h with
k1 < h < k2 for which M(p̂i)|h,i = 0. Let v1, v2, and
vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and
M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
lower. Notice that first, column M(p̂i)|∗,i contains only ones,
second, for any column M(p̂i)|∗,j with j ̸= i, it holds, by
Lemma IV.2, that it has a consecutive ones.

We say that column k has a flip in row r if M(p̂i)|r−1,k ̸=
M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have
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ing scheme, it holds the following bound.
Theorem IV.1 (Identifiability under arbitrary routing). Given
a network with n nodes and m monitoring paths, the maximum
number of identifiable nodes under arbitrary routing satisfies
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path routing (where ties are broken arbitrarily but deterministi-
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and rows are sorted according to the sequence p̂i. Notice that
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traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
lower. Notice that first, column M(p̂i)|∗,i contains only ones,
second, for any column M(p̂i)|∗,j with j ̸= i, it holds, by
Lemma IV.2, that it has a consecutive ones.

We say that column k has a flip in row r if M(p̂i)|r−1,k ̸=
M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have

the monitoring performance by the number of nodes that are
k-identifiable wrt P , denoted by φk(P ), and formulate this
question as an optimization: ψk(P) ! maxP∈P φk(P ).

Although extensively studied [11], [5], [12], [6], the optimal
solution is hard to obtain due to the (exponentially) large size
of P , and heuristics are used to provide lower bounds. There
is, however, a lack of general upper bounds. In this work we
establish upper bounds on ψk(P) in representative scenarios.
Knowledge of these upper bounds is key to understanding the
fundamental limits of Boolean network tomography, and gives
insights on network design to facilitate network monitoring.

We observe that if a node vi is k-identifiable wrt P for any
k ≥ 1, then vi is also 1-identifiable wrt P , which implies that
an upper bound on the maximum number of nodes that are 1-
identifiable is also an upper bound on the maximum number
of nodes that are k-identifiable, as stated below.
Lemma III.2. For any k ≥ 1 and any candidate sets of
monitoring paths P , ψ1(P) ≥ ψk(P).
Proof. Given the optimal choice P∗∈ P achieving ψk(P), we
have ψ1(P) ≥ φ1(P∗) ≥ φk(P∗) = ψk(P), where the first
inequality is by definition of ψ1(P) and the second inequality
is by Definition III.1.

Therefore, in the sequel, we focus on bounding ψ1(P),
simply denoted by ψ(P), where we will replace P by specific
parameters in each network setting. We hereafter shortly call
the 1-identifiable nodes “identifiable” .

IV. GENERAL NETWORK MONITORING

We initially consider a generic network with a given number
of monitoring paths between any nodes. We analyze two cases:
(i) arbitrary routing, and (ii) consistent routing.
A. Arbitrary routing

1) Identifiability Bound: Under no constraints on the rout-
ing scheme, it holds the following bound.
Theorem IV.1 (Identifiability under arbitrary routing). Given
a network with n nodes and m monitoring paths, the maximum
number of identifiable nodes under arbitrary routing satisfies

ψAR(m,n) ≤ min{n; 2m − 1}.
Proof. By Lemma III.1, every identifiable node v has a dif-
ferent encoding b(v) ̸= 0. The maximum number of different
encodings with m digits, excluding 0, is 2m− 1. Therefore, the
smaller number between 2m− 1 and the total number of nodes
n bounds the maximum number of identifiable nodes.

2) Tightness of the bound and design insights: The bound
in Theorem IV.1 is tight, as we can construct a topology with
m monitoring paths that meets this bound. Given n nodes, we
label min{n; 2m − 1} of them with m-digit binary encodings,
excluding 0, such that all the encodings are distinct. Then we
generate m paths such that path p̂i (i = 1, . . . ,m) is one of the
possible sequences of all the nodes v for which b(v)|i = 1.
Finally, we connect every two nodes v and w with a link
whenever there is a path containing the sub-sequence v, w.
An example of this construction is shown in Figure 1, for
m = 3 and n = 7.

Fig. 1. Network meeting the bound of Theorem IV.1 (arbitrary routing).
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Definition IV.1. A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any),
p and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many
practical routing protocols, including but not limited to shortest
path routing (where ties are broken arbitrarily but deterministi-
cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
which each row is the binary encoding of a node on the path,
and rows are sorted according to the sequence p̂i. Notice that
by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.
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any two different rows of the matrix M(p̂i) are equal, then
the corresponding nodes are not 1-identifiable.
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M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
lower. Notice that first, column M(p̂i)|∗,i contains only ones,
second, for any column M(p̂i)|∗,j with j ̸= i, it holds, by
Lemma IV.2, that it has a consecutive ones.

We say that column k has a flip in row r if M(p̂i)|r−1,k ̸=
M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have
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cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
which each row is the binary encoding of a node on the path,
and rows are sorted according to the sequence p̂i. Notice that
by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.
Lemma IV.1. Under the assumption of consistent routing, if
any two different rows of the matrix M(p̂i) are equal, then
the corresponding nodes are not 1-identifiable.
Proof. Under consistent routing, the path p̂i cannot contain
any cycle, so every row of M(p̂i) corresponds to a different
node. If two different nodes have the same binary encoding,
then by Lemma III.1, the two nodes are not identifiable.

Definition IV.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path
matrix M(p) has consecutive ones if all the “1”s appear in
consecutive rows, i.e., for any two rows i and j (i < j), if
M(p)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.

Lemma IV.2. Under the assumption of consistent routing, all
the columns in all the path matrices have consecutive ones.
Proof. The assertion is true for M(p̂i)|∗,i since it contains
only ones. Let us consider column M(p̂i)|∗,j , with j ̸= i.
Assume by contradiction that there are two rows k1 < k2
s.t. M(p̂i)|k1,j = M(p̂i)|k2,j = 1 but there is a row h with
k1 < h < k2 for which M(p̂i)|h,i = 0. Let v1, v2, and
vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and
M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.
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label min{n; 2m − 1} of them with m-digit binary encodings,
excluding 0, such that all the encodings are distinct. Then we
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paths satisfy the following property of routing consistency.
Definition IV.1. A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any),
p and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many
practical routing protocols, including but not limited to shortest
path routing (where ties are broken arbitrarily but deterministi-
cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
which each row is the binary encoding of a node on the path,
and rows are sorted according to the sequence p̂i. Notice that
by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.
Lemma IV.1. Under the assumption of consistent routing, if
any two different rows of the matrix M(p̂i) are equal, then
the corresponding nodes are not 1-identifiable.
Proof. Under consistent routing, the path p̂i cannot contain
any cycle, so every row of M(p̂i) corresponds to a different
node. If two different nodes have the same binary encoding,
then by Lemma III.1, the two nodes are not identifiable.

Definition IV.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path
matrix M(p) has consecutive ones if all the “1”s appear in
consecutive rows, i.e., for any two rows i and j (i < j), if
M(p)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.

Lemma IV.2. Under the assumption of consistent routing, all
the columns in all the path matrices have consecutive ones.
Proof. The assertion is true for M(p̂i)|∗,i since it contains
only ones. Let us consider column M(p̂i)|∗,j , with j ̸= i.
Assume by contradiction that there are two rows k1 < k2
s.t. M(p̂i)|k1,j = M(p̂i)|k2,j = 1 but there is a row h with
k1 < h < k2 for which M(p̂i)|h,i = 0. Let v1, v2, and
vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and
M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
lower. Notice that first, column M(p̂i)|∗,i contains only ones,
second, for any column M(p̂i)|∗,j with j ̸= i, it holds, by
Lemma IV.2, that it has a consecutive ones.

We say that column k has a flip in row r if M(p̂i)|r−1,k ̸=
M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have
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of P , and heuristics are used to provide lower bounds. There
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ferent encoding b(v) ̸= 0. The maximum number of different
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excluding 0, such that all the encodings are distinct. Then we
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practical routing protocols, including but not limited to shortest
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the corresponding nodes are not 1-identifiable.
Proof. Under consistent routing, the path p̂i cannot contain
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Definition IV.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path
matrix M(p) has consecutive ones if all the “1”s appear in
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Lemma IV.2. Under the assumption of consistent routing, all
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only ones. Let us consider column M(p̂i)|∗,j , with j ̸= i.
Assume by contradiction that there are two rows k1 < k2
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k1 < h < k2 for which M(p̂i)|h,i = 0. Let v1, v2, and
vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and
M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
lower. Notice that first, column M(p̂i)|∗,i contains only ones,
second, for any column M(p̂i)|∗,j with j ̸= i, it holds, by
Lemma IV.2, that it has a consecutive ones.
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M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have

General Network Monitoring 
Consistent routing



Example of path matrix 

up to two flips or it would create a fragmented sequence of
ones. In order to have a change in the encoding contained in
any two successive rows r−1 and r of the matrix M(p̂i), i.e.,
M(p̂i)|r−1,∗ ̸= M(p̂i)|r,∗, there must be at least a column
that flips in r. The number of columns that can flip is m− 1
and each of them can flip at most two times. The number
of different rows that can be observed in M(p̂i) is therefore
upper-bounded by the smallest between the maximum path
length d∗ and 2 · (m− 1).

