MEASUREMENT: MONITORS & A FIRST LOOK AT INTERNET MEASUREMENTS

Gaia Maselli maselli@di.uniroma1.it

Performance measurement

To measure the performance of a system you need at least two tools

- A tool to load the system: load generator
- A tool to measure the results: monitor

Monitor

- A monitor is a tool used to observed the activities on a system
- Monitors observe the performance of systems, collect performance statistics, analyze the data, and display results
- Reasons to monitor a system
- To optimize system performance
- To measure resource utilization
- To find the performance bottleneck
- To tune the system
- To characterize the workload

Terminolgy

- Event: a change in the system state (ex. Arrival of a packet)
- Trace: a log of events usually including the time of the event, the type of the event, and other important parameters associated with the event
- Overhead: consumption of system resources to run the monitor (ex. CPU or storage)
- Domain: the set of activities observable by the monitor
- Input rate: the maximum frequency of events that a monitor can correctly observe
 - Burst mode: specifies the rate at which an event can occur for a short duration
 - Sustained mode: the rate that the monitor can tolerate for long durations
- Resolution: the coarseness of the information observed (ex. A monitor may be able to record time only in units of 16 milliseconds)

Monitor classification

- Event driven: is activated only by the occurrence of certain events
- Timer driven (sampling monitor): is activated at fixed time intervals by clock interrupts
- 1. **Software** monitors
 - Issues in buffer size (they record data in buffers and then into disk or other storage), data compression and analysis (save memory but adds overhead)
- Hardware monitors: a separate piece of equipment attached to the system being monitored (no system resources are consumed)
- Firmware and hybrid monitors (network monitoring where existing network interfaces can be easily microprogrammed to monitor all traffic on the network)

Monitor classification (cont)

Distributed-system monitors: several components that work separately and concurrently

Ex. To determine the link with the highest error rate, the errors at each and every link in a network should be observed.

- Observation: raw data gathering
 - Implicit spying: promiscuously observing the activity of the system (packet sniffer)
 - **Explicit instrumenting**: incorporating trace points, probe points, hooks, or counters in the system
 - Probing: making request on the system to sense its current performance
- Collection: data gathering (from a group of observer)
 - Synchronization issues: time stamp from different observer cannot be compared unless the observers' clocks are close to each other within some tolerance
- Analysis: can be performed in the observer or the analyzer depending on the specific ase (highest error rate => analyzer)

Measurement

Performance evaluation technique which can be applicable to any existing network or prototype

- Internet
- Sensor network (terrestrial & underwater)
- RFID systems
- •

Internet measurement

Internet measurement

Motivation

- Many quantitative measures of the internet are absent
 - Internet is not the result of a centralized design
 - It is constantly changing in size, configuration, traffic, and applications mix
- How big is the Internet?
- How much traffic flows over the Internet?
- What is the structure of the Internet?
- What are the statistical properties of network traffic?
- What demands do different applications place on the network?
- What is the capacity of the path to my server?

Measurement issues

- Internet devices do not always provide the kind of measurements that are most useful for understanding the network
- Collecting measurements of the Internet can result in huge datasets that are difficult to store, transfer, process, and analyze
- Commercial service providers often do not share information about the internal details of their networks
- No possibility for remote monitoring
- No knowledge of what is needed
- Some forms of internet measurement can violate privacy and raise security concerns
- Synchronization is an important issue

Where can measurements be made?

- At every point of the Internet network
- Inside LAN
- In and around an Internet Service Provider (organization controlling one or multiple autonomous systems)
 - At backbone routers, access routers, gateway routers, peering routers
- At network access points (NAP) or exchange points of multiple ISP

Inside LAN

- Carried out for local test-beds
- Typically not of significant interest in the "Internet" measurement sense
- Measurements of local latency and hardware related measurements are done on a LAN
- Security reasons

Inside a backbone

- ISPs constantly monitor the network for a variety of purposes
 - Ensuring availability
 - Scanning for outages or attacks
 - Topology changes
 - Compliance with service level agreements
 - Traffic trends (diurnal, weekday, and other periodicities)
- Measurements inside the backbone are done from an intraorganizational point of view
 - Help in proper provisioning of resources
 - Indicate whether router and link upgrades may be warranted
- Tools: SNMP and packet tracing

Key objectives of backbone measurements

- Capacity planning
 - To see if additional points of presence (PoPs) are needed
 - To see if existing PoPs in a network need additional capacity
 - Requires packet loss, delay and throughput measurements
- Provisioning (proper allocation of bandwidth to various links inside an ISP)
 - Different applications have varying sensitivity to latency (consider email vs. multimedia streaming)
 - Typically ISP over-provision the network, but the appropriate degree of over-provisioning has to be computed
 - Requires measurements of changes in traffic patterns at small scale and traffic across all pairs of PoPs

Key objectives of backbone measurements (cont)

- Link utilization
 - Long term information on link utilization help to identify PoP that need more capacity
 - Understanding the traffic associated to a set of costumers, an organization can provide tailored service to them
 - Requires packet delay measurement with high speed monitors
- Proper tuning of interior gateway protocol (balance traffic)
 - Monitor links and routing information to get a view of eventual traffic shifts (sudden growth in a particular protocol)
 - Requires combining traffic matrix and routing data

Key objectives of backbone measurements (cont)

