Problem Definition

- Given a collection of candidate path sets P under all possible designs, how well can we monitor the network using path measurement and which design is the best?
- Monitoring performance is measured by the number of nodes that are k-identifiable w.r.t P
- The optimal solution is hard due to the exponential number of path sets
- We focus on bounding the number of 1-identifiable nodes, since the upper bound on 1-identifiable would be an upper bound on k-identifiable as well

General Network Monitoring Arbitrary routing

Theorem (Identifiability under arbitrary routing). Given a network with n nodes and m monitoring paths, the maximum number of identifiable nodes under arbitrary routing satisfies

$$
\psi^{A R}(m, n) \leq \min \left\{n ; 2^{m}-1\right\} .
$$

General Network Monitoring Arbitrary routing

Theorem (Identifiability under arbitrary routing). Given a network with n nodes and m monitoring paths, the maximum number of identifiable nodes under arbitrary routing satisfies

$$
\psi^{A R}(m, n) \leq \min \left\{n ; 2^{m}-1\right\} .
$$

The bound is tight since we can construct a topology with m monitoring paths that meets this bound:

1. Take up to 2^{m} nodes
2. Give binary enumeration
3. Construct paths
4. Create the edges of the graph

General Network Monitoring Consistent routing

II. Consistent routing

Definition A set of paths P is consistent if $\forall p, p^{\prime} \in P$ and any two nodes u and v traversed by both paths (if any), p and p^{\prime} follow the same sub-path between u and v.

Definition

We define the path matrix of \hat{p}_{i} as a binary matrix $M\left(\hat{p}_{i}\right)$, in which each row is the binary encoding of a node on the path, and rows are sorted according to the sequence \hat{p}_{i}. Notice that by definition $\left.M\left(\hat{p}_{i}\right)\right|_{*, i}$ has only ones, i.e., $\left.M\left(\hat{p}_{i}\right)\right|_{r, i}=1, \forall r$.

Example of path matrix

General Network Monitoring Consistent routing

Lemma Under the assumption of consistent routing, all

 the columns in all the path matrices have consecutive ones.Lemma Given $m=|P|>1$ consistent routing paths, whose length is at most d^{*} (in number of nodes), the maximum number of different encodings in the rows of $M\left(\hat{p}_{i}\right)$ is equal to $\min \left\{2 \cdot(m-1), d^{*}\right\}, \forall p_{i} \in P$.

General Network Monitoring Consistent routing

Theorem (Identifiability with consistent routing). Given n nodes, and $m>1$ consistent routing paths of length at most d^{*} (in number of nodes), the maximum number of identifiable nodes satisfies:
$\psi^{c R}\left(m, n, d^{*}\right) \leq \min \left\{\sum_{i=1}^{i_{\max }}\binom{m}{i}+\left\lfloor\frac{N_{\max }-\sum_{i=1}^{i_{\max }} i \cdot\binom{m}{i}}{i_{\max }+1}\right\rfloor ; n\right\}$,
where $i_{\text {max }}=\max \left\{k \left\lvert\, \sum_{i=1}^{k} i \cdot\binom{m}{i} \leq N_{\max }\right.\right\}$, and $N_{\max }=m \cdot \min \left\{2 \cdot(m-1) ; d^{*}\right\}$.

General Network Monitoring Consistent routing

Proof

- Eachidentifiable node must have a unique encoding
- For every path matrix, we have $2 *(m-1)$ possible different encodings, so totally $m * \min \left\{2^{*}(m-1), d^{*}\right\}$
- We are counting multiple times the nodes that appear in multiple path matrices
- If encoding b has k digits equals to 1, then b appears among the rows of k different path matrices

General Network Monitoring Consistent routing

Proof

- Number of distinct encoding is maximized when the number of duplicate encodings is minimized, therefore their number of ones is minimized
- Minimum number of duplicate is achieved when we have $\binom{m}{1}$ different encodings with only one digit equal to one, $2\binom{m}{2}$ with two digits equal to one appearing in two path matrices and so forth until total number of encodings is equal to $N_{\text {max }}$

General Network Monitoring Consistent routing

Tightness of the bound on number of identifiable nodes under consistent routing

With $\mathrm{n}=36$ nodes, $\mathrm{m}=8$ monitoring paths of maximum length $\mathrm{d}^{*}=8$, we have $N_{\text {max }}=\min \{112,64\}=64, i_{\max }=2$, and
$\psi^{\mathrm{cr}}=\binom{8}{1}+\binom{8}{2}+\left[\frac{0}{3}\right\rfloor=36$.

