
15Graphics and Java 2D

One picture is worth ten
thousand words.
—Chinese proverb

Treat nature in terms of the
cylinder, the sphere, the cone, all
in perspective.
—Paul Cézanne

Colors, like features, follow the
changes of the emotions.
—Pablo Picasso

Nothing ever becomes real till it
is experienced—even a proverb
is no proverb to you till your life
has illustrated it.
—John Keats

O b j e c t i v e s
In this chapter you’ll learn:

! To understand graphics
contexts and graphics
objects.

! To manipulate colors and
fonts.

! To use methods of class
Graphics to draw various
shapes.

! To use methods of class
Graphics2D from theJava
2D API to draw various
shapes.

! To specify Paint and
Stroke characteristics of
shapes displayed with
Graphics2D.

632 Chapter 15 Graphics and Java 2D

15.1 Introduction
In this chapter, we overview several of Java’s capabilities for drawing two-dimensional
shapes, controlling colors and controlling fonts. Part of Java’s initial appeal was its support
for graphics that enabled programmers to visually enhance their applications. Java now
contains many more sophisticated drawing capabilities as part of the Java 2D API. This
chapter begins by introducing many of Java’s original drawing capabilities. Next we pres-
ent several of the more powerful Java 2D capabilities, such as controlling the style of lines
used to draw shapes and the way shapes are filled with colors and patterns. The classes that
were part of Java’s original graphics capabilities are now considered to be part of the Java
2D API.

Figure 15.1 shows a portion of the Java class hierarchy that includes several of the
basic graphics classes and Java 2D API classes and interfaces covered in this chapter. Class
Color contains methods and constants for manipulating colors. Class JComponent con-
tains method paintComponent, which is used to draw graphics on a component. Class
Font contains methods and constants for manipulating fonts. Class FontMetrics contains
methods for obtaining font information. Class Graphics contains methods for drawing
strings, lines, rectangles and other shapes. Class Graphics2D, which extends class
Graphics, is used for drawing with the Java 2D API. Class Polygon contains methods for
creating polygons. The bottom half of the figure lists several classes and interfaces from the
Java 2D API. Class BasicStroke helps specify the drawing characteristics of lines. Classes
GradientPaint and TexturePaint help specify the characteristics for filling shapes with
colors or patterns. Classes GeneralPath, Line2D, Arc2D, Ellipse2D, Rectangle2D and
RoundRectangle2D represent several Java 2D shapes.

To begin drawing in Java, we must first understand Java’s coordinate system
(Fig. 15.2), which is a scheme for identifying every point on the screen. By default, the
upper-left corner of a GUI component (e.g., a window) has the coordinates (0, 0). A coor-
dinate pair is composed of an x-coordinate (the horizontal coordinate) and a y-coordinate
(the vertical coordinate). The x-coordinate is the horizontal distance moving right from
the left of the screen. The y-coordinate is the vertical distance moving down from the top
of the screen. The x-axis describes every horizontal coordinate, and the y-axis every vertical
coordinate. The coordinates are used to indicate where graphics should be displayed on a
screen. Coordinate units are measured in pixels (which stands for “picture element”). A
pixel is a display monitor’s smallest unit of resolution.

15.1 Introduction
15.2 Graphics Contexts and Graphics

Objects
15.3 Color Control
15.4 Manipulating Fonts
15.5 Drawing Lines, Rectangles and Ovals

15.6 Drawing Arcs
15.7 Drawing Polygons and Polylines
15.8 Java 2D API
15.9 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Optional GUI and Graphics Case Study: Adding Java 2D | Making a Difference

15.1 Introduction 633

Portability Tip 15.1
Different display monitors have different resolutions (i.e., the density of the pixels varies).
This can cause graphics to appear in different sizes on different monitors or on the same
monitor with different settings.

Fig. 15.1 | Classes and interfaces used in this chapter from Java’s original graphics
capabilities and from the Java 2D API.

java.awt.Color

java.lang.Object

java.awt.Component

java.awt.Font

java.awt.FontMetrics

java.awt.Graphics

java.awt.Polygon

java.awt.geom.Arc2D

java.awt.geom.Ellipse2D

java.awt.geom.Rectangle2D

java.awt.geom.RoundRectangle2D

java.awt.Graphics2D

java.awt.Container javax.swing.JComponent

«interface»
java.awt.Paint

«interface»
java.awt.Shape

«interface»
java.awt.Stroke

java.awt.BasicStroke

java.awt.GradientPaint

java.awt.TexturePaint

java.awt.geom.GeneralPath

java.awt.geom.Line2D

java.awt.geom.RectangularShape

634 Chapter 15 Graphics and Java 2D

15.2 Graphics Contexts and Graphics Objects
A graphics context enables drawing on the screen. A Graphics object manages a graphics
context and draws pixels on the screen that represent text and other graphical objects (e.g.,
lines, ellipses, rectangles and other polygons). Graphics objects contain methods for draw-
ing, font manipulation, color manipulation and the like.

Class Graphics is an abstract class (i.e., Graphics objects cannot be instantiated).
This contributes to Java’s portability. Because drawing is performed differently on every
platform that supports Java, there cannot be only one implementation of the drawing
capabilities across all systems. For example, the graphics capabilities that enable a PC run-
ning Microsoft Windows to draw a rectangle are different from those that enable a Linux
workstation to draw a rectangle—and they’re both different from the graphics capabilities
that enable a Macintosh to draw a rectangle. When Java is implemented on each platform,
a subclass of Graphics is created that implements the drawing capabilities. This imple-
mentation is hidden by class Graphics, which supplies the interface that enables us to use
graphics in a platform-independent manner.