Fig. 2. Consistent paths identifying all nodes of the network.

Example: Figure 2 shows a case of consistent routing. The
four path matrices have columns with consecutive ones and
each column flips at most twice, so the number of different
rows is less than 2 · (m− 1) = 6. For instance, M(p̂3) is:

M(p̂3) =

⎡

⎢⎢⎢⎢⎣

flips b1 b2 b3 b4
0 0 0 1 0
1 0 1 1 0
2 1 1 1 0
3 1 0 1 1
4 0 0 1 1

⎤

⎥⎥⎥⎥⎦

We now give an upper bound on the number of identifiable
nodes under consistent routing.
Theorem IV.2 (Identifiability with consistent routing). Given
n nodes, and m > 1 consistent routing paths of length at most
d∗ (in number of nodes), the maximum number of identifiable
nodes satisfies:

ψCR(m,n, d∗) ≤ min

{
imax∑

i=1

(
m

i

)
+

⌊
Nmax −

∑imax
i=1 i ·

(m
i

)

imax + 1

⌋
;n

}
,

where imax = max{k |
∑k

i=1 i ·
(m
i

)
≤ Nmax },

and Nmax = m ·min{2 · (m− 1); d∗}.
Proof. By Lemma III.1, each identifiable node must have a
unique encoding. By Lemma IV.3, we can define an upper
bound on the number of different node encodings in the path
matrices M(p̂i), i = 1, . . . ,m as follows: Nmax = m ·min{2 ·
(m−1); d∗}. Nevertheless, in the above value of Nmax we are
counting multiple times the nodes that appear in multiple path
matrices. In fact, if an encoding b has k digits equal to 1, then
b appears among the rows of k different path matrices.

The number of distinct encodings is maximized when we
minimize the number of duplicate encodings and therefore
their number of ones. This is achieved when we have

(m
1

)

different encodings with only one digit equal to 1, 2
(m
2

)
with

only two digits equal to 1 (appearing in two path matrices),
and so forth, until the total number of encodings (counting the
duplicates) is Nmax.

More formally, let imax = max{k |
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For each i ≤ imax, we have
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will have at least imax + 1 digits equal to 1 and thus ap-
pear at least imax + 1 times, the number of distinct en-
codings out of the Nmax encodings is upper bounded by:

ψCR(m,n, d∗) ≤
∑imax

i=1

(m
i

)
+
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Nmax−

∑imax
i=1 i·(mi )

imax+1

⌋
.

Considering also the bound of n we have the final bound.

2) Tightness of the bound and design insights: For certain
values of m, n and d∗, it is possible to design a network
topology that achieves the bound of Theorem IV.2. The
construction is suggested by the proof of the theorem, and
consists of creating a topology and routing scheme with
the maximum number of different binary encodings and the
minimum number of 1s. In the following we show such a
construction when n = 36, m = 8, and d∗= 8. In this case,
ψCR =

(8
1

)
+

(8
2

)
+

⌊
0
3

⌋
= 36. We can obtain this maximum

identifiability by intersecting the paths so as to generate the
maximum number of dangling nodes traversed by a single
path, and all possible intersections of two paths. A topology
that meets the above bound is the half-grid in Figure 3. All
the nodes are identifiable with just 8 monitoring paths with
the following pairs of endpoints: (c1, h1), (c2, h1), (c3, h2),
(c4, h3), (c5, h4), (c6, h5), (c7, h6), and (c8, h7) and routing
as in Figure 3. The above construction can be generalized to
the case of any m provided that d∗= m and n = m(m+1)/2.
We show in Figure 10 that in a more general setting, this
topology and routing scheme do not always meet the bound
of Theorem IV.2, but approximate it closely.

V. SERVICE NETWORK MONITORING

We consider a service network where we monitor paths
between clients and servers, under consistent routing in the
case of (i) single-server and (ii) multi-server monitoring.

A. Single-Server Monitoring
1) Identifiability Bound: Consider the scenario where a

single server communicates with multiple clients and we can
only monitor the paths in between. The number of paths m
coincides with the number of clients, and all the monitoring
paths must share a common endpoint (the server).

We start by showing the special structure of the topology
spanned by the monitoring paths.
Lemma V.1. Under consistent routing, any monitoring paths
with a common endpoint r must form a tree rooted at r.
Proof. We consider any two paths pi and pj . Starting from r,
the next hops on these paths lead to either a common node or
two different nodes. In the latter case, the two paths cannot
intersect at any subsequent node v, as otherwise the two path

up to two flips or it would create a fragmented sequence of
ones. In order to have a change in the encoding contained in
any two successive rows r−1 and r of the matrix M(p̂i), i.e.,
M(p̂i)|r−1,∗ ̸= M(p̂i)|r,∗, there must be at least a column
that flips in r. The number of columns that can flip is m− 1
and each of them can flip at most two times. The number
of different rows that can be observed in M(p̂i) is therefore
upper-bounded by the smallest between the maximum path
length d∗ and 2 · (m− 1).

Fig. 2. Consistent paths identifying all nodes of the network.
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⎡

⎢⎢⎢⎢⎣

flips b1 b2 b3 b4
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4 0 0 1 1

⎤

⎥⎥⎥⎥⎦
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will have at least imax + 1 digits equal to 1 and thus ap-
pear at least imax + 1 times, the number of distinct en-
codings out of the Nmax encodings is upper bounded by:

ψCR(m,n, d∗) ≤
∑imax
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Considering also the bound of n we have the final bound.

2) Tightness of the bound and design insights: For certain
values of m, n and d∗, it is possible to design a network
topology that achieves the bound of Theorem IV.2. The
construction is suggested by the proof of the theorem, and
consists of creating a topology and routing scheme with
the maximum number of different binary encodings and the
minimum number of 1s. In the following we show such a
construction when n = 36, m = 8, and d∗= 8. In this case,
ψCR =

(8
1
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+

(8
2

)
+
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0
3
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= 36. We can obtain this maximum

identifiability by intersecting the paths so as to generate the
maximum number of dangling nodes traversed by a single
path, and all possible intersections of two paths. A topology
that meets the above bound is the half-grid in Figure 3. All
the nodes are identifiable with just 8 monitoring paths with
the following pairs of endpoints: (c1, h1), (c2, h1), (c3, h2),
(c4, h3), (c5, h4), (c6, h5), (c7, h6), and (c8, h7) and routing
as in Figure 3. The above construction can be generalized to
the case of any m provided that d∗= m and n = m(m+1)/2.
We show in Figure 10 that in a more general setting, this
topology and routing scheme do not always meet the bound
of Theorem IV.2, but approximate it closely.

V. SERVICE NETWORK MONITORING

We consider a service network where we monitor paths
between clients and servers, under consistent routing in the
case of (i) single-server and (ii) multi-server monitoring.

A. Single-Server Monitoring
1) Identifiability Bound: Consider the scenario where a

single server communicates with multiple clients and we can
only monitor the paths in between. The number of paths m
coincides with the number of clients, and all the monitoring
paths must share a common endpoint (the server).

We start by showing the special structure of the topology
spanned by the monitoring paths.
Lemma V.1. Under consistent routing, any monitoring paths
with a common endpoint r must form a tree rooted at r.
Proof. We consider any two paths pi and pj . Starting from r,
the next hops on these paths lead to either a common node or
two different nodes. In the latter case, the two paths cannot
intersect at any subsequent node v, as otherwise the two path
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the monitoring performance by the number of nodes that are
k-identifiable wrt P , denoted by φk(P ), and formulate this
question as an optimization: ψk(P) ! maxP∈P φk(P ).

Although extensively studied [11], [5], [12], [6], the optimal
solution is hard to obtain due to the (exponentially) large size
of P , and heuristics are used to provide lower bounds. There
is, however, a lack of general upper bounds. In this work we
establish upper bounds on ψk(P) in representative scenarios.
Knowledge of these upper bounds is key to understanding the
fundamental limits of Boolean network tomography, and gives
insights on network design to facilitate network monitoring.