Security

- Attacks and anomalies
- Requires monitoring significant changes in traffic patterns between PoPs
- Requires examine link utilizations periodically and notice significant increases

Identify failures

- Failures that are not related to attacks may affect availability
- Path failures trigger rerouting

Entry points into a network: gateway routers

Access control

 Entry points of the network are the first line of defense and the best place to filter out unwanted traffic

Overall statistics

- The netflow tool allows to export per-flow summaries of traffic which includes information about
 - start and ending time of flows,
 - duration,
 - source and destination IP and ports
 - autonomous systems
 - Fraction of traffic destined to customers inside the network
 - Portion of traffic that is transiting through the network

Entry points into a network: peering router

- Monitoring inter-domain connectivity
- Ensure balanced traffic exchange
 - Traffic volumes exchanged between private peers has be approximately equal
 - Deviations from expectation can trigger policy decisions (peering at other points) or require the exceeding peer to pay for the surplus traffic
- Monitoring BGP
 - Examining convergence
 - Fixing problems
 - Locating routing loops
 - Faults can be deliberately injected to examine their impact, such as how long before the route is repaired, a better path is discovered, etc.

Entry points into a network: access router

- Access router connect the backbone to the set of customers
- Access routers are also the routers used to connect to web and mail server
- Availability is crucial (failure rate must be low or nonexistent)
- Some customers may require packet filtering
- Some customers may require periodic statistics and constant performance monitoring to ensure that anomalous events are kept to a minimum
- Many customers expect the access provider to look for attacks and sudden fluctuations in network traffic ina proactive manner

Entry points into a network: exchange points

- An Internet Exchange Point permits various ISPs to exchange traffic
- There are commercial, government and research/ education exchange points
- One of the primary purposes of a network exchange point is to keep traffic local, i.e., move traffic between two participants without having to route it through long distance routes
- Measuring at exchange points allows to get a broader idea of shifts in traffic patterns (increasing online gaming, etc.)

Wide area network

- The measurement sites examined so far are restricted to a single location or point of presence
- The amount of traffic at each of these places may differ significantly
- Any internet topology related measurement has to carried out in the wide area
- Measurements on a wide area network: across the Internet on multiple locations
 - Coordinated and carried out simultaneously
 - Separately over a period of time

WAN: various places in the network

- WAN measurements are done by researchers and measurement companies
- Typical locations: all the ones listed in the previous slides but across a wider area: at multiple point of presence on the Internet

WAN: multi-site measurements

- A collection of nodes are used for simultaneous and cooperative measurement
- Example: to obtain a measure of how typical users might experience a Web site, measurements might be carried out on several locations on the Internet corresponding to different user populations
- Carrying out multi-site measurements in a coordinated fashion may require
 - clock synchronization
 - Execution serialization
 - A command and control mechanism capable of handling access and resource control
- Available platforms: NIMI and PlanetLab
- Representativeness: user populations, choices of clients, servers, etc. are reasonably well represented so that proper inferences can be made

Role of time

- Synchronization is the process of ensuring that physically distributed processor have a common notion of time
- Many measurement tasks require accurate time measurement
 - Packet round trip time
 - Packet delay across routers and over links
 - Producing a time-ordered view of measurements taken at different places in the network
 - Response time and throughput
- Synchronization is a challenging issue as the Internet is a distributed system with components often separated by considerable distances
- In the case an accurate clock exists, the distance between component induces communication latency which can make clock readings stale by the time they arrive

Definition

- t: true time at any instant
- C(t): apparent time reported by a clock at time t
- **Offset** of a clock $\theta(t) = \theta(t) C(t)$: the difference between the time it reports and the true time.

An accurate clock has always $\theta(t)=0$

• **Rate** of a clock $\gamma(t) = dC(t)/dt$: the first derivative of its apparent time with respect to true time.

An accurate clock has $\gamma(t)$ close to 1

• **Skew** = γ -1 is the difference between its rate and the correct rate

Observations

- Accuracy is a more stringent requirement than zero skew
- A clock that has large offset (is inaccurate) but has zero
 skew is still useful for certain type of measurement
 - Packet round trip time
 - Packet inter arrival time
- Measurement with one-away packet delay or time ordering of events occurring in different places reuqires clocks with zero offset

Sources of time information

External time sources

- Radio services that disseminate time information
- Radio clocks
- Global Positioning System (GPS): a constellation of 32 satellites in 12-hour orbit, available worldwide
 - Requires large antennas
 - outdoor
- CDMA cellular phone system
 - Indoor and outdoor
 - Available in areas having CDMA telephony providers (not in Europe)

Sources of time information

PC-based clocks

- Standard PCs have two clocks
- 1. A battery-powered *hardware clock* keeps track of time when the system is turned off, and is not typically used when the system is running
- 2. Software clock is the usual source of time while the system is running
 - To read it: gettimeofday() or GetsystemTime()
- 3. Time Stamp Counter (TSC) register which is incremented every processor cycle

Synchronized time

- Many Internet measurement tasks involve measurements taken using different clocks.
- Ex. One way packet delay measurements involve measuring the departure time of a packet in one location and the arrival time of the packet at another point.
- Accurate determination of the true delay can be obtained in one of two ways:
- Using synchronized clocks => Network Time Protocol (NTP)
- 2. Inferring clock offsets and removing their effects after measurements are made (see Paxson ACM SIGMETRICS 98)