Recall from Chapter 14 that class Component is the superclass for many of the classes
in package java.awt. Class JComponent (package javax.swing), which inherits indirectly
from class Component, contains a paintComponent method that can be used to draw
graphics. Method paintComponent takes a Graphics object as an argument. This object is
passed to the paintComponent method by the system when a lightweight Swing compo-
nent needs to be repainted. The header for the paintComponent method is

Parameter g receives a reference to an instance of the system-specific subclass that Graph-
ics extends. The preceding method header should look familiar to you—it’s the same one
we used in some of the applications in Chapter 14. Actually, class JComponent is a super-
class of JPanel. Many capabilities of class JPanel are inherited from class JComponent.

You seldom call method paintComponent directly, because drawing graphics is an
event-driven process. As we mentioned in Chapter 11, Java uses a multithreaded model of
program execution. Each thread is a parallel activity. Each program can have many
threads. When you create a GUI-based application, one of those threads is known as the
event-dispatch thread (EDT)—it’s used to process all GUI events. All drawing and
manipulation of GUI components should be performed in that thread. When a GUI
application executes, the application container calls method paintComponent (in the

Fig. 15.2 | Java coordinate system. Units are measured in pixels.

public void paintComponent(Graphics g)

(0, 0)

(x, y)

+y

+x

y-axis

x-axis

15.3 Color Control 635

event-dispatch thread) for each lightweight component as the GUI is displayed. For
paintComponent to be called again, an event must occur (such as covering and uncovering
the component with another window).

If you need paintComponent to execute (i.e., if you want to update the graphics drawn
on a Swing component), you can call method repaint, which is inherited by all JCompo-
nents indirectly from class Component (package java.awt). The header for repaint is

15.3 Color Control
Class Color declares methods and constants for manipulating colors in a Java program.
The predeclared color constants are summarized in Fig. 15.3, and several color methods
and constructors are summarized in Fig. 15.4. Two of the methods in Fig. 15.4 are Graph-
ics methods that are specific to colors.

public void repaint()

Color constant RGB value

public final static Color RED 255, 0, 0
public final static Color GREEN 0, 255, 0
public final static Color BLUE 0, 0, 255
public final static Color ORANGE 255, 200, 0
public final static Color PINK 255, 175, 175
public final static Color CYAN 0, 255, 255
public final static Color MAGENTA 255, 0, 255
public final static Color YELLOW 255, 255, 0
public final static Color BLACK 0, 0, 0
public final static Color WHITE 255, 255, 255
public final static Color GRAY 128, 128, 128
public final static Color LIGHT_GRAY 192, 192, 192
public final static Color DARK_GRAY 64, 64, 64

Fig. 15.3 | Color constants and their RGB values.

Method Description

Color constructors and methods
public Color(int r, int g, int b)

Creates a color based on red, green and blue components expressed as integers
from 0 to 255.

public Color(float r, float g, float b)

Creates a color based on red, green and blue components expressed as floating-
point values from 0.0 to 1.0.

Fig. 15.4 | Color methods and color-related Graphics methods. (Part 1 of 2.)

636 Chapter 15 Graphics and Java 2D

Every color is created from a red, a green and a blue component. Together these com-
ponents are called RGB values. All three RGB components can be integers in the range
from 0 to 255, or all three can be floating-point values in the range 0.0 to 1.0. The first
RGB component specifies the amount of red, the second the amount of green and the
third the amount of blue. The larger the RGB value, the greater the amount of that par-
ticular color. Java enables you to choose from 256 × 256 × 256 (approximately 16.7 mil-
lion) colors. Not all computers are capable of displaying all these colors. The computer will
display the closest color it can.

Two of class Color’s constructors are shown in Fig. 15.4—one that takes three int
arguments and one that takes three float arguments, with each argument specifying the
amount of red, green and blue. The int values must be in the range 0–255 and the float
values in the range 0.0–1.0. The new Color object will have the specified amounts of red,
green and blue. Color methods getRed, getGreen and getBlue return integer values from
0 to 255 representing the amounts of red, green and blue, respectively. Graphics method
getColor returns a Color object representing the current drawing color. Graphics method
setColor sets the current drawing color.

Drawing in Different Colors
Figures 15.5–15.6 demonstrate several methods from Fig. 15.4 by drawing filled rectan-
gles and Strings in several different colors. When the application begins execution, class
ColorJPanel’s paintComponent method (lines 10–37 of Fig. 15.5) is called to paint the
window. Line 17 uses Graphics method setColor to set the drawing color. Method set-
Color receives a Color object. The expression new Color(255, 0, 0) creates a new Color
object that represents red (red value 255, and 0 for the green and blue values). Line 18 uses
Graphics method fillRect to draw a filled rectangle in the current color. Method fill-
Rect draws a rectangle based on its four arguments. The first two integer values represent
the upper-left x-coordinate and upper-left y-coordinate, where the Graphics object begins
drawing the rectangle. The third and fourth arguments are nonnegative integers that

public int getRed()

Returns a value between 0 and 255 representing the red content.
public int getGreen()

Returns a value between 0 and 255 representing the green content.
public int getBlue()

Returns a value between 0 and 255 representing the blue content.

Graphics methods for manipulating Colors
public Color getColor()

Returns Color object representing current color for the graphics context.
public void setColor(Color c)

Sets the current color for drawing with the graphics context.

Method Description

Fig. 15.4 | Color methods and color-related Graphics methods. (Part 2 of 2.)

15.3 Color Control 637

represent the width and the height of the rectangle in pixels, respectively. A rectangle
drawn using method fillRect is filled by the current color of the Graphics object.

