INTERNET MEASUREMENT: INFRASTRUCTURE

Gaia Maselli
maselli@di.uniroma1.it
Properties of the Internet’s Infrastructure

• *Physical* device properties (physical components that make up the Internet)

• *Topology* properties (how the components are interconnected)
Physical properties of the Internet

• The basic building blocks of the Internet are
 • end systems
 • Links
 • routers

• Links and routers are interesting for Internet measurement
Physical properties of the Internet: links

Links

- A single point-to-point communication medium
- A sequence of connections that are switched below the IP layer (multiple Ethernet segments)
- A broadcast medium (WiFi)

Link properties

- Propagation delay (time required to traverse the link)
- Capacity (the maximum data rate that can be achieved by the link)

Performance properties associated with a link

- Packet delay
- Packet loss
- Packet jitter: variability of packet inter arrival times
Physical properties of the Internet: routers

Routers

- Move packets from a link to another
- The rate at which an outgoing interface moves packets away is the outgoing link’s capacity
- Since packets may arrive faster than the outgoing interface can take them away, internal buffers are required to hold packets awaiting transmission on each outgoing interface
- Buffers are FIFO queue
- Packets arriving at a full buffer are discarded (drop-tail service)
- Routers can be configured to perform active queue management

Routers properties

- Set of IP addresses used on router’s interfaces
- Geographic location of the router
- Time a router requires to respond to an ICMP message
- Time a router requires to forward a packet
Physical properties of the Internet: wireless

Wireless connectivity

- Radio frequency media
- Link users to the wired infrastructure

Measurements involving wireless communication

- Signal strength
- Amount of power consumed
- Data bit rates
- Degree of coverage
- Error rates
- Link capacity
- Available and effective bandwidth
- Identifying bottleneck links
Topology properties

Interconnection of physical components can be visualized at four levels

1. Autonomous systems
2. Point of presence (one or more routers in a single location)
3. Router
4. Interface

Topology views

- AS graph
- PoP-level graph
- Router graph
- Interface graph
Interaction of traffic and network

- Physical limits imposed by the infrastructure
 - Minimum possible delay
 - Maximum possible throughput

- Network conditions influence traffic properties
 - Packet delay
 - Packet loss
 - Throughput (total, per connection, goodput)
 - Packet jitter (variability of packet inter-arrival time)

Infrastructure properties that are interesting to measure
Challenges in measurement

Poor observability (observability is not built into the design of Internet protocol and components)

- **Core simplicity**: core elements of the network are deliberately very simple and so do not support detailed measurement
 - Routers are stateless (do not keep track) with respect to the connections or flows passing through them
 - No counters are maintained
- **Hidden layers**: the layered IP model tends to impede visibility of the lower layers
 - Details on packet transmission (layer 2) are hidden at the IP level
Challenges in measurement (cont)

- **Hidden pieces**: measurement of some network components can be hampered by specialized network devices
 - Middleboxes (devices that deviate from the end-to-end architecture principle) impedes visibility of network components
 - Ex. Firewall may block UDP and ICMP packets being used by traceroute
 - NAT can prevent discovery of end systems via ping

- **Administrative barriers**: operators avoid providing information about their networks for competitive reasons
 - ISP frequently seek to hide internal details (interconnection patterns, amount of traffic carried over network links) of their networks
 - ISP block traffic that may be used to measure infrastructure (ping, SNMP)
How to measure infrastructure properties

Tools

- **Active measurement**: adding traffic to the network for the purpose of measurement
- **Passive measurement**: capturing traffic that is generated by other users and applications
- **Fused measurement**: combination of active and passive
- **Bandwidth measurement**
- **Latency measurement and estimation**
- **Geolocation**
Some active measurements

- Ping -> Connectivity, Instantaneous RTT
- Owamp -> one way packet delay
- Traceroute -> network paths, topology
- Multicast-based methods -> packet loss
Active measurement: ping

- Active methods involve adding traffic to the network for the purpose of measurement

Ping

- Metrics
 - Connectivity
 - Instantaneous RTT between the sender and the target

- Method
 - Sends ICMP ECHO packet to a target and captures the ECHO REPLY

- Characteristics:
 - Only the sender needs to be under experimental control
 - Difficult to determine the direction in which congestion is experienced
Active measurement: owamp

Owamp (one-way ping)

- Metrics
 - One way delay

- Method
 - Sends a probe packet to a demon process running on the target

- Characteristics:
 - Sender and receiver need to be under experimental control
 - Requires a demon process to run on the target, which listens for and records probe packets sent by the sender
 - Requires synchronized time
Active measurement: traceroute

Traceroute

- **Metrics**
 - Network paths
- **Method**
 - Sends packets with increasing TTL (starting at 1) to an unlikely port on a destination
Traceroute: path asymmetry

- The nodes visited by traceroute are those in *forward* path from the source to the destination.
- *Reverse* path may be different.
- The output of traceroute must be interpreted only in terms of directed path from source to destination.