We observe that if a node vi is k-identifiable wrt P for any
k ≥ 1, then vi is also 1-identifiable wrt P , which implies that
an upper bound on the maximum number of nodes that are 1-
identifiable is also an upper bound on the maximum number
of nodes that are k-identifiable, as stated below.
Lemma III.2. For any k ≥ 1 and any candidate sets of
monitoring paths P , ψ1(P) ≥ ψk(P).
Proof. Given the optimal choice P∗∈ P achieving ψk(P), we
have ψ1(P) ≥ φ1(P∗) ≥ φk(P∗) = ψk(P), where the first
inequality is by definition of ψ1(P) and the second inequality
is by Definition III.1.

Therefore, in the sequel, we focus on bounding ψ1(P),
simply denoted by ψ(P), where we will replace P by specific
parameters in each network setting. We hereafter shortly call
the 1-identifiable nodes “identifiable” .

IV. GENERAL NETWORK MONITORING

We initially consider a generic network with a given number
of monitoring paths between any nodes. We analyze two cases:
(i) arbitrary routing, and (ii) consistent routing.
A. Arbitrary routing

1) Identifiability Bound: Under no constraints on the rout-
ing scheme, it holds the following bound.
Theorem IV.1 (Identifiability under arbitrary routing). Given
a network with n nodes and m monitoring paths, the maximum
number of identifiable nodes under arbitrary routing satisfies

ψAR(m,n) ≤ min{n; 2m − 1}.
Proof. By Lemma III.1, every identifiable node v has a dif-
ferent encoding b(v) ̸= 0. The maximum number of different
encodings with m digits, excluding 0, is 2m− 1. Therefore, the
smaller number between 2m− 1 and the total number of nodes
n bounds the maximum number of identifiable nodes.

2) Tightness of the bound and design insights: The bound
in Theorem IV.1 is tight, as we can construct a topology with
m monitoring paths that meets this bound. Given n nodes, we
label min{n; 2m − 1} of them with m-digit binary encodings,
excluding 0, such that all the encodings are distinct. Then we
generate m paths such that path p̂i (i = 1, . . . ,m) is one of the
possible sequences of all the nodes v for which b(v)|i = 1.
Finally, we connect every two nodes v and w with a link
whenever there is a path containing the sub-sequence v, w.
An example of this construction is shown in Figure 1, for
m = 3 and n = 7.

Fig. 1. Network meeting the bound of Theorem IV.1 (arbitrary routing).

B. Consistent routing
1) Identifiability Bound: In the sequel, we assume that

paths satisfy the following property of routing consistency.
Definition IV.1. A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any),
p and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many
practical routing protocols, including but not limited to shortest
path routing (where ties are broken arbitrarily but deterministi-
cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
which each row is the binary encoding of a node on the path,
and rows are sorted according to the sequence p̂i. Notice that
by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.
Lemma IV.1. Under the assumption of consistent routing, if
any two different rows of the matrix M(p̂i) are equal, then
the corresponding nodes are not 1-identifiable.
Proof. Under consistent routing, the path p̂i cannot contain
any cycle, so every row of M(p̂i) corresponds to a different
node. If two different nodes have the same binary encoding,
then by Lemma III.1, the two nodes are not identifiable.

Definition IV.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path
matrix M(p) has consecutive ones if all the “1”s appear in
consecutive rows, i.e., for any two rows i and j (i < j), if
M(p)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.

Lemma IV.2. Under the assumption of consistent routing, all
the columns in all the path matrices have consecutive ones.
Proof. The assertion is true for M(p̂i)|∗,i since it contains
only ones. Let us consider column M(p̂i)|∗,j , with j ̸= i.
Assume by contradiction that there are two rows k1 < k2
s.t. M(p̂i)|k1,j = M(p̂i)|k2,j = 1 but there is a row h with
k1 < h < k2 for which M(p̂i)|h,i = 0. Let v1, v2, and
vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and
M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
lower. Notice that first, column M(p̂i)|∗,i contains only ones,
second, for any column M(p̂i)|∗,j with j ̸= i, it holds, by
Lemma IV.2, that it has a consecutive ones.

We say that column k has a flip in row r if M(p̂i)|r−1,k ̸=
M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have

the monitoring performance by the number of nodes that are
k-identifiable wrt P , denoted by φk(P ), and formulate this
question as an optimization: ψk(P) ! maxP∈P φk(P ).

Although extensively studied [11], [5], [12], [6], the optimal
solution is hard to obtain due to the (exponentially) large size
of P , and heuristics are used to provide lower bounds. There
is, however, a lack of general upper bounds. In this work we
establish upper bounds on ψk(P) in representative scenarios.
Knowledge of these upper bounds is key to understanding the
fundamental limits of Boolean network tomography, and gives
insights on network design to facilitate network monitoring.

We observe that if a node vi is k-identifiable wrt P for any
k ≥ 1, then vi is also 1-identifiable wrt P , which implies that
an upper bound on the maximum number of nodes that are 1-
identifiable is also an upper bound on the maximum number
of nodes that are k-identifiable, as stated below.
Lemma III.2. For any k ≥ 1 and any candidate sets of
monitoring paths P , ψ1(P) ≥ ψk(P).
Proof. Given the optimal choice P∗∈ P achieving ψk(P), we
have ψ1(P) ≥ φ1(P∗) ≥ φk(P∗) = ψk(P), where the first
inequality is by definition of ψ1(P) and the second inequality
is by Definition III.1.

Therefore, in the sequel, we focus on bounding ψ1(P),
simply denoted by ψ(P), where we will replace P by specific
parameters in each network setting. We hereafter shortly call
the 1-identifiable nodes “identifiable” .

IV. GENERAL NETWORK MONITORING

We initially consider a generic network with a given number
of monitoring paths between any nodes. We analyze two cases:
(i) arbitrary routing, and (ii) consistent routing.
A. Arbitrary routing

1) Identifiability Bound: Under no constraints on the rout-
ing scheme, it holds the following bound.
Theorem IV.1 (Identifiability under arbitrary routing). Given
a network with n nodes and m monitoring paths, the maximum
number of identifiable nodes under arbitrary routing satisfies

ψAR(m,n) ≤ min{n; 2m − 1}.
Proof. By Lemma III.1, every identifiable node v has a dif-
ferent encoding b(v) ̸= 0. The maximum number of different
encodings with m digits, excluding 0, is 2m− 1. Therefore, the
smaller number between 2m− 1 and the total number of nodes
n bounds the maximum number of identifiable nodes.

2) Tightness of the bound and design insights: The bound
in Theorem IV.1 is tight, as we can construct a topology with
m monitoring paths that meets this bound. Given n nodes, we
label min{n; 2m − 1} of them with m-digit binary encodings,
excluding 0, such that all the encodings are distinct. Then we
generate m paths such that path p̂i (i = 1, . . . ,m) is one of the
possible sequences of all the nodes v for which b(v)|i = 1.
Finally, we connect every two nodes v and w with a link
whenever there is a path containing the sub-sequence v, w.
An example of this construction is shown in Figure 1, for
m = 3 and n = 7.

Fig. 1. Network meeting the bound of Theorem IV.1 (arbitrary routing).
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1) Identifiability Bound: In the sequel, we assume that

paths satisfy the following property of routing consistency.
Definition IV.1. A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any),
p and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many
practical routing protocols, including but not limited to shortest
path routing (where ties are broken arbitrarily but deterministi-
cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
which each row is the binary encoding of a node on the path,
and rows are sorted according to the sequence p̂i. Notice that
by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.
Lemma IV.1. Under the assumption of consistent routing, if
any two different rows of the matrix M(p̂i) are equal, then
the corresponding nodes are not 1-identifiable.
Proof. Under consistent routing, the path p̂i cannot contain
any cycle, so every row of M(p̂i) corresponds to a different
node. If two different nodes have the same binary encoding,
then by Lemma III.1, the two nodes are not identifiable.

Definition IV.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path
matrix M(p) has consecutive ones if all the “1”s appear in
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Assume by contradiction that there are two rows k1 < k2
s.t. M(p̂i)|k1,j = M(p̂i)|k2,j = 1 but there is a row h with
k1 < h < k2 for which M(p̂i)|h,i = 0. Let v1, v2, and
vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and
M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
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Lemma IV.2, that it has a consecutive ones.
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M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have
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of P , and heuristics are used to provide lower bounds. There
is, however, a lack of general upper bounds. In this work we
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n bounds the maximum number of identifiable nodes.