1 // Fig. 15.5: ColorJPanel.java
2 // Demonstrating Colors.
3 import java.awt.Graphics;
4
5 import javax.swing.JPanel;
6
7 public class ColorJPanel extends JPanel
8 {
9 // draw rectangles and Strings in different colors

10 public void paintComponent(Graphics g)
11 {
12 super.paintComponent(g); // call superclass's paintComponent
13
14 this.setBackground(Color.WHITE);
15
16 // set new drawing color using integers
17
18
19 g.drawString("Current RGB: " + , 130, 40);
20
21 // set new drawing color using floats
22
23 g.fillRect(15, 50, 100, 20);
24 g.drawString("Current RGB: " + , 130, 65);
25
26 // set new drawing color using static Color objects
27
28 g.fillRect(15, 75, 100, 20);
29 g.drawString("Current RGB: " + g.getColor(), 130, 90);
30
31 // display individual RGB values
32
33
34 g.fillRect(15, 100, 100, 20);
35 g.drawString("RGB values: " + + ", " +
36 + ", " + , 130, 115);
37 } // end method paintComponent
38 } // end class ColorJPanel

Fig. 15.5 | Color changed for drawing.

1 // Fig. 15.6: ShowColors.java
2 // Demonstrating Colors.
3 import javax.swing.JFrame;
4
5 public class ShowColors
6 {

Fig. 15.6 | Creating JFrame to display colors on JPanel. (Part 1 of 2.)

import java.awt.Color;

g.setColor(new Color(255, 0, 0));
g.fillRect(15, 25, 100, 20);

g.getColor()

g.setColor(new Color(0.50f, 0.75f, 0.0f));

g.getColor()

g.setColor(Color.BLUE);

Color color = Color.MAGENTA;
g.setColor(color);

color.getRed()
color.getGreen() color.getBlue()

638 Chapter 15 Graphics and Java 2D

Line 19 (Fig. 15.5) uses Graphics method drawString to draw a String in the cur-
rent color. The expression g.getColor() retrieves the current color from the Graphics
object. We then concatenate the Color with string "Current RGB: ", resulting in an
implicit call to class Color’s toString method. The String representation of a Color con-
tains the class name and package (java.awt.Color) and the red, green and blue values.

Lines 22–24 and 27–29 perform the same tasks again. Line 22 uses the Color con-
structor with three float arguments to create a dark green color (0.50f for red, 0.75f for
green and 0.0f for blue). Note the syntax of the values. The letter f appended to a
floating-point literal indicates that the literal should be treated as type float. Recall that
by default, floating-point literals are treated as type double.

Line 27 sets the current drawing color to one of the predeclared Color constants
(Color.BLUE). The Color constants are static, so they’re created when class Color is
loaded into memory at execution time.

The statement in lines 35–36 makes calls to Color methods getRed, getGreen and
getBlue on the predeclared Color.MAGENTA constant. Method main of class ShowColors
(lines 8–18 of Fig. 15.6) creates the JFrame that will contain a ColorJPanel object where
the colors will be displayed.

7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for ColorJPanel
11 JFrame frame = new JFrame("Using colors");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 ColorJPanel colorJPanel = new ColorJPanel(); // create ColorJPanel
15 frame.add(colorJPanel); // add colorJPanel to frame
16 frame.setSize(400, 180); // set frame size
17 frame.setVisible(true); // display frame
18 } // end main
19 } // end class ShowColors

Look-and-Feel Observation 15.1
People perceive colors differently. Choose your colors carefully to ensure that your applica-
tion is readable, both for people who can perceive color and for those who are color blind.
Try to avoid using many different colors in close proximity.

Fig. 15.6 | Creating JFrame to display colors on JPanel. (Part 2 of 2.)

15.3 Color Control 639

Package javax.swing provides the JColorChooser GUI component that enables
application users to select colors. The application of Figs. 15.7–15.8 demonstrates a JCol-
orChooser dialog. When you click the Change Color button, a JColorChooser dialog
appears. When you select a color and press the dialog’s OK button, the background color
of the application window changes.

Software Engineering Observation 15.1
To change the color, you must create a new Color object (or use one of the predeclared
Color constants). Like String objects, Color objects are immutable (not modifiable).

1 // Fig. 15.7: ShowColors2JFrame.java
2 // Choosing colors with JColorChooser.
3 import java.awt.BorderLayout;
4 import java.awt.Color;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.ActionListener;
7 import javax.swing.JButton;
8 import javax.swing.JFrame;
9

10 import javax.swing.JPanel;
11
12 public class ShowColors2JFrame extends JFrame
13 {
14 private JButton changeColorJButton;
15 private Color color = Color.LIGHT_GRAY;
16 private JPanel colorJPanel;
17
18 // set up GUI
19 public ShowColors2JFrame()
20 {
21 super("Using JColorChooser");
22
23 // create JPanel for display color
24 colorJPanel = new JPanel();
25 colorJPanel.setBackground(color);
26
27 // set up changeColorJButton and register its event handler
28 changeColorJButton = new JButton("Change Color");
29 changeColorJButton.addActionListener(
30
31 new ActionListener() // anonymous inner class
32 {
33 // display JColorChooser when user clicks button
34 public void actionPerformed(ActionEvent event)
35 {
36
37
38
39 // set default color, if no color is returned
40 if (color == null)
41 color = Color.LIGHT_GRAY;

Fig. 15.7 | JColorChooser dialog. (Part 1 of 2.)

import javax.swing.JColorChooser;

color = JColorChooser.showDialog(
ShowColors2JFrame.this, "Choose a color", color);

640 Chapter 15 Graphics and Java 2D

42
43 // change content pane's background color
44
45 } // end method actionPerformed
46 } // end anonymous inner class
47); // end call to addActionListener
48
49 add(colorJPanel, BorderLayout.CENTER); // add colorJPanel
50 add(changeColorJButton, BorderLayout.SOUTH); // add button
51
52 setSize(400, 130); // set frame size
53 setVisible(true); // display frame
54 } // end ShowColor2JFrame constructor
55 } // end class ShowColors2JFrame

1 // Fig. 15.8: ShowColors2.java
2 // Choosing colors with JColorChooser.
3 import javax.swing.JFrame;
4
5 public class ShowColors2
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 ShowColors2JFrame application = new ShowColors2JFrame();
11 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 } // end main
13 } // end class ShowColors2

Fig. 15.8 | Choosing colors with JColorChooser.