- If D were sending packets to A, those packets are not guaranteed to follow the path D->C->B->A.
- They may pass through X or Y.
Traceroute: unstable paths and false edges

• It only reports the nodes visited by successive probe packets with increasing TTL
• This sequence represents a valid path if the path is stable
• If IP paths are not stable over the measurements period, then successive probes may follow different paths

- Node A may alternate between using B and X as the next hop
- Inferred path segment contains *false edge* A->B->Y
Traceroute: alias resolution

- Traceroute discovers *interfaces* rather than *routers*
- Routers along the path will generally have multiple network interfaces
- Each network interface has a different IP address
- The source IP address of the ICMP *TIME EXCEEDED* response packet is the address of the interface that the router uses when sending packets to the source

- The IP address in the source field of the *TIME EXCEEDED* response will be I_1 (address that A is able to discover)
Traceroute: alias resolution

- N.B. It not possible to form a router-level topology map from a collection of traceroute measurements.
- If X were to use traceroute to discover the path to D, and if the path passed through B, the interface discovered by X would be I_3.
- Given the two sets of path measurements (A to D and X to D) it would be not clear that both paths passed through the same node B.

Methods for alias resolution are needed!!!
Traceroute: alias resolution

- One of the methods requires to send ICMP ECHO packets to both interfaces from the same source.
- If both interfaces belong to the same router, the responses will both be sent from one interface.
- By matching ECHO REPLY messages having the same source interface, it is possible to infer that the ECHO packets were sent to a common router.
Multicast-based method

- Multicast: probes sent via multicast have the property that a single probe is replicated by routers along the path, so that network conditions experienced by a single upstream packet are reflected in measurable properties of multiple downstream packets
- Inference technique
- MINC approach allows to estimate network tomography (the study of a network’s internal characteristics using information derived from end point data)
Multicast-based method (cont)

- Three links, three end systems, and one internal node
- β_i: loss rate associated with link i
- Goal: to estimate all the three loss rates from loss measurements made only on the paths 0->2 and 0->3
- MINC works with loss events instead of loss rates
Multicast-based method (cont)

- The probe source (node 0) sends multicast packets toward the end systems (nodes 2 and 3)
- when the multicast packet reaches the branching point 1, a copy of the packet is sent down on each of the links 1->2 and 1->3
- Packets that are not sent at either node 2 or 3 are assumed to be lost on link 0->1
- Packets seen at a node, but not the other, are assumed to be lost on the link leading to the node where the packet is unseen
Multicast-based method (cont)

- Repeating the experiment many times it is possible to build up an estimate of the loss rates on each of the three links.
- Losses on different links are assumed to be independent.

Maximum likelihood estimator of loss rates

- \{00, 01, 10, 11\} : four possible events when a probe is sent.
 - 1: the probe is received at an endpoint.
 - 0: the probe is lost somewhere in the network.
 - Ex. Event 01: probe is lost on link 1->2 but successfully transmitted to node 3.
Multicast-based method (cont)

• Let \(p(x) \) denote the proportion of trials in which the event \(x \) is observed

• *Per-link loss rates* can be estimated as

\[
\hat{\beta}_1 = 1 - \frac{(p(01) + p(11)) \cdot (p(10) + p(11))}{p(11)}
\]

\[
\hat{\beta}_2 = 1 - \frac{p(11)}{p(01) + p(11)}
\]

\[
\hat{\beta}_3 = 1 - \frac{p(11)}{p(10) + p(11)}
\]

Proportion of pkts successfully received at 2
Passive measurement

- BGP -> Internet AS-level topology
- OSPF -> internal AS topology
Passive measurement: BGP

Goal: Internet AS-level topology

- BGP routing tables provide partial information about the AS-level topology (connections between ASes)
- The fact that two ASes appear in sequence in an AS path is evidence that they are directly connected
- Each AS advertises to its neighbors the routes it knows
- To understand how traffic flows into any particular AS, it is necessary to obtain BGP tables (views) from many other ASes
- routeviews repository: collects BGP views from a large set of ASes
- Routeviews was mainly intended to aid network operators, but it is used as data source for passive Internet topology monitoring and analysis
Example of data from routeviews
Passive measurement: OSPF

- Goal: internal AS topology
- Capturing control plane traffic generated by interior gateway protocol such as OSPF
 - Link state announcements (LSA)
 - Topology changes are indicated in LSA
Fused measurement