2) Tightness of the bound and design insights: The bound
in Theorem IV.1 is tight, as we can construct a topology with
m monitoring paths that meets this bound. Given n nodes, we
label min{n; 2m − 1} of them with m-digit binary encodings,
excluding 0, such that all the encodings are distinct. Then we
generate m paths such that path p̂i (i = 1, . . . ,m) is one of the
possible sequences of all the nodes v for which b(v)|i = 1.
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paths satisfy the following property of routing consistency.
Definition IV.1. A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any),
p and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many
practical routing protocols, including but not limited to shortest
path routing (where ties are broken arbitrarily but deterministi-
cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
which each row is the binary encoding of a node on the path,
and rows are sorted according to the sequence p̂i. Notice that
by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.
Lemma IV.1. Under the assumption of consistent routing, if
any two different rows of the matrix M(p̂i) are equal, then
the corresponding nodes are not 1-identifiable.
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any cycle, so every row of M(p̂i) corresponds to a different
node. If two different nodes have the same binary encoding,
then by Lemma III.1, the two nodes are not identifiable.

Definition IV.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path
matrix M(p) has consecutive ones if all the “1”s appear in
consecutive rows, i.e., for any two rows i and j (i < j), if
M(p)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.

Lemma IV.2. Under the assumption of consistent routing, all
the columns in all the path matrices have consecutive ones.
Proof. The assertion is true for M(p̂i)|∗,i since it contains
only ones. Let us consider column M(p̂i)|∗,j , with j ̸= i.
Assume by contradiction that there are two rows k1 < k2
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vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and
M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
lower. Notice that first, column M(p̂i)|∗,i contains only ones,
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k-identifiable wrt P , denoted by φk(P ), and formulate this
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Although extensively studied [11], [5], [12], [6], the optimal
solution is hard to obtain due to the (exponentially) large size
of P , and heuristics are used to provide lower bounds. There
is, however, a lack of general upper bounds. In this work we
establish upper bounds on ψk(P) in representative scenarios.
Knowledge of these upper bounds is key to understanding the
fundamental limits of Boolean network tomography, and gives
insights on network design to facilitate network monitoring.

We observe that if a node vi is k-identifiable wrt P for any
k ≥ 1, then vi is also 1-identifiable wrt P , which implies that
an upper bound on the maximum number of nodes that are 1-
identifiable is also an upper bound on the maximum number
of nodes that are k-identifiable, as stated below.
Lemma III.2. For any k ≥ 1 and any candidate sets of
monitoring paths P , ψ1(P) ≥ ψk(P).
Proof. Given the optimal choice P∗∈ P achieving ψk(P), we
have ψ1(P) ≥ φ1(P∗) ≥ φk(P∗) = ψk(P), where the first
inequality is by definition of ψ1(P) and the second inequality
is by Definition III.1.

Therefore, in the sequel, we focus on bounding ψ1(P),
simply denoted by ψ(P), where we will replace P by specific
parameters in each network setting. We hereafter shortly call
the 1-identifiable nodes “identifiable” .

IV. GENERAL NETWORK MONITORING

We initially consider a generic network with a given number
of monitoring paths between any nodes. We analyze two cases:
(i) arbitrary routing, and (ii) consistent routing.
A. Arbitrary routing

1) Identifiability Bound: Under no constraints on the rout-
ing scheme, it holds the following bound.
Theorem IV.1 (Identifiability under arbitrary routing). Given
a network with n nodes and m monitoring paths, the maximum
number of identifiable nodes under arbitrary routing satisfies

ψAR(m,n) ≤ min{n; 2m − 1}.
Proof. By Lemma III.1, every identifiable node v has a dif-
ferent encoding b(v) ̸= 0. The maximum number of different
encodings with m digits, excluding 0, is 2m− 1. Therefore, the
smaller number between 2m− 1 and the total number of nodes
n bounds the maximum number of identifiable nodes.

2) Tightness of the bound and design insights: The bound
in Theorem IV.1 is tight, as we can construct a topology with
m monitoring paths that meets this bound. Given n nodes, we
label min{n; 2m − 1} of them with m-digit binary encodings,
excluding 0, such that all the encodings are distinct. Then we
generate m paths such that path p̂i (i = 1, . . . ,m) is one of the
possible sequences of all the nodes v for which b(v)|i = 1.
Finally, we connect every two nodes v and w with a link
whenever there is a path containing the sub-sequence v, w.
An example of this construction is shown in Figure 1, for
m = 3 and n = 7.

Fig. 1. Network meeting the bound of Theorem IV.1 (arbitrary routing).

B. Consistent routing
1) Identifiability Bound: In the sequel, we assume that

paths satisfy the following property of routing consistency.
Definition IV.1. A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any),
p and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many
practical routing protocols, including but not limited to shortest
path routing (where ties are broken arbitrarily but deterministi-
cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
which each row is the binary encoding of a node on the path,
and rows are sorted according to the sequence p̂i. Notice that
by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.
Lemma IV.1. Under the assumption of consistent routing, if
any two different rows of the matrix M(p̂i) are equal, then
the corresponding nodes are not 1-identifiable.
Proof. Under consistent routing, the path p̂i cannot contain
any cycle, so every row of M(p̂i) corresponds to a different
node. If two different nodes have the same binary encoding,
then by Lemma III.1, the two nodes are not identifiable.

Definition IV.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path
matrix M(p) has consecutive ones if all the “1”s appear in
consecutive rows, i.e., for any two rows i and j (i < j), if
M(p)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.
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vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and
M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
lower. Notice that first, column M(p̂i)|∗,i contains only ones,
second, for any column M(p̂i)|∗,j with j ̸= i, it holds, by
Lemma IV.2, that it has a consecutive ones.

We say that column k has a flip in row r if M(p̂i)|r−1,k ̸=
M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have
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solution is hard to obtain due to the (exponentially) large size
of P , and heuristics are used to provide lower bounds. There
is, however, a lack of general upper bounds. In this work we
establish upper bounds on ψk(P) in representative scenarios.
Knowledge of these upper bounds is key to understanding the
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We observe that if a node vi is k-identifiable wrt P for any
k ≥ 1, then vi is also 1-identifiable wrt P , which implies that
an upper bound on the maximum number of nodes that are 1-
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of nodes that are k-identifiable, as stated below.
Lemma III.2. For any k ≥ 1 and any candidate sets of
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Proof. Given the optimal choice P∗∈ P achieving ψk(P), we
have ψ1(P) ≥ φ1(P∗) ≥ φk(P∗) = ψk(P), where the first
inequality is by definition of ψ1(P) and the second inequality
is by Definition III.1.

Therefore, in the sequel, we focus on bounding ψ1(P),
simply denoted by ψ(P), where we will replace P by specific
parameters in each network setting. We hereafter shortly call
the 1-identifiable nodes “identifiable” .

IV. GENERAL NETWORK MONITORING

We initially consider a generic network with a given number
of monitoring paths between any nodes. We analyze two cases:
(i) arbitrary routing, and (ii) consistent routing.
A. Arbitrary routing

1) Identifiability Bound: Under no constraints on the rout-
ing scheme, it holds the following bound.
Theorem IV.1 (Identifiability under arbitrary routing). Given
a network with n nodes and m monitoring paths, the maximum
number of identifiable nodes under arbitrary routing satisfies

ψAR(m,n) ≤ min{n; 2m − 1}.
Proof. By Lemma III.1, every identifiable node v has a dif-
ferent encoding b(v) ̸= 0. The maximum number of different
encodings with m digits, excluding 0, is 2m− 1. Therefore, the
smaller number between 2m− 1 and the total number of nodes
n bounds the maximum number of identifiable nodes.

2) Tightness of the bound and design insights: The bound
in Theorem IV.1 is tight, as we can construct a topology with
m monitoring paths that meets this bound. Given n nodes, we
label min{n; 2m − 1} of them with m-digit binary encodings,
excluding 0, such that all the encodings are distinct. Then we
generate m paths such that path p̂i (i = 1, . . . ,m) is one of the
possible sequences of all the nodes v for which b(v)|i = 1.
Finally, we connect every two nodes v and w with a link
whenever there is a path containing the sub-sequence v, w.
An example of this construction is shown in Figure 1, for
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paths satisfy the following property of routing consistency.
Definition IV.1. A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any),
p and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many
practical routing protocols, including but not limited to shortest
path routing (where ties are broken arbitrarily but deterministi-
cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
which each row is the binary encoding of a node on the path,
and rows are sorted according to the sequence p̂i. Notice that
by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.
Lemma IV.1. Under the assumption of consistent routing, if
any two different rows of the matrix M(p̂i) are equal, then
the corresponding nodes are not 1-identifiable.
Proof. Under consistent routing, the path p̂i cannot contain
any cycle, so every row of M(p̂i) corresponds to a different
node. If two different nodes have the same binary encoding,
then by Lemma III.1, the two nodes are not identifiable.

Definition IV.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path
matrix M(p) has consecutive ones if all the “1”s appear in
consecutive rows, i.e., for any two rows i and j (i < j), if
M(p)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.