Fig. 15.7 | JColorChooser dialog. (Part 2 of 2.)

colorJPanel.setBackground(color);

Select a color from
one of the color

swatches

(a) Initial application window (b) JColorChooser window

(c) Application window after changing JPanel’s
background color

15.3 Color Control 641

Class JColorChooser provides static method showDialog, which creates a JColor-
Chooser object, attaches it to a dialog box and displays the dialog. Lines 36–37 of Fig. 15.7
invoke this method to display the color chooser dialog. Method showDialog returns the
selected Color object, or null if the user presses Cancel or closes the dialog without
pressing OK. The method takes three arguments—a reference to its parent Component, a
String to display in the title bar of the dialog and the initial selected Color for the dialog.
The parent component is a reference to the window from which the dialog is displayed (in
this case the JFrame, with the reference name frame). The dialog will be centered on the
parent. If the parent is null, the dialog is centered on the screen. While the color chooser
dialog is on the screen, the user cannot interact with the parent component until the dialog
is dismissed. This type of dialog is called a modal dialog.

After the user selects a color, lines 40–41 determine whether color is null, and, if so,
set color to Color.LIGHT_GRAY. Line 44 invokes method setBackground to change the
background color of the JPanel. Method setBackground is one of the many Component
methods that can be used on most GUI components. The user can continue to use the
Change Color button to change the background color of the application. Figure 15.8 con-
tains method main, which executes the program.

Figure 15.8(b) shows the default JColorChooser dialog that allows the user to select a
color from a variety of color swatches. There are three tabs across the top of the dialog—
Swatches, HSB and RGB. These represent three different ways to select a color. The HSB tab
allows you to select a color based on hue, saturation and brightness—values that are used to
define the amount of light in a color. We do not discuss HSB values. For more information
on them, visit en.wikipedia.org/wiki/HSL_and_HSV. The RGB tab allows you to select a
color by using sliders to select the red, green and blue components. The HSB and RGB tabs
are shown in Fig. 15.9.

Fig. 15.9 | HSB and RGB tabs of the JColorChooser dialog. (Part 1 of 2.)

642 Chapter 15 Graphics and Java 2D

15.4 Manipulating Fonts
This section introduces methods and constants for manipulating fonts. Most font meth-
ods and font constants are part of class Font. Some methods of class Font and class Graph-
ics are summarized in Fig. 15.10.

Method or constant Description

Font constants, constructors and methods
public final static int PLAIN A constant representing a plain font style.
public final static int BOLD A constant representing a bold font style.
public final static int ITALIC A constant representing an italic font style.
public Font(String name,

int style, int size)

Creates a Font object with the specified font name,
style and size.

public int getStyle() Returns an int indicating the current font style.
public int getSize() Returns an int indicating the current font size.
public String getName() Returns the current font name as a string.
public String getFamily() Returns the font’s family name as a string.
public boolean isPlain() Returns true if the font is plain, else false.
public boolean isBold() Returns true if the font is bold, else false.
public boolean isItalic() Returns true if the font is italic, else false.

Fig. 15.10 | Font-related methods and constants. (Part 1 of 2.)

Fig. 15.9 | HSB and RGB tabs of the JColorChooser dialog. (Part 2 of 2.)

Sliders to select
the red, green
and blue color

components

15.4 Manipulating Fonts 643

Class Font’s constructor takes three arguments—the font name, font style and font
size. The font name is any font currently supported by the system on which the program
is running, such as standard Java fonts Monospaced, SansSerif and Serif. The font style
is Font.PLAIN, Font.ITALIC or Font.BOLD (each is a static field of class Font). Font styles
can be used in combination (e.g., Font.ITALIC + Font.BOLD). The font size is measured
in points. A point is 1/72 of an inch. Graphics method setFont sets the current drawing
font—the font in which text will be displayed—to its Font argument.

The application of Figs. 15.11–15.12 displays text in four different fonts, with each
font in a different size. Figure 15.11 uses the Font constructor to initialize Font objects (in
lines 16, 20, 24 and 29) that are each passed to Graphics method setFont to change the
drawing font. Each call to the Font constructor passes a font name (Serif, Monospaced or
SansSerif) as a string, a font style (Font.PLAIN, Font.ITALIC or Font.BOLD) and a font
size. Once Graphics method setFont is invoked, all text displayed following the call will
appear in the new font until the font is changed. Each font’s information is displayed in
lines 17, 21, 25 and 30–31 using method drawString. The coordinates passed to draw-
String corresponds to the lower-left corner of the baseline of the font. Line 28 changes
the drawing color to red, so the next string displayed appears in red. Lines 30–31 display
information about the final Font object. Method getFont of class Graphics returns a Font
object representing the current font. Method getName returns the current font name as a
string. Method getSize returns the font size in points.

Figure 15.12 contains the main method, which creates a JFrame to display a Font-
JPanel. We add a FontJPanel object to this JFrame (line 15), which displays the graphics
created in Fig. 15.11.

Graphics methods for manipulating Fonts
public Font getFont() Returns a Font object reference representing the

current font.
public void setFont(Font f) Sets the current font to the font, style and size

specified by the Font object reference f.

Portability Tip 15.2
The number of fonts varies across systems. Java provides five font names—Serif, Mono-
spaced, SansSerif, Dialog and DialogInput—that can be used on all Java platforms.
The Java runtime environment (JRE) on each platform maps these logical font names to
actual fonts installed on the platform. The actual fonts used may vary by platform.

Software Engineering Observation 15.2
To change the font, you must create a new Font object. Font objects are immutable—class
Font has no set methods to change the characteristics of the current font.

Method or constant Description

Fig. 15.10 | Font-related methods and constants. (Part 2 of 2.)