General Network Monitoring The Case of Half-Consistent Routing

Fat-tree topology (common in data centers), where we assume the routing scheme based on IP addressing of clients and switches as described in
M. Al-Fares, A. Loukissas, A. Vahdat, "A Scalable, Commodity Data Center Network Architecture", ACM SIGCOMM 2008

General Network Monitoring Half-Consistent routing

Example of half-consistent routing in a fat-tree (based on IP address masks)

General Network Monitoring Half-Consistent routing

Example of half-consistent routing in a fat-tree (based on IP address masks)

General Network Monitoring Half-Consistent routing

III. Half-consistent routing

Definition: If a routing scheme guarantees that any path $\mathrm{p}_{\mathrm{i}} \in \mathrm{P}$ can be divided into two segments $\mathrm{s}_{1}\left(\mathrm{p}_{\mathrm{i}}\right)$ and $\mathrm{s}_{2}\left(\mathrm{p}_{\mathrm{i}}\right)$, such that the property of routing consistency holds for the set $\mathrm{P}_{1 / 2}=\cup_{\mathrm{pi} \in \mathrm{P}}\left\{\mathrm{s}_{\mathrm{i}}\left(\mathrm{p}_{\mathrm{i}}\right), \mathrm{s}_{2}\left(\mathrm{p}_{\mathrm{i}}\right)\right\}$, then the routing scheme is called half-consistent.

General Network Monitoring Half-Consistent routing

Lemma:

Any shortest-path routing scheme on a fat-tree is half-consistent.

General Network Monitoring Half-Consistent routing

Lemma. Given a path $p_{i} \in P$ of maximum length d^{*}, under the assumption of half-consistent routing, with $m=$ $|P|>1$ monitoring paths, the maximum number of different encodings in the rows of $M\left(\hat{p}_{i}\right)$ is $\min \left\{2^{m-1}, 4 *(m-1), d^{*}\right\}$.

General Network Monitoring Half-Consistent routing

Theorem (Half-consistent routing). In a general network with n nodes, $m>1$ monitoring paths, diameter d^{*}, under half-consistent routing, the number of identifiable nodes is upper bounded by
$\psi^{h c r}\left(m, n, d^{*}\right) \leq \sum_{i=1}^{i_{\text {max }}}\binom{m}{i}+\left\lfloor\frac{N_{\max }-\sum_{i=1}^{i_{\text {max }}} i \cdot\binom{m}{i}}{i_{\max }+1}\right\rfloor$
where $i_{\max }=\max \left\{k \left\lvert\, \sum_{i=1}^{k} i \cdot\binom{m}{i} \leq N_{\max }\right.\right\}$ and $\quad N_{\max }=m \cdot \min \left\{2^{(m-1)}, 4 \cdot(m-1) ; d^{*}\right\}$.

Performance evaluation

Fig. 14. Upper and lower bounds on Fig. 15. Bound under consistent routthe number of identifiable nodes in ing (Theorem IV.2) with varying numa half-grid network with $n=78$, ber of paths and maximum path length varying m, and $d^{*}=12$. (network as in Figure 14).

Performance evaluation

Fig. 20. Comparison between the Fig. 21. Comparison between bounds of Theorem IV. 2 (consistent the bound of Theorem A. 1 (halfrouting) and A. 1 (half consistent routing) - 100 nodes, varying d^{*}.
 consistent routing) and a lower bound for a 4 -ary fat-tree with three layers.

Conclusions

- The problem of maximizing number of nodes whose states can be identified via Boolean tomography can be seen as graph-based group testing
- Upper bound on the number of identifiable nodes under different routing assumptions has been derived
- Provides insight for the design of topologies and monitoring schemes with high identifiability

Open problems

- Current bounds are topology agnostic. What if we know the adjacency matrix of our network topology?
- Algorithms for monitor deployment and path selection, with the objective to maximize node identifiability.
- We typically have partial knowledge and partial controllability.
- Some nodes are known to be working, some others are known to be broken. There is a grey area where we want to assess damages. How does this change the algorithms?
- Monitors can only be placed in our own routers. We don't own the entire network. What is the best we can do with the nodes that we can control?
- Some nodes/paths are more important than others, how can we design algorithms that prioritize identifiability of given nodes?
- Provide further insight for the design of topologies and monitoring schemes with high/low identifiability

Thank You!