Lemma IV.2. Under the assumption of consistent routing, all
the columns in all the path matrices have consecutive ones.
Proof. The assertion is true for M(p̂i)|∗,i since it contains
only ones. Let us consider column M(p̂i)|∗,j , with j ̸= i.
Assume by contradiction that there are two rows k1 < k2
s.t. M(p̂i)|k1,j = M(p̂i)|k2,j = 1 but there is a row h with
k1 < h < k2 for which M(p̂i)|h,i = 0. Let v1, v2, and
vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and
M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
lower. Notice that first, column M(p̂i)|∗,i contains only ones,
second, for any column M(p̂i)|∗,j with j ̸= i, it holds, by
Lemma IV.2, that it has a consecutive ones.

We say that column k has a flip in row r if M(p̂i)|r−1,k ̸=
M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have
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k-identifiable wrt P , denoted by φk(P ), and formulate this
question as an optimization: ψk(P) ! maxP∈P φk(P ).

Although extensively studied [11], [5], [12], [6], the optimal
solution is hard to obtain due to the (exponentially) large size
of P , and heuristics are used to provide lower bounds. There
is, however, a lack of general upper bounds. In this work we
establish upper bounds on ψk(P) in representative scenarios.
Knowledge of these upper bounds is key to understanding the
fundamental limits of Boolean network tomography, and gives
insights on network design to facilitate network monitoring.

We observe that if a node vi is k-identifiable wrt P for any
k ≥ 1, then vi is also 1-identifiable wrt P , which implies that
an upper bound on the maximum number of nodes that are 1-
identifiable is also an upper bound on the maximum number
of nodes that are k-identifiable, as stated below.
Lemma III.2. For any k ≥ 1 and any candidate sets of
monitoring paths P , ψ1(P) ≥ ψk(P).
Proof. Given the optimal choice P∗∈ P achieving ψk(P), we
have ψ1(P) ≥ φ1(P∗) ≥ φk(P∗) = ψk(P), where the first
inequality is by definition of ψ1(P) and the second inequality
is by Definition III.1.

Therefore, in the sequel, we focus on bounding ψ1(P),
simply denoted by ψ(P), where we will replace P by specific
parameters in each network setting. We hereafter shortly call
the 1-identifiable nodes “identifiable” .

IV. GENERAL NETWORK MONITORING

We initially consider a generic network with a given number
of monitoring paths between any nodes. We analyze two cases:
(i) arbitrary routing, and (ii) consistent routing.
A. Arbitrary routing

1) Identifiability Bound: Under no constraints on the rout-
ing scheme, it holds the following bound.
Theorem IV.1 (Identifiability under arbitrary routing). Given
a network with n nodes and m monitoring paths, the maximum
number of identifiable nodes under arbitrary routing satisfies

ψAR(m,n) ≤ min{n; 2m − 1}.
Proof. By Lemma III.1, every identifiable node v has a dif-
ferent encoding b(v) ̸= 0. The maximum number of different
encodings with m digits, excluding 0, is 2m− 1. Therefore, the
smaller number between 2m− 1 and the total number of nodes
n bounds the maximum number of identifiable nodes.

2) Tightness of the bound and design insights: The bound
in Theorem IV.1 is tight, as we can construct a topology with
m monitoring paths that meets this bound. Given n nodes, we
label min{n; 2m − 1} of them with m-digit binary encodings,
excluding 0, such that all the encodings are distinct. Then we
generate m paths such that path p̂i (i = 1, . . . ,m) is one of the
possible sequences of all the nodes v for which b(v)|i = 1.
Finally, we connect every two nodes v and w with a link
whenever there is a path containing the sub-sequence v, w.
An example of this construction is shown in Figure 1, for
m = 3 and n = 7.

Fig. 1. Network meeting the bound of Theorem IV.1 (arbitrary routing).

B. Consistent routing
1) Identifiability Bound: In the sequel, we assume that

paths satisfy the following property of routing consistency.
Definition IV.1. A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any),
p and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many
practical routing protocols, including but not limited to shortest
path routing (where ties are broken arbitrarily but deterministi-
cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
which each row is the binary encoding of a node on the path,
and rows are sorted according to the sequence p̂i. Notice that
by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.
Lemma IV.1. Under the assumption of consistent routing, if
any two different rows of the matrix M(p̂i) are equal, then
the corresponding nodes are not 1-identifiable.
Proof. Under consistent routing, the path p̂i cannot contain
any cycle, so every row of M(p̂i) corresponds to a different
node. If two different nodes have the same binary encoding,
then by Lemma III.1, the two nodes are not identifiable.

Definition IV.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path
matrix M(p) has consecutive ones if all the “1”s appear in
consecutive rows, i.e., for any two rows i and j (i < j), if
M(p)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.

Lemma IV.2. Under the assumption of consistent routing, all
the columns in all the path matrices have consecutive ones.
Proof. The assertion is true for M(p̂i)|∗,i since it contains
only ones. Let us consider column M(p̂i)|∗,j , with j ̸= i.
Assume by contradiction that there are two rows k1 < k2
s.t. M(p̂i)|k1,j = M(p̂i)|k2,j = 1 but there is a row h with
k1 < h < k2 for which M(p̂i)|h,i = 0. Let v1, v2, and
vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and
M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
whose length is at most d∗ (in number of nodes), the maximum
number of different encodings in the rows of M(p̂i) is equal
to min{2 · (m − 1), d∗}, ∀pi ∈ P .
Proof. While the number of rows of M(p̂i) is bounded by the
maximum length d∗, the number of different encodings can be
lower. Notice that first, column M(p̂i)|∗,i contains only ones,
second, for any column M(p̂i)|∗,j with j ̸= i, it holds, by
Lemma IV.2, that it has a consecutive ones.

We say that column k has a flip in row r if M(p̂i)|r−1,k ̸=
M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have
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up to two flips or it would create a fragmented sequence of
ones. In order to have a change in the encoding contained in
any two successive rows r−1 and r of the matrix M(p̂i), i.e.,
M(p̂i)|r−1,∗ ̸= M(p̂i)|r,∗, there must be at least a column
that flips in r. The number of columns that can flip is m− 1
and each of them can flip at most two times. The number
of different rows that can be observed in M(p̂i) is therefore
upper-bounded by the smallest between the maximum path
length d∗ and 2 · (m− 1).

Fig. 2. Consistent paths identifying all nodes of the network.

Example: Figure 2 shows a case of consistent routing. The
four path matrices have columns with consecutive ones and
each column flips at most twice, so the number of different
rows is less than 2 · (m− 1) = 6. For instance, M(p̂3) is:

M(p̂3) =

⎡

⎢⎢⎢⎢⎣

flips b1 b2 b3 b4
0 0 0 1 0
1 0 1 1 0
2 1 1 1 0
3 1 0 1 1
4 0 0 1 1

⎤

⎥⎥⎥⎥⎦

We now give an upper bound on the number of identifiable
nodes under consistent routing.
Theorem IV.2 (Identifiability with consistent routing). Given
n nodes, and m > 1 consistent routing paths of length at most
d∗ (in number of nodes), the maximum number of identifiable
nodes satisfies:

ψCR(m,n, d∗) ≤ min

{
imax∑
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m

i
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+
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Nmax −

∑imax
i=1 i ·
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)

imax + 1

⌋
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}
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where imax = max{k |
∑k

i=1 i ·
(m
i

)
≤ Nmax },

and Nmax = m ·min{2 · (m− 1); d∗}.
Proof. By Lemma III.1, each identifiable node must have a
unique encoding. By Lemma IV.3, we can define an upper
bound on the number of different node encodings in the path
matrices M(p̂i), i = 1, . . . ,m as follows: Nmax = m ·min{2 ·
(m−1); d∗}. Nevertheless, in the above value of Nmax we are
counting multiple times the nodes that appear in multiple path
matrices. In fact, if an encoding b has k digits equal to 1, then
b appears among the rows of k different path matrices.

The number of distinct encodings is maximized when we
minimize the number of duplicate encodings and therefore
their number of ones. This is achieved when we have

(m
1

)

different encodings with only one digit equal to 1, 2
(m
2

)
with

only two digits equal to 1 (appearing in two path matrices),
and so forth, until the total number of encodings (counting the
duplicates) is Nmax.

More formally, let imax = max{k |
∑k

i=1 i ·
(m
i

)
≤ Nmax}.