644 Chapter 15 Graphics and Java 2D

1 // Fig. 15.11: FontJPanel.java
2 // Display strings in different fonts and colors.
3
4 import java.awt.Color;
5 import java.awt.Graphics;
6 import javax.swing.JPanel;
7
8 public class FontJPanel extends JPanel
9 {

10 // display Strings in different fonts and colors
11 public void paintComponent(Graphics g)
12 {
13 super.paintComponent(g); // call superclass's paintComponent
14
15 // set font to Serif (Times), bold, 12pt and draw a string
16
17 g.drawString("Serif 12 point bold.", 20, 30);
18
19 // set font to Monospaced (Courier), italic, 24pt and draw a string
20
21 g.drawString("Monospaced 24 point italic.", 20, 50);
22
23 // set font to SansSerif (Helvetica), plain, 14pt and draw a string
24
25 g.drawString("SansSerif 14 point plain.", 20, 70);
26
27 // set font to Serif (Times), bold/italic, 18pt and draw a string
28 g.setColor(Color.RED);
29
30 g.drawString(+ " " + +
31 " point bold italic.", 20, 90);
32 } // end method paintComponent
33 } // end class FontJPanel

Fig. 15.11 | Graphics method setFont changes the drawing font.

1 // Fig. 15.12: Fonts.java
2 // Using fonts.
3 import javax.swing.JFrame;
4
5 public class Fonts
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for FontJPanel
11 JFrame frame = new JFrame("Using fonts");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 FontJPanel fontJPanel = new FontJPanel(); // create FontJPanel
15 frame.add(fontJPanel); // add fontJPanel to frame

Fig. 15.12 | Creating a JFrame to display fonts. (Part 1 of 2.)

import java.awt.Font;

g.setFont(new Font("Serif", Font.BOLD, 12));

g.setFont(new Font("Monospaced", Font.ITALIC, 24));

g.setFont(new Font("SansSerif", Font.PLAIN, 14));

g.setFont(new Font("Serif", Font.BOLD + Font.ITALIC, 18));
g.getFont().getName() g.getFont().getSize()

15.4 Manipulating Fonts 645

Font Metrics
Sometimes it’s necessary to get information about the current drawing font, such as its
name, style and size. Several Font methods used to get font information are summarized
in Fig. 15.10. Method getStyle returns an integer value representing the current style.
The integer value returned is either Font.PLAIN, Font.ITALIC, Font.BOLD or the combi-
nation of Font.ITALIC and Font.BOLD. Method getFamily returns the name of the font
family to which the current font belongs. The name of the font family is platform specific.
Font methods are also available to test the style of the current font, and these too are sum-
marized in Fig. 15.10. Methods isPlain, isBold and isItalic return true if the current
font style is plain, bold or italic, respectively.

Figure 15.13 illustrates some of the common font metrics, which provide precise
information about a font, such as height, descent (the amount a character dips below the
baseline), ascent (the amount a character rises above the baseline) and leading (the differ-
ence between the descent of one line of text and the ascent of the line of text below it—
that is, the interline spacing).

Class FontMetrics declares several methods for obtaining font metrics. These
methods and Graphics method getFontMetrics are summarized in Fig. 15.14. The
application of Figs. 15.15–15.16 uses the methods of Fig. 15.14 to obtain font metric
information for two fonts.

16 frame.setSize(420, 150); // set frame size
17 frame.setVisible(true); // display frame
18 } // end main
19 } // end class Fonts

Fig. 15.13 | Font metrics.

Fig. 15.12 | Creating a JFrame to display fonts. (Part 2 of 2.)

ascentheight

leading

descent
baseline

646 Chapter 15 Graphics and Java 2D

Method Description

FontMetrics methods
public int getAscent() Returns the ascent of a font in points.
public int getDescent() Returns the descent of a font in points.
public int getLeading() Returns the leading of a font in points.
public int getHeight() Returns the height of a font in points.

Graphics methods for getting a Font’s FontMetrics
public FontMetrics getFontMetrics()

Returns the FontMetrics object for the current drawing Font.
public FontMetrics getFontMetrics(Font f)

Returns the FontMetrics object for the specified Font argument.

Fig. 15.14 | FontMetrics and Graphics methods for obtaining font metrics.

1 // Fig. 15.15: MetricsJPanel.java
2 // FontMetrics and Graphics methods useful for obtaining font metrics.
3 import java.awt.Font;
4
5 import java.awt.Graphics;
6 import javax.swing.JPanel;
7
8 public class MetricsJPanel extends JPanel
9 {

10 // display font metrics
11 public void paintComponent(Graphics g)
12 {
13 super.paintComponent(g); // call superclass's paintComponent
14
15 g.setFont(new Font("SansSerif", Font.BOLD, 12));
16
17 g.drawString("Current font: " + , 10, 30);
18 g.drawString("Ascent: " + , 10, 45);
19 g.drawString("Descent: " + , 10, 60);
20 g.drawString("Height: " + , 10, 75);
21 g.drawString("Leading: " + , 10, 90);
22
23 Font font = new Font("Serif", Font.ITALIC, 14);
24
25 g.setFont(font);
26 g.drawString("Current font: " + font, 10, 120);
27 g.drawString("Ascent: " + , 10, 135);
28 g.drawString("Descent: " + , 10, 150);
29 g.drawString("Height: " + , 10, 165);
30 g.drawString("Leading: " + , 10, 180);
31 } // end method paintComponent
32 } // end class MetricsJPanel

Fig. 15.15 | Font metrics.

import java.awt.FontMetrics;

FontMetrics metrics = g.getFontMetrics();
g.getFont()

metrics.getAscent()
metrics.getDescent()

metrics.getHeight()
metrics.getLeading()

metrics = g.getFontMetrics(font);

metrics.getAscent()
metrics.getDescent()

metrics.getHeight()
metrics.getLeading()

15.5 Drawing Lines, Rectangles and Ovals 647

Line 15 of Fig. 15.15 creates and sets the current drawing font to a SansSerif, bold,
12-point font. Line 16 uses Graphics method getFontMetrics to obtain the FontMetrics
object for the current font. Line 17 outputs the String representation of the Font returned
by g.getFont(). Lines 18–21 use FontMetric methods to obtain the ascent, descent,
height and leading for the font.