- In measuring infrastructure or discovering topology characteristics, it is often useful to fuse different kinds of measurement, including combining both active and passive measurements.
- Passive measurement can be used to obtain a first view of the system and then use active measurement for specific and restricted goals.
Bandwidth measurement

- Packet pair method
- Size delay method
Bandwidth measurement: motivation

- Measurement of bandwidth is important for applications that intend to adapt their behavior to the properties of the network
 - Streaming media applications (adjust transmission rate to the network bandwidth)
 - Server selection (find a server with an appropriate bandwidth connection to the client)
 - Estimating the bandwidth-delay product for use in TCP flow control
 - Overlay networks (to route data over good-performing path)
 - Verification of service level agreement between network customers and providers
Bandwidth measurement: techniques

• Generally bandwidth measurement is an *active process* in which packets are injected into the network and the measurement process is based on resulting observations.

• Sometimes both endpoints of the measurement path are assumed to be instrumented.

• In other settings only one endpoint is active and the other endpoint is simply expected to respond to an ICMP echo or similar trigger.

• *Passive methods* have been proposed.
Capacity

- **Capacity** (*single and end-to-end*): maximum possible throughput (IP layer rate) that a link or path can sustain.
- The minimum link capacity in the path determines the end-to-end capacity.
- The hop with the minimum capacity is the *narrow link* on the path.
Available bandwidth

- **Available bandwidth** (*single and end-to-end*): portion of capacity that is not being used during a given time interval (*residual* capacity)
- Depends on the traffic load and is a time-varying metric
- At any specific instant of time a link is either transmitting a packet at the full capacity (1) or it is idle (0)
- Available bandwidth requires time averaging of the instantaneous utilization over the time interval of interest
- The average utilization \(\bar{u}(t - \tau, t) \) for a time period \((t - \tau, t) \)

\[
\bar{u}(t - \tau, t) = \frac{1}{\tau} \int_{t-\tau}^{t} u(x)dx
\]

- Where \(u(x) \) is the instantaneous available bandwidth on the link at time \(x \)
Available bandwidth

- Example: the link is used during 8 out of 20 time intervals between 0 and T, yielding an average utilization of 40%
Available bandwidth

- **Single hop**: If C_i is the capacity of hop i and u_i is the average utilization at that hop in the given time interval, the average available bandwidth A_i of hop i is given by the unutilized fraction of capacity

 \[A_i = (1 - u_i)C_i \]

- **H-hop path**: the available bandwidth of end-to-end path is the minimum available bandwidth of all H hops

 \[A = \min_{i=1,...,H} A_i \]

- The hop with the minimum available bandwidth is called the **tight link** of the end-to-end path
Capacity versus available bandwidth

- The minimum link capacity C_1 (*narrow link*) determines the end-to-end capacity
- The minimum available bandwidth A_3 (*tight link*) determines the end-to-end available bandwidth
Bulk transfer capacity (BTC)

- Achievable throughput by a TCP connection
- TCP specific metrics
- BTC depends on how TCP share bandwidth with other TCP flows
Packet-pair method to measure end-to-end capacity

- The source sends multiple *packet pairs* to the receiver.
- Each packet pair consists of two packets of the same size sent back-to-back.
- The dispersion of a packet pair at a specific link of the path is the time distance between the last bit of each packet.

![Diagram illustrating the packet-pair method](image)
Packet-pair method to measure end-to-end capacity

- If a link of capacity C_0 connects the source to the path and the probing packets are of size L, the dispersion of the packet pair at that first link is

\[\Delta_0 = \frac{L}{C_0} \]

- In general if the dispersion prior to a link of capacity C_i is Δ_{in}, assuming that the link does not carry other traffic, the dispersion after the link will be

\[\Delta_{out} = \max \left(\Delta_{in}, \frac{L}{C_i} \right) \]
Packet-pair method to measure end-to-end capacity

- After a packet pair goes through each link along an otherwise empty path, the dispersion Δ_R that the receiver will measure is

$$\Delta_R = \max_{i=0,...,H} \left(\frac{L}{C_i} \right) = \frac{L}{\min_{i=0,...,H}(C_i)} = \frac{L}{C}$$

- Where C is the end-to-end capacity of the path. Thus the receiver can estimate the path capacity from

$$C = \frac{L}{\Delta_R}$$
Observations on packet-pair method

- The assumption that the path is empty of any other traffic (referred to as cross traffic) is far from realistic.
- Cross traffic can either increase or decrease the dispersion ΔR, causing underestimation or overestimation of the path capacity.

Capacity underestimation: if cross traffic packets are transmitted between the probing packet pair at a specific link, increasing the dispersion to more than L/C.

Capacity overestimation: if cross traffic delays the first probe packet of a packet pair more than the second packet.