For each i ≤ imax, we have
(m
i

)
encodings containing i

digits equal to 1s and appearing in i path matrices. Con-
sidering that the remaining Nmax −

∑imax
i=1 i ·

(m
i

)
encodings

Fig. 3. An example of semi-grid graph

will have at least imax + 1 digits equal to 1 and thus ap-
pear at least imax + 1 times, the number of distinct en-
codings out of the Nmax encodings is upper bounded by:

ψCR(m,n, d∗) ≤
∑imax

i=1

(m
i

)
+

⌊
Nmax−

∑imax
i=1 i·(mi )

imax+1

⌋
.

Considering also the bound of n we have the final bound.

2) Tightness of the bound and design insights: For certain
values of m, n and d∗, it is possible to design a network
topology that achieves the bound of Theorem IV.2. The
construction is suggested by the proof of the theorem, and
consists of creating a topology and routing scheme with
the maximum number of different binary encodings and the
minimum number of 1s. In the following we show such a
construction when n = 36, m = 8, and d∗= 8. In this case,
ψCR =

(8
1

)
+

(8
2

)
+

⌊
0
3

⌋
= 36. We can obtain this maximum

identifiability by intersecting the paths so as to generate the
maximum number of dangling nodes traversed by a single
path, and all possible intersections of two paths. A topology
that meets the above bound is the half-grid in Figure 3. All
the nodes are identifiable with just 8 monitoring paths with
the following pairs of endpoints: (c1, h1), (c2, h1), (c3, h2),
(c4, h3), (c5, h4), (c6, h5), (c7, h6), and (c8, h7) and routing
as in Figure 3. The above construction can be generalized to
the case of any m provided that d∗= m and n = m(m+1)/2.
We show in Figure 10 that in a more general setting, this
topology and routing scheme do not always meet the bound
of Theorem IV.2, but approximate it closely.

V. SERVICE NETWORK MONITORING

We consider a service network where we monitor paths
between clients and servers, under consistent routing in the
case of (i) single-server and (ii) multi-server monitoring.

A. Single-Server Monitoring
1) Identifiability Bound: Consider the scenario where a

single server communicates with multiple clients and we can
only monitor the paths in between. The number of paths m
coincides with the number of clients, and all the monitoring
paths must share a common endpoint (the server).

We start by showing the special structure of the topology
spanned by the monitoring paths.
Lemma V.1. Under consistent routing, any monitoring paths
with a common endpoint r must form a tree rooted at r.
Proof. We consider any two paths pi and pj . Starting from r,
the next hops on these paths lead to either a common node or
two different nodes. In the latter case, the two paths cannot
intersect at any subsequent node v, as otherwise the two path

up to two flips or it would create a fragmented sequence of
ones. In order to have a change in the encoding contained in
any two successive rows r−1 and r of the matrix M(p̂i), i.e.,
M(p̂i)|r−1,∗ ̸= M(p̂i)|r,∗, there must be at least a column
that flips in r. The number of columns that can flip is m− 1
and each of them can flip at most two times. The number
of different rows that can be observed in M(p̂i) is therefore
upper-bounded by the smallest between the maximum path
length d∗ and 2 · (m− 1).

Fig. 2. Consistent paths identifying all nodes of the network.

Example: Figure 2 shows a case of consistent routing. The
four path matrices have columns with consecutive ones and
each column flips at most twice, so the number of different
rows is less than 2 · (m− 1) = 6. For instance, M(p̂3) is:

M(p̂3) =

⎡

⎢⎢⎢⎢⎣

flips b1 b2 b3 b4
0 0 0 1 0
1 0 1 1 0
2 1 1 1 0
3 1 0 1 1
4 0 0 1 1

⎤

⎥⎥⎥⎥⎦

We now give an upper bound on the number of identifiable
nodes under consistent routing.
Theorem IV.2 (Identifiability with consistent routing). Given
n nodes, and m > 1 consistent routing paths of length at most
d∗ (in number of nodes), the maximum number of identifiable
nodes satisfies:

ψCR(m,n, d∗) ≤ min

{
imax∑

i=1

(
m

i

)
+

⌊
Nmax −

∑imax
i=1 i ·

(m
i

)

imax + 1

⌋
;n

}
,

where imax = max{k |
∑k

i=1 i ·
(m
i

)
≤ Nmax },

and Nmax = m ·min{2 · (m− 1); d∗}.
Proof. By Lemma III.1, each identifiable node must have a
unique encoding. By Lemma IV.3, we can define an upper
bound on the number of different node encodings in the path
matrices M(p̂i), i = 1, . . . ,m as follows: Nmax = m ·min{2 ·
(m−1); d∗}. Nevertheless, in the above value of Nmax we are
counting multiple times the nodes that appear in multiple path
matrices. In fact, if an encoding b has k digits equal to 1, then
b appears among the rows of k different path matrices.

The number of distinct encodings is maximized when we
minimize the number of duplicate encodings and therefore
their number of ones. This is achieved when we have
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will have at least imax + 1 digits equal to 1 and thus ap-
pear at least imax + 1 times, the number of distinct en-
codings out of the Nmax encodings is upper bounded by:
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∑imax
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Considering also the bound of n we have the final bound.

2) Tightness of the bound and design insights: For certain
values of m, n and d∗, it is possible to design a network
topology that achieves the bound of Theorem IV.2. The
construction is suggested by the proof of the theorem, and
consists of creating a topology and routing scheme with
the maximum number of different binary encodings and the
minimum number of 1s. In the following we show such a
construction when n = 36, m = 8, and d∗= 8. In this case,
ψCR =

(8
1

)
+

(8
2

)
+

⌊
0
3

⌋
= 36. We can obtain this maximum

identifiability by intersecting the paths so as to generate the
maximum number of dangling nodes traversed by a single
path, and all possible intersections of two paths. A topology
that meets the above bound is the half-grid in Figure 3. All
the nodes are identifiable with just 8 monitoring paths with
the following pairs of endpoints: (c1, h1), (c2, h1), (c3, h2),
(c4, h3), (c5, h4), (c6, h5), (c7, h6), and (c8, h7) and routing
as in Figure 3. The above construction can be generalized to
the case of any m provided that d∗= m and n = m(m+1)/2.
We show in Figure 10 that in a more general setting, this
topology and routing scheme do not always meet the bound
of Theorem IV.2, but approximate it closely.

V. SERVICE NETWORK MONITORING

We consider a service network where we monitor paths
between clients and servers, under consistent routing in the
case of (i) single-server and (ii) multi-server monitoring.

A. Single-Server Monitoring
1) Identifiability Bound: Consider the scenario where a

single server communicates with multiple clients and we can
only monitor the paths in between. The number of paths m
coincides with the number of clients, and all the monitoring
paths must share a common endpoint (the server).

We start by showing the special structure of the topology
spanned by the monitoring paths.
Lemma V.1. Under consistent routing, any monitoring paths
with a common endpoint r must form a tree rooted at r.
Proof. We consider any two paths pi and pj . Starting from r,
the next hops on these paths lead to either a common node or
two different nodes. In the latter case, the two paths cannot
intersect at any subsequent node v, as otherwise the two path

up to two flips or it would create a fragmented sequence of
ones. In order to have a change in the encoding contained in
any two successive rows r−1 and r of the matrix M(p̂i), i.e.,
M(p̂i)|r−1,∗ ̸= M(p̂i)|r,∗, there must be at least a column
that flips in r. The number of columns that can flip is m− 1
and each of them can flip at most two times. The number
of different rows that can be observed in M(p̂i) is therefore
upper-bounded by the smallest between the maximum path
length d∗ and 2 · (m− 1).

Fig. 2. Consistent paths identifying all nodes of the network.

Example: Figure 2 shows a case of consistent routing. The
four path matrices have columns with consecutive ones and
each column flips at most twice, so the number of different
rows is less than 2 · (m− 1) = 6. For instance, M(p̂3) is:

M(p̂3) =

⎡

⎢⎢⎢⎢⎣

flips b1 b2 b3 b4
0 0 0 1 0
1 0 1 1 0
2 1 1 1 0
3 1 0 1 1
4 0 0 1 1

⎤

⎥⎥⎥⎥⎦

We now give an upper bound on the number of identifiable
nodes under consistent routing.
Theorem IV.2 (Identifiability with consistent routing). Given
n nodes, and m > 1 consistent routing paths of length at most
d∗ (in number of nodes), the maximum number of identifiable
nodes satisfies:

ψCR(m,n, d∗) ≤ min

{
imax∑

i=1

(
m

i

)
+

⌊
Nmax −

∑imax
i=1 i ·

(m
i

)

imax + 1

⌋
;n

}
,

where imax = max{k |
∑k

i=1 i ·
(m
i

)
≤ Nmax },

and Nmax = m ·min{2 · (m− 1); d∗}.
Proof. By Lemma III.1, each identifiable node must have a
unique encoding. By Lemma IV.3, we can define an upper
bound on the number of different node encodings in the path
matrices M(p̂i), i = 1, . . . ,m as follows: Nmax = m ·min{2 ·
(m−1); d∗}. Nevertheless, in the above value of Nmax we are
counting multiple times the nodes that appear in multiple path
matrices. In fact, if an encoding b has k digits equal to 1, then
b appears among the rows of k different path matrices.