Line 23 creates a new Serif, italic, 14-point font. Line 24 uses a second version of
Graphics method getFontMetrics, which accepts a Font argument and returns a corre-
sponding FontMetrics object. Lines 27–30 obtain the ascent, descent, height and leading
for the font. The font metrics are slightly different for the two fonts.

15.5 Drawing Lines, Rectangles and Ovals
This section presents Graphics methods for drawing lines, rectangles and ovals. The meth-
ods and their parameters are summarized in Fig. 15.17. For each drawing method that re-
quires a width and height parameter, the width and height must be nonnegative values.
Otherwise, the shape will not display.

1 // Fig. 15.16: Metrics.java
2 // Displaying font metrics.
3 import javax.swing.JFrame;
4
5 public class Metrics
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for MetricsJPanel
11 JFrame frame = new JFrame("Demonstrating FontMetrics");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 MetricsJPanel metricsJPanel = new MetricsJPanel();
15 frame.add(metricsJPanel); // add metricsJPanel to frame
16 frame.setSize(510, 240); // set frame size
17 frame.setVisible(true); // display frame
18 } // end main
19 } // end class Metrics

Fig. 15.16 | Creating JFrame to display font metric information.

648 Chapter 15 Graphics and Java 2D

Method Description

public void drawLine(int x1, int y1, int x2, int y2)

Draws a line between the point (x1, y1) and the point (x2, y2).
public void drawRect(int x, int y, int width, int height)

Draws a rectangle of the specified width and height. The rectangle’s top-left
corner is located at (x, y). Only the outline of the rectangle is drawn using the
Graphics object’s color—the body of the rectangle is not filled with this color.

public void fillRect(int x, int y, int width, int height)

Draws a filled rectangle in the current color with the specified width and
height. The rectangle’s top-left corner is located at (x, y).

public void clearRect(int x, int y, int width, int height)

Draws a filled rectangle with the specified width and height in the current
background color. The rectangle’s top-left corner is located at (x, y). This
method is useful if you want to remove a portion of an image.

public void drawRoundRect(int x, int y, int width, int height, int arcWidth,

int arcHeight)

Draws a rectangle with rounded corners in the current color with the specified
width and height. The arcWidth and arcHeight determine the rounding of the
corners (see Fig. 15.20). Only the outline of the shape is drawn.

public void fillRoundRect(int x, int y, int width, int height, int arcWidth,

int arcHeight)

Draws a filled rectangle in the current color with rounded corners with the spec-
ified width and height. The arcWidth and arcHeight determine the rounding
of the corners (see Fig. 15.20).

public void draw3DRect(int x, int y, int width, int height, boolean b)

Draws a three-dimensional rectangle in the current color with the specified
width and height. The rectangle’s top-left corner is located at (x, y). The rectan-
gle appears raised when b is true and lowered when b is false. Only the outline
of the shape is drawn.

public void fill3DRect(int x, int y, int width, int height, boolean b)

Draws a filled three-dimensional rectangle in the current color with the speci-
fied width and height. The rectangle’s top-left corner is located at (x, y). The
rectangle appears raised when b is true and lowered when b is false.

public void drawOval(int x, int y, int width, int height)

Draws an oval in the current color with the specified width and height. The
bounding rectangle’s top-left corner is located at (x, y). The oval touches all four
sides of the bounding rectangle at the center of each side (see Fig. 15.21). Only
the outline of the shape is drawn.

public void fillOval(int x, int y, int width, int height)

Draws a filled oval in the current color with the specified width and height.
The bounding rectangle’s top-left corner is located at (x, y). The oval touches
the center of all four sides of the bounding rectangle (see Fig. 15.21).

Fig. 15.17 | Graphics methods that draw lines, rectangles and ovals.

15.5 Drawing Lines, Rectangles and Ovals 649

The application of Figs. 15.18–15.19 demonstrates drawing a variety of lines, rectan-
gles, three-dimensional rectangles, rounded rectangles and ovals. In Fig. 15.18, line 17
draws a red line, line 20 draws an empty blue rectangle and line 21 draws a filled blue rect-
angle. Methods fillRoundRect (line 24) and drawRoundRect (line 25) draw rectangles
with rounded corners. Their first two arguments specify the coordinates of the upper-left
corner of the bounding rectangle—the area in which the rounded rectangle will be drawn.
The upper-left corner coordinates are not the edge of the rounded rectangle, but the coor-
dinates where the edge would be if the rectangle had square corners. The third and fourth
arguments specify the width and height of the rectangle. The last two arguments deter-
mine the horizontal and vertical diameters of the arc (i.e., the arc width and arc height)
used to represent the corners.

Figure 15.20 labels the arc width, arc height, width and height of a rounded rectangle.
Using the same value for the arc width and arc height produces a quarter-circle at each

1 // Fig. 15.18: LinesRectsOvalsJPanel.java
2 // Drawing lines, rectangles and ovals.
3 import java.awt.Color;
4 import java.awt.Graphics;
5 import javax.swing.JPanel;
6
7 public class LinesRectsOvalsJPanel extends JPanel
8 {
9 // display various lines, rectangles and ovals

10 public void paintComponent(Graphics g)
11 {
12 super.paintComponent(g); // call superclass's paint method
13
14 this.setBackground(Color.WHITE);
15
16 g.setColor(Color.RED);
17
18
19 g.setColor(Color.BLUE);
20
21
22
23 g.setColor(Color.CYAN);
24
25
26
27 g.setColor(Color.GREEN);
28
29
30
31 g.setColor(Color.MAGENTA);
32
33
34 } // end method paintComponent
35 } // end class LinesRectsOvalsJPanel

Fig. 15.18 | Drawing lines, rectangles and ovals.

