MARKOV PROCESSES

Valerio Di Valerio

Stochastic Process

\square Definition: a stochastic process is a collection of random variables $\{X(t)\}$ indexed by time $t \in T$
\square Each $X(t) \in X$ is a random variable that satisfy some probability law
$\square X$ is usually called the state space of the process
\square A realization of a stochastic process (sample path) is a specific sequence $X\left(t_{0}\right)=x_{0}, X\left(t_{1}\right)=x_{1}, \ldots$

Stochastic Process

\square Example: toss a coin an infinite number of times, i.e., $t=1,2,3, \ldots$
$\square X=\{$ Head, Tail $\}$
\square Sample path:

1	$X(i)$
1	Head
2	Head
3	Tail
4	Head

A Simple Classification

\square A stochastic process can have:

\square The process can be either continuous time, $T=$ $[0, \infty)$, or discrete time $(T=\mathbb{N})$

Examples

\square Example 1: the process represents the number of people queued at the post office
$\square X=\{1, \ldots, \infty\}$
discrete state space
$\square T=\mathbb{R}^{+} \cup 0$
continuous time
\square Example 2: height of a person on his/her birthday
$\square X=\mathbb{R}$
$\square T=\{1,2, \ldots\}$
continuous state space discrete time

Stochastic Process Dynamics

\square The process dynamics can be defined using the transition probabilities
\square They specify the stochastic evolution of the process through its states
\square For a discrete time process, transition probabilities can be defined as follows

$$
P\left(X_{k+1}=x_{k+1} \mid X_{k}=x_{k}, X_{k-1}=x_{k-1}, \ldots, X_{0}=x_{0}\right)
$$

Stochastic Process Dynamics

\square Example: we have a bag with 20 balls.

- 10 are red and 10 are blue
\square At time any $t=1,2, \ldots, n$, we draw a ball from the bag, without replacements
\square Question: what is $P\left(X_{1}=r\right)$?
\square Question: what is $P\left(X_{2}=r \mid X_{1}=r\right)$?
\square Question: what is $P\left(X_{3}=b \mid X_{2}=r, X_{1}=r\right)$?

Markov Property

\square The term Markov property refers to the memoryless property of a stochastic process:
\square For a discrete time process, the Markov property is defined as:

$$
\begin{gathered}
P\left(X_{k+1}=x_{k+1} \mid X_{k}=x_{k}, X_{k-1}=x_{k-1}, \ldots, X_{0}=x_{0}\right) \\
= \\
\boldsymbol{P}\left(\boldsymbol{X}_{\boldsymbol{k + 1}}=\boldsymbol{x}_{\boldsymbol{k + 1}} \mid \boldsymbol{X}_{\boldsymbol{k}}=\boldsymbol{x}_{\boldsymbol{k}}\right)
\end{gathered}
$$

\square Definition: a stochastic process that satisfies the Markov property is called Markov process
\square If the state space is discrete, we refers to these processes as Markov Chains

Time-homogeneous Markov chains

\square A Markov chain is time-homogeneous if transition probabilities are time-independent

$$
P\left(X_{k+1}=x_{k+1} \mid X_{k}=x_{k}\right) \text { is the same for all } k
$$

\square If the state space is discrete and finite, transition probabilities are usually represented using a matrix...

$$
P=\left[\begin{array}{ccc}
p_{1,1} & \cdots & p_{n, 1} \\
\vdots & \ddots & \vdots \\
p_{n, 1} & \cdots & p_{n, n}
\end{array}\right]
$$

\square...and the Markov chain can be easily represented using a graph!

Example: Student Markov Chain

Transitory Analysis of a Markov Chain

\square We can define the state probability as

$$
\pi_{j}(k)=P\left(X_{k}=j\right)
$$

\square Definition: it is the probability of finding the process in state j at time k
\square Simple theory allows us to compute "next step" probabilities as

$$
\pi_{j}(k+1)=\sum_{i \in X} P\left(X_{k+1}=j \mid X_{k}=i\right) \cdot \pi_{i}(k)
$$