The number of distinct encodings is maximized when we
minimize the number of duplicate encodings and therefore
their number of ones. This is achieved when we have

(m
1

)

different encodings with only one digit equal to 1, 2
(m
2

)
with

only two digits equal to 1 (appearing in two path matrices),
and so forth, until the total number of encodings (counting the
duplicates) is Nmax.

More formally, let imax = max{k |
∑k

i=1 i ·
(m
i

)
≤ Nmax}.

For each i ≤ imax, we have
(m
i

)
encodings containing i

digits equal to 1s and appearing in i path matrices. Con-
sidering that the remaining Nmax −

∑imax
i=1 i ·

(m
i

)
encodings

Fig. 3. An example of semi-grid graph

will have at least imax + 1 digits equal to 1 and thus ap-
pear at least imax + 1 times, the number of distinct en-
codings out of the Nmax encodings is upper bounded by:

ψCR(m,n, d∗) ≤
∑imax

i=1

(m
i

)
+

⌊
Nmax−

∑imax
i=1 i·(mi )

imax+1

⌋
.

Considering also the bound of n we have the final bound.

2) Tightness of the bound and design insights: For certain
values of m, n and d∗, it is possible to design a network
topology that achieves the bound of Theorem IV.2. The
construction is suggested by the proof of the theorem, and
consists of creating a topology and routing scheme with
the maximum number of different binary encodings and the
minimum number of 1s. In the following we show such a
construction when n = 36, m = 8, and d∗= 8. In this case,
ψCR =

(8
1

)
+

(8
2

)
+

⌊
0
3

⌋
= 36. We can obtain this maximum

identifiability by intersecting the paths so as to generate the
maximum number of dangling nodes traversed by a single
path, and all possible intersections of two paths. A topology
that meets the above bound is the half-grid in Figure 3. All
the nodes are identifiable with just 8 monitoring paths with
the following pairs of endpoints: (c1, h1), (c2, h1), (c3, h2),
(c4, h3), (c5, h4), (c6, h5), (c7, h6), and (c8, h7) and routing
as in Figure 3. The above construction can be generalized to
the case of any m provided that d∗= m and n = m(m+1)/2.
We show in Figure 10 that in a more general setting, this
topology and routing scheme do not always meet the bound
of Theorem IV.2, but approximate it closely.

V. SERVICE NETWORK MONITORING

We consider a service network where we monitor paths
between clients and servers, under consistent routing in the
case of (i) single-server and (ii) multi-server monitoring.

A. Single-Server Monitoring
1) Identifiability Bound: Consider the scenario where a

single server communicates with multiple clients and we can
only monitor the paths in between. The number of paths m
coincides with the number of clients, and all the monitoring
paths must share a common endpoint (the server).

We start by showing the special structure of the topology
spanned by the monitoring paths.
Lemma V.1. Under consistent routing, any monitoring paths
with a common endpoint r must form a tree rooted at r.
Proof. We consider any two paths pi and pj . Starting from r,
the next hops on these paths lead to either a common node or
two different nodes. In the latter case, the two paths cannot
intersect at any subsequent node v, as otherwise the two path
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Proof

§ Each identifiable node must have a unique encoding

§ For every path matrix, we have 2*(m-1) possible 
different encodings, so totally m*min{2*(m-1), d*}

§ We are counting multiple times the nodes that appear 
in multiple path matrices

§ If encoding b has k digits equals to 1, then b appears 
among the rows of k different path matrices
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Proof

§ Number of distinct encoding is maximized when 
the number of duplicate encodings is minimized, 
therefore their number of ones is minimized

§ Minimum number of duplicate is achieved when 
we have       different encodings with only one 
digit equal to 0ne,          with two digits equal to 
one appearing in two path matrices and so forth 
until total number of encodings is equal to Nmax
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up to two flips or it would create a fragmented sequence of
ones. In order to have a change in the encoding contained in
any two successive rows r−1 and r of the matrix M(p̂i), i.e.,
M(p̂i)|r−1,∗ ̸= M(p̂i)|r,∗, there must be at least a column
that flips in r. The number of columns that can flip is m− 1
and each of them can flip at most two times. The number
of different rows that can be observed in M(p̂i) is therefore
upper-bounded by the smallest between the maximum path
length d∗ and 2 · (m− 1).

Fig. 2. Consistent paths identifying all nodes of the network.

Example: Figure 2 shows a case of consistent routing. The
four path matrices have columns with consecutive ones and
each column flips at most twice, so the number of different
rows is less than 2 · (m− 1) = 6. For instance, M(p̂3) is:

M(p̂3) =

⎡

⎢⎢⎢⎢⎣

flips b1 b2 b3 b4
0 0 0 1 0
1 0 1 1 0
2 1 1 1 0
3 1 0 1 1
4 0 0 1 1

⎤

⎥⎥⎥⎥⎦

We now give an upper bound on the number of identifiable
nodes under consistent routing.
Theorem IV.2 (Identifiability with consistent routing). Given
n nodes, and m > 1 consistent routing paths of length at most
d∗ (in number of nodes), the maximum number of identifiable
nodes satisfies:

ψCR(m,n, d∗) ≤ min

{
imax∑

i=1

(
m

i

)
+

⌊
Nmax −

∑imax
i=1 i ·

(m
i

)

imax + 1

⌋
;n

}
,

where imax = max{k |
∑k

i=1 i ·
(m
i

)
≤ Nmax },

and Nmax = m ·min{2 · (m− 1); d∗}.
Proof. By Lemma III.1, each identifiable node must have a
unique encoding. By Lemma IV.3, we can define an upper
bound on the number of different node encodings in the path
matrices M(p̂i), i = 1, . . . ,m as follows: Nmax = m ·min{2 ·
(m−1); d∗}. Nevertheless, in the above value of Nmax we are
counting multiple times the nodes that appear in multiple path
matrices. In fact, if an encoding b has k digits equal to 1, then
b appears among the rows of k different path matrices.

The number of distinct encodings is maximized when we
minimize the number of duplicate encodings and therefore
their number of ones. This is achieved when we have

(m
1

)

different encodings with only one digit equal to 1, 2
(m
2

)
with

only two digits equal to 1 (appearing in two path matrices),
and so forth, until the total number of encodings (counting the
duplicates) is Nmax.

More formally, let imax = max{k |
∑k

i=1 i ·
(m
i

)
≤ Nmax}.

For each i ≤ imax, we have
(m
i

)
encodings containing i

digits equal to 1s and appearing in i path matrices. Con-
sidering that the remaining Nmax −

∑imax
i=1 i ·

(m
i

)
encodings

Fig. 3. An example of semi-grid graph

will have at least imax + 1 digits equal to 1 and thus ap-
pear at least imax + 1 times, the number of distinct en-
codings out of the Nmax encodings is upper bounded by:

ψCR(m,n, d∗) ≤
∑imax

i=1

(m
i

)
+

⌊
Nmax−

∑imax
i=1 i·(mi )

imax+1

⌋
.

Considering also the bound of n we have the final bound.

2) Tightness of the bound and design insights: For certain
values of m, n and d∗, it is possible to design a network
topology that achieves the bound of Theorem IV.2. The
construction is suggested by the proof of the theorem, and
consists of creating a topology and routing scheme with
the maximum number of different binary encodings and the
minimum number of 1s. In the following we show such a
construction when n = 36, m = 8, and d∗= 8. In this case,
ψCR =

(8
1

)
+

(8
2

)
+

⌊
0
3

⌋
= 36. We can obtain this maximum

identifiability by intersecting the paths so as to generate the
maximum number of dangling nodes traversed by a single
path, and all possible intersections of two paths. A topology
that meets the above bound is the half-grid in Figure 3. All
the nodes are identifiable with just 8 monitoring paths with
the following pairs of endpoints: (c1, h1), (c2, h1), (c3, h2),
(c4, h3), (c5, h4), (c6, h5), (c7, h6), and (c8, h7) and routing
as in Figure 3. The above construction can be generalized to
the case of any m provided that d∗= m and n = m(m+1)/2.
We show in Figure 10 that in a more general setting, this
topology and routing scheme do not always meet the bound
of Theorem IV.2, but approximate it closely.

V. SERVICE NETWORK MONITORING

We consider a service network where we monitor paths
between clients and servers, under consistent routing in the
case of (i) single-server and (ii) multi-server monitoring.