g.drawLine(5, 30, 380, 30);

g.drawRect(5, 40, 90, 55);
g.fillRect(100, 40, 90, 55);

g.fillRoundRect(195, 40, 90, 55, 50, 50);
g.drawRoundRect(290, 40, 90, 55, 20, 20);

g.draw3DRect(5, 100, 90, 55, true);
g.fill3DRect(100, 100, 90, 55, false);

g.drawOval(195, 100, 90, 55);
g.fillOval(290, 100, 90, 55);

650 Chapter 15 Graphics and Java 2D

1 // Fig. 15.19: LinesRectsOvals.java
2 // Drawing lines, rectangles and ovals.
3 import java.awt.Color;
4 import javax.swing.JFrame;
5
6 public class LinesRectsOvals
7 {
8 // execute application
9 public static void main(String[] args)

10 {
11 // create frame for LinesRectsOvalsJPanel
12 JFrame frame =
13 new JFrame("Drawing lines, rectangles and ovals");
14 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15
16 LinesRectsOvalsJPanel linesRectsOvalsJPanel =
17 new LinesRectsOvalsJPanel();
18 linesRectsOvalsJPanel.setBackground(Color.WHITE);
19 frame.add(linesRectsOvalsJPanel); // add panel to frame
20 frame.setSize(400, 210); // set frame size
21 frame.setVisible(true); // display frame
22 } // end main
23 } // end class LinesRectsOvals

Fig. 15.19 | Creating JFrame to display lines, rectangles and ovals.

Fig. 15.20 | Arc width and arc height for rounded rectangles.

drawRect

drawLine

fillRect

draw3DRect

fill3DRect

fillRoundRect

drawRoundRect

drawOval

fillOval

width

(x, y)

arc height

arc width
height

15.6 Drawing Arcs 651

corner. When the arc width, arc height, width and height have the same values, the result
is a circle. If the values for width and height are the same and the values of arcWidth and
arcHeight are 0, the result is a square.

Methods draw3DRect (line 28) and fill3DRect (line 29) take the same arguments.
The first two specify the top-left corner of the rectangle. The next two arguments specify
the width and height of the rectangle, respectively. The last argument determines whether
the rectangle is raised (true) or lowered (false). The three-dimensional effect of
draw3DRect appears as two edges of the rectangle in the original color and two edges in a
slightly darker color. The three-dimensional effect of fill3DRect appears as two edges of
the rectangle in the original drawing color and the fill and other two edges in a slightly
darker color. Raised rectangles have the original drawing color edges at the top and left of
the rectangle. Lowered rectangles have the original drawing color edges at the bottom and
right of the rectangle. The three-dimensional effect is difficult to see in some colors.

Methods drawOval and fillOval (Fig. 15.18, lines 32–33) take the same four argu-
ments. The first two specify the top-left coordinate of the bounding rectangle that con-
tains the oval. The last two specify the width and height of the bounding rectangle,
respectively. Figure 15.21 shows an oval bounded by a rectangle. The oval touches the
center of all four sides of the bounding rectangle. (The bounding rectangle is not displayed
on the screen.)

15.6 Drawing Arcs
An arc is drawn as a portion of an oval. Arc angles are measured in degrees. Arcs sweep
(i.e., move along a curve) from a starting angle through the number of degrees specified
by their arc angle. The starting angle indicates in degrees where the arc begins. The arc
angle specifies the total number of degrees through which the arc sweeps. Figure 15.22 il-
lustrates two arcs. The left set of axes shows an arc sweeping from zero degrees to approx-
imately 110 degrees. Arcs that sweep in a counterclockwise direction are measured in
positive degrees. The set of axes on the right shows an arc sweeping from zero degrees to
approximately –110 degrees. Arcs that sweep in a clockwise direction are measured in neg-
ative degrees. Note the dashed boxes around the arcs in Fig. 15.22. When drawing an arc,
we specify a bounding rectangle for an oval. The arc will sweep along part of the oval.
Graphics methods drawArc and fillArc for drawing arcs are summarized in Fig. 15.23.

Fig. 15.21 | Oval bounded by a rectangle.

(x,y)

width

height

652 Chapter 15 Graphics and Java 2D

Figures 15.24–15.25 demonstrate the arc methods of Fig. 15.23. The application
draws six arcs (three unfilled and three filled). To illustrate the bounding rectangle that
helps determine where the arc appears, the first three arcs are displayed inside a red rect-
angle that has the same x, y, width and height arguments as the arcs.

Fig. 15.22 | Positive and negative arc angles.

Method Description

public void drawArc(int x, int y, int width, int height, int startAngle,

int arcAngle)

Draws an arc relative to the bounding rectangle’s top-left x- and y-coordi-
nates with the specified width and height. The arc segment is drawn starting
at startAngle and sweeps arcAngle degrees.

public void fillArc(int x, int y, int width, int height, int startAngle,

int arcAngle)

Draws a filled arc (i.e., a sector) relative to the bounding rectangle’s top-left
x- and y-coordinates with the specified width and height. The arc segment is
drawn starting at startAngle and sweeps arcAngle degrees.

Fig. 15.23 | Graphics methods for drawing arcs.

1 // Fig. 15.24: ArcsJPanel.java
2 // Drawing arcs.
3 import java.awt.Color;
4 import java.awt.Graphics;
5 import javax.swing.JPanel;
6
7 public class ArcsJPanel extends JPanel
8 {
9 // draw rectangles and arcs

10 public void paintComponent(Graphics g)
11 {
12 super.paintComponent(g); // call superclass's paintComponent
13

Fig. 15.24 | Arcs displayed with drawArc and fillArc. (Part 1 of 2.)