Transitory Analysis of a Markov Chain

\square If we consider all states, we can use the vector

$$
\pi(k)=\left[\pi_{0}(k), \pi_{1}(k), \pi_{2}(k), \ldots\right]
$$

\square In matrix notation it becomes

$$
\pi(k+1)=\pi(k) \cdot P
$$

\square But, if we know initial probabilities $\pi(0)$, then

$$
\pi(k+1)=\pi(0) \cdot P^{k}
$$

A simple example

A simple example

Transition Probabilities

$$
P=\left[\begin{array}{ccc}
0 & 0.4 & 0.6 \\
0.1 & 0.9 & 0 \\
0.7 & 0 & 0.3
\end{array}\right]
$$

$$
\left\{\begin{array}{l}
\pi_{0}(k+1)=0.1 \pi_{1}(k)+0.7 \pi_{2}(k) \\
\pi_{1}(k+1)=0.4 \pi_{0}(k)+0.9 \pi_{1}(k) \\
\pi_{2}(k+1)=0.6 \pi_{0}(k)+0.3 \pi_{2}(k)
\end{array}\right.
$$

State Classification

Simple Exercise

Simple Exercise

Analysis of a DTMC

\square Let us define the stationary probability of a DTMC as

$$
\pi_{j}=\lim _{k \rightarrow \infty} \pi_{j}(k)
$$

\square It is the probability to find, on the long run, the DTMC in a certain state j
\square Question 1: there exists this steady-state probability?
\square Question 2: if any, what is the stationary probability that the DTCM is in state j, i.e., how can I compute it?

Some Definitions...

\square A state j is said to be accessible from a state i (written $i \rightarrow j$) if a system started in state i has a non-zero probability of transitioning into state j
\square A state i is said to communicate with state j (written $i \leftrightarrow j$) if both $i \rightarrow j$ and $j \rightarrow i$
\square A set of states C is a communicating class if every pair of states in C communicates with each other, and no state in C is communicating with any state not in C
\square A Markov chain is said to be irreducible if its state space is a single communicating class

...and some useful results

\square Result 1: if a DTMC has a finite number of states, then at least one state is recurrent
\square Result 2: if i is recurrent and $i \rightarrow j$, then even state j is recurrent
\square Results 3: if X^{\prime} is an irreducible set of states, then states are all positive recurrent, recurrent null or transient
\square Results 4: if X^{\prime} is a finite irreducible subset of the state space X, then every state in X^{\prime} is positive recurrent

Analysis of a DTMC

\square Theorem 1: in a DTMC irreducible and aperiodic there exists the limits

$$
\pi_{j}=\lim _{k \rightarrow \infty} \pi_{j}(k), \forall j \in X
$$

and they are independent from the initial distribution π_{0}
\square Theorem 2: in a DTMC irreducible and aperiodic in which all states are transient or recurrent null

$$
\pi_{j}=\lim _{k \rightarrow \infty} \pi_{j}(k)=0, \forall j \in X
$$

Existence of steady-state distribution

\square Consider a time-homogeneous Markov chain is irreducible and aperiodic. Then, the following results hold:

- If the Markov chain is positive recurrent, then there exists a unique π so that $\pi_{j}=\lim _{k \rightarrow \infty} \pi_{j}(k), \forall j$, and $\pi=\pi \cdot P$
- If there exists a positive vector π such $\pi=\pi \cdot P$ and $\sum_{j \in X} \pi_{j}=1$, then it must be the stationary distribution and the Markov chain is positive recurrent
\square If there exists a positive vector π such that $\pi=\pi \cdot P$ and $\sum_{j \in X} \pi_{j}=\infty$ is infinite, then a stationary distribution does not exist and $\lim _{k \rightarrow \infty} \pi_{j}(k)=0$ for all j

Analysis of a DTMC

\square To sum up: In order to compute the steady-state probabilities, we have to solve the following linear system:

$$
\left\{\begin{array}{l}
\pi=\pi \cdot P \\
\sum_{j} \pi_{j}=1
\end{array}\right.
$$

A simple example

A simple example

This DTMC is:

- Irreducible
- Aperiodic
0.3
- It has a finite number of states

A simple example

Linear System

$$
\left\{\begin{array}{c}
\pi_{0}=0.1 \pi_{1}+0.7 \pi_{2} \\
\pi_{1}=0.4 \pi_{0}+0.9 \pi_{1} \\
\pi_{2}=0.6 \pi_{0}+0.3 \pi_{2} \\
\pi_{0}+\pi_{1}+\pi_{2}=1
\end{array}\right.
$$

Transition Probabilities

$$
P=\left[\begin{array}{ccc}
0 & 0.4 & 0.6 \\
0.1 & 0.9 & 0 \\
0.7 & 0 & 0.3
\end{array}\right]
$$

Solution

$$
\left\{\begin{array}{l}
\pi_{0}=0.17 \\
\pi_{1}=0.68 \\
\pi_{2}=0.15
\end{array}\right.
$$

Time spent in a state

\square Can we characterize the time spent in each state by the DTMC?
\square Let's focus on state 1 of the previous example

\square With $p=0.1$ the DTMC will "jump" to state 0 , while with $1-p=0.1$ will remain in state 1
\square Question: do you remind something similar??