A. Single-Server Monitoring
1) Identifiability Bound: Consider the scenario where a

single server communicates with multiple clients and we can
only monitor the paths in between. The number of paths m
coincides with the number of clients, and all the monitoring
paths must share a common endpoint (the server).

We start by showing the special structure of the topology
spanned by the monitoring paths.
Lemma V.1. Under consistent routing, any monitoring paths
with a common endpoint r must form a tree rooted at r.
Proof. We consider any two paths pi and pj . Starting from r,
the next hops on these paths lead to either a common node or
two different nodes. In the latter case, the two paths cannot
intersect at any subsequent node v, as otherwise the two path

up to two flips or it would create a fragmented sequence of
ones. In order to have a change in the encoding contained in
any two successive rows r−1 and r of the matrix M(p̂i), i.e.,
M(p̂i)|r−1,∗ ̸= M(p̂i)|r,∗, there must be at least a column
that flips in r. The number of columns that can flip is m− 1
and each of them can flip at most two times. The number
of different rows that can be observed in M(p̂i) is therefore
upper-bounded by the smallest between the maximum path
length d∗ and 2 · (m− 1).

Fig. 2. Consistent paths identifying all nodes of the network.

Example: Figure 2 shows a case of consistent routing. The
four path matrices have columns with consecutive ones and
each column flips at most twice, so the number of different
rows is less than 2 · (m− 1) = 6. For instance, M(p̂3) is:

M(p̂3) =

⎡

⎢⎢⎢⎢⎣

flips b1 b2 b3 b4
0 0 0 1 0
1 0 1 1 0
2 1 1 1 0
3 1 0 1 1
4 0 0 1 1

⎤

⎥⎥⎥⎥⎦

We now give an upper bound on the number of identifiable
nodes under consistent routing.
Theorem IV.2 (Identifiability with consistent routing). Given
n nodes, and m > 1 consistent routing paths of length at most
d∗ (in number of nodes), the maximum number of identifiable
nodes satisfies:

ψCR(m,n, d∗) ≤ min

{
imax∑

i=1

(
m

i

)
+

⌊
Nmax −

∑imax
i=1 i ·

(m
i

)

imax + 1

⌋
;n

}
,

where imax = max{k |
∑k

i=1 i ·
(m
i

)
≤ Nmax },

and Nmax = m ·min{2 · (m− 1); d∗}.
Proof. By Lemma III.1, each identifiable node must have a
unique encoding. By Lemma IV.3, we can define an upper
bound on the number of different node encodings in the path
matrices M(p̂i), i = 1, . . . ,m as follows: Nmax = m ·min{2 ·
(m−1); d∗}. Nevertheless, in the above value of Nmax we are
counting multiple times the nodes that appear in multiple path
matrices. In fact, if an encoding b has k digits equal to 1, then
b appears among the rows of k different path matrices.

The number of distinct encodings is maximized when we
minimize the number of duplicate encodings and therefore
their number of ones. This is achieved when we have

(m
1

)

different encodings with only one digit equal to 1, 2
(m
2

)
with

only two digits equal to 1 (appearing in two path matrices),
and so forth, until the total number of encodings (counting the
duplicates) is Nmax.

More formally, let imax = max{k |
∑k

i=1 i ·
(m
i

)
≤ Nmax}.

For each i ≤ imax, we have
(m
i

)
encodings containing i

digits equal to 1s and appearing in i path matrices. Con-
sidering that the remaining Nmax −

∑imax
i=1 i ·

(m
i

)
encodings

Fig. 3. An example of semi-grid graph

will have at least imax + 1 digits equal to 1 and thus ap-
pear at least imax + 1 times, the number of distinct en-
codings out of the Nmax encodings is upper bounded by:

ψCR(m,n, d∗) ≤
∑imax

i=1

(m
i

)
+

⌊
Nmax−

∑imax
i=1 i·(mi )

imax+1

⌋
.

Considering also the bound of n we have the final bound.

2) Tightness of the bound and design insights: For certain
values of m, n and d∗, it is possible to design a network
topology that achieves the bound of Theorem IV.2. The
construction is suggested by the proof of the theorem, and
consists of creating a topology and routing scheme with
the maximum number of different binary encodings and the
minimum number of 1s. In the following we show such a
construction when n = 36, m = 8, and d∗= 8. In this case,
ψCR =

(8
1

)
+

(8
2

)
+

⌊
0
3

⌋
= 36. We can obtain this maximum

identifiability by intersecting the paths so as to generate the
maximum number of dangling nodes traversed by a single
path, and all possible intersections of two paths. A topology
that meets the above bound is the half-grid in Figure 3. All
the nodes are identifiable with just 8 monitoring paths with
the following pairs of endpoints: (c1, h1), (c2, h1), (c3, h2),
(c4, h3), (c5, h4), (c6, h5), (c7, h6), and (c8, h7) and routing
as in Figure 3. The above construction can be generalized to
the case of any m provided that d∗= m and n = m(m+1)/2.
We show in Figure 10 that in a more general setting, this
topology and routing scheme do not always meet the bound
of Theorem IV.2, but approximate it closely.

V. SERVICE NETWORK MONITORING

We consider a service network where we monitor paths
between clients and servers, under consistent routing in the
case of (i) single-server and (ii) multi-server monitoring.

A. Single-Server Monitoring
1) Identifiability Bound: Consider the scenario where a

single server communicates with multiple clients and we can
only monitor the paths in between. The number of paths m
coincides with the number of clients, and all the monitoring
paths must share a common endpoint (the server).

We start by showing the special structure of the topology
spanned by the monitoring paths.
Lemma V.1. Under consistent routing, any monitoring paths
with a common endpoint r must form a tree rooted at r.
Proof. We consider any two paths pi and pj . Starting from r,
the next hops on these paths lead to either a common node or
two different nodes. In the latter case, the two paths cannot
intersect at any subsequent node v, as otherwise the two path

General Network Monitoring 
Consistent routing



Tightness of the bound on number of identifiable 
nodes under consistent routing
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With n=36 nodes, m=8 monitoring paths of maximum length d*=8, we have 
Nmax=min{112,64}=64, imax=2, and 

ψcr=  %
& + %

( +	 *
+

=36.
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General Network Monitoring 
The Case of Half-Consistent Routing

Fat-tree topology (common in data centers), where we assume the routing scheme 
based on IP addressing of clients and switches as described in 

M. Al-Fares, A. Loukissas, A. Vahdat, “A Scalable, Commodity Data Center
Network Architecture”, ACM SIGCOMM 2008
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Example of half-consistent routing in a fat-tree (based on IP address masks)
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Example of half-consistent routing in a fat-tree (based on IP address masks)
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III. Half-consistent routing

Definition: If a routing scheme guarantees that any path
pi ∈ P can be divided into two segments s1(pi) and s2(pi),
such that the property of routing consistency holds for the 
set P1/2 = ∪pi∈P {s1(pi), s2(pi)}, then the
routing scheme is called  half-consistent.
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Lemma: 
Any shortest-path routing scheme on a fat-tree is half-consistent.
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Lemma. Given a path pi∈ P of maximum length d∗,
under the assumption of half-consistent routing, with m =
|P| > 1 monitoring paths, 
the maximum number of different
encodings in the rows of M(�̂�i ) is min{2m−1, 4∗(m−1), d∗}.
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Theorem (Half-consistent routing). In a general network
with n nodes, m > 1 monitoring paths, diameter d∗, under
half-consistent routing, the number of identifiable nodes is
upper bounded by

ψ hcr(m,n,d*)≤

where 

and    Nmax = m· min{2(m−1), 4 · (m− 1); d∗}. 
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Performance evaluation
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Performance evaluation
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Conclusions

• The problem of maximizing number of nodes 
whose states can be identified via Boolean 
tomography can be seen as graph-based group 
testing

• Upper bound on the number of identifiable nodes 
under different routing assumptions has been 
derived 

• Provides insight for the design of topologies and 
monitoring schemes with high identifiability
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Open problems
• Current bounds are topology agnostic. What if we know the adjacency matrix of our 

network topology?

• Algorithms for monitor deployment and path selection, with the objective to maximize 
node identifiability.

• We typically have partial knowledge and partial controllability. 

• Some nodes are known to be working, some others are known to be broken. There 
is a grey area where we want to assess damages. How does this change the 
algorithms?

• Monitors can only be placed in our own routers. We don’t own the entire network. 
What is the best we can do with the nodes that we can control?

• Some nodes/paths are more important than others, how can we design algorithms that 
prioritize identifiability of given nodes? 

• Provide further insight for the design of topologies and monitoring schemes with 
high/low identifiability
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