Time spent in a state

\square The time spent in a state follows a geometric distribution!
\square The geometric distribution is used for modelling the number of trials up to and including the first success
$\square p=$ success
$\square 1-p=$ failure
$\square \mathrm{P}($ Success in K trials $)=p \cdot(1-p)^{K}$
\square Key feature of this distribution: the geometric distribution is memoryless!!

$$
P(T=m+n \mid T>m)=P(T=n)
$$

A more complex example

\square A discrete time birth-death process

\square The DTMC is irreducible and aperiodic

Birth-death process

\square There exists the steady-state probabilities?
\square Intuitively

- if $p<1 / 2$ the DTMC will probably diverge, so maybe states are transient
- if $p>1 / 2$ the DTMC will probably remain "near" 0 , so state 0 could be positive recurrent, and since the DTMC is irreducible, all states would be positive recurrent
- if $p=1 / 2$ the DTMC will probably neither diverge or converge, so maybe states are recurrent null

Birth-death process solution

CHECK OUT THE DASHBOARD!

Birth-death process solution

Continuous Time Markov Chain (CTMC)

\square Markov property for continuous time MC

$$
P(X(s+\tau)=j \mid X(s)=i)
$$

\square No state memory: next state depends only on the current state, and not on all history
\square No age memory: the time already spent in the current state is irrelevant to determining the remaining time and the next state

DTMC versus CTMC

\square The core of Discrete Time MC is the probability matrix P
\square Remember: It defines the probability to "jump" to another state in the next slot
\square The core of a Continuous Time MC is the rate matrix Q
\square It defines the rate at which the process transits from one state to another
\square E.g., the MC transits from state 0 to state 1 with a rate of 5 times per seconds

Homogeneous CTMC

A CTMC is said to be homogeneous if

$$
P(X(s+\tau)=j \mid X(s)=i)
$$

is independent from \boldsymbol{S}, i.e., only the "relative time" $\boldsymbol{\tau}$ matters

Design a CTMC

Design a CTMC

Existence of steady state distribution

\square Consider a time-homogeneous Markov chain is irreducible and aperiodic. Then, the following results hold:

- If the Markov chain is positive recurrent, then there exists a unique π so that $\pi Q=0$ and $\pi_{j}=\lim _{k \rightarrow \infty} \pi_{j}(k), \forall j$
- If there exists a positive vector π such $\pi Q=0$ and $\sum_{j \in X} \pi_{j}=1$, then it must be the stationary distribution and the Markov chain is positive recurrent

Analysis of a CTMC

\square To sum up: In order to compute the steady-state probabilities, we have to solve the following linear system:

$$
\left\{\begin{array}{l}
\pi \cdot Q=0 \\
\sum_{j} \pi_{j}=1
\end{array}\right.
$$

Time spent in a state

\square If $v(i)$ is the time spent in state i, for CTMC it follows an exponential distribution:

$$
P(v(j)<t)=1-e^{-\Lambda(j) t}
$$

where $\boldsymbol{\Lambda}(\boldsymbol{j})$ is the exit rate from state \boldsymbol{j}
\square Memoryless property: the exponential distribution is memoryless!

Exercise: model a wireless link using a

DTMC

Consider a simple model of a wireless link where, due to channel conditions, either one packet or no packet can be served in each time slot. Let $s[k]$ denote the number of packets served in time slot k and suppose that $s[k]$ are i.i.d. Bernoulli random variables with mean μ. Further, suppose that packets arrive to this wireless link according to a Bernoulli process with mean λ, i.e., $a[k]$ is Bernoulli with mean λ where $a[k]$ is the number of arrivals in time slot k and $a[k]$ are i.i.d. across time slots. Assume that $a[k]$ and $s[k]$ are independent processes.

We specify the following order in which events occur in each time slot:
\square We assume that any packet arrival occurs first in the time slot, followed by any packet departure, i.e., a packet that arrives in a time slot can be served in the same time slot
\square Packets that are not served in a time slot are queued in a buffer for service in a future time slot.

Compute, if exists, the steady-state distribution.