90º

270º

Positive angles

180º 0º

90º

270º

Negative angles

180º 0º

15.6 Drawing Arcs 653

14 // start at 0 and sweep 360 degrees
15 g.setColor(Color.RED);
16 g.drawRect(15, 35, 80, 80);
17 g.setColor(Color.BLACK);
18
19
20 // start at 0 and sweep 110 degrees
21 g.setColor(Color.RED);
22 g.drawRect(100, 35, 80, 80);
23 g.setColor(Color.BLACK);
24
25
26 // start at 0 and sweep -270 degrees
27 g.setColor(Color.RED);
28 g.drawRect(185, 35, 80, 80);
29 g.setColor(Color.BLACK);
30
31
32 // start at 0 and sweep 360 degrees
33
34
35 // start at 270 and sweep -90 degrees
36
37
38 // start at 0 and sweep -270 degrees
39
40 } // end method paintComponent
41 } // end class ArcsJPanel

1 // Fig. 15.25: DrawArcs.java
2 // Drawing arcs.
3 import javax.swing.JFrame;
4
5 public class DrawArcs
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for ArcsJPanel
11 JFrame frame = new JFrame("Drawing Arcs");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 ArcsJPanel arcsJPanel = new ArcsJPanel(); // create ArcsJPanel
15 frame.add(arcsJPanel); // add arcsJPanel to frame
16 frame.setSize(300, 210); // set frame size
17 frame.setVisible(true); // display frame
18 } // end main
19 } // end class DrawArcs

Fig. 15.25 | Creating JFrame to display arcs. (Part 1 of 2.)

Fig. 15.24 | Arcs displayed with drawArc and fillArc. (Part 2 of 2.)

g.drawArc(15, 35, 80, 80, 0, 360);

g.drawArc(100, 35, 80, 80, 0, 110);

g.drawArc(185, 35, 80, 80, 0, -270);

g.fillArc(15, 120, 80, 40, 0, 360);

g.fillArc(100, 120, 80, 40, 270, -90);

g.fillArc(185, 120, 80, 40, 0, -270);

654 Chapter 15 Graphics and Java 2D

15.7 Drawing Polygons and Polylines
Polygons are closed multisided shapes composed of straight-line segments. Polylines are
sequences of connected points. Figure 15.26 discusses methods for drawing polygons and
polylines. Some methods require a Polygon object (package java.awt). Class Polygon’s
constructors are also described in Fig. 15.26. The application of Figs. 15.27–15.28 draws
polygons and polylines.

Method Description

Graphics methods for drawing polygons
public void drawPolygon(int[] xPoints, int[] yPoints, int points)

Draws a polygon. The x-coordinate of each point is specified in the xPoints

array and the y-coordinate of each point in the yPoints array. The last argu-
ment specifies the number of points. This method draws a closed polygon.
If the last point is different from the first, the polygon is closed by a line that
connects the last point to the first.

public void drawPolyline(int[] xPoints, int[] yPoints, int points)

Draws a sequence of connected lines. The x-coordinate of each point is spec-
ified in the xPoints array and the y-coordinate of each point in the yPoints

array. The last argument specifies the number of points. If the last point is
different from the first, the polyline is not closed.

public void drawPolygon(Polygon p)

Draws the specified polygon.

public void fillPolygon(int[] xPoints, int[] yPoints, int points)

Draws a filled polygon. The x-coordinate of each point is specified in the
xPoints array and the y-coordinate of each point in the yPoints array. The
last argument specifies the number of points. This method draws a closed
polygon. If the last point is different from the first, the polygon is closed by a
line that connects the last point to the first.

public void fillPolygon(Polygon p)

Draws the specified filled polygon. The polygon is closed.

Fig. 15.26 | Graphics methods for polygons and class Polygon methods. (Part 1 of 2.)

Fig. 15.25 | Creating JFrame to display arcs. (Part 2 of 2.)

15.7 Drawing Polygons and Polylines 655

Polygon constructors and methods
public Polygon()

Constructs a new polygon object. The polygon does not contain any points.
public Polygon(int[] xValues, int[] yValues, int numberOfPoints)

Constructs a new polygon object. The polygon has numberOfPoints sides,
with each point consisting of an x-coordinate from xValues and a y-coordi-
nate from yValues.

public void addPoint(int x, int y)

Adds pairs of x- and y-coordinates to the Polygon.

1 // Fig. 15.27: PolygonsJPanel.java
2 // Drawing polygons.
3 import java.awt.Graphics;
4
5 import javax.swing.JPanel;
6
7 public class PolygonsJPanel extends JPanel
8 {
9 // draw polygons and polylines

10 public void paintComponent(Graphics g)
11 {
12 super.paintComponent(g); // call superclass's paintComponent
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Fig. 15.27 | Polygons displayed with drawPolygon and fillPolygon. (Part 1 of 2.)

Method Description

Fig. 15.26 | Graphics methods for polygons and class Polygon methods. (Part 2 of 2.)

import java.awt.Polygon;

// draw polygon with Polygon object
int[] xValues = { 20, 40, 50, 30, 20, 15 };
int[] yValues = { 50, 50, 60, 80, 80, 60 };
Polygon polygon1 = new Polygon(xValues, yValues, 6);
g.drawPolygon(polygon1);

// draw polylines with two arrays
int[] xValues2 = { 70, 90, 100, 80, 70, 65, 60 };
int[] yValues2 = { 100, 100, 110, 110, 130, 110, 90 };
g.drawPolyline(xValues2, yValues2, 7);

// fill polygon with two arrays
int[] xValues3 = { 120, 140, 150, 190 };
int[] yValues3 = { 40, 70, 80, 60 };
g.fillPolygon(xValues3, yValues3, 4);

// draw filled polygon with Polygon object
Polygon polygon2 = new Polygon();
polygon2.addPoint(165, 135);
polygon2.addPoint(175, 150);
polygon2.addPoint(270, 200);

656 Chapter 15 Graphics and Java 2D

Lines 15–16 of Fig. 15.27 create two int arrays and use them to specify the points for
Polygon polygon1. The Polygon constructor call in line 17 receives array xValues, which
contains the x-coordinate of each point; array yValues, which contains the y-coordinate
of each point; and 6 (the number of points in the polygon). Line 18 displays polygon1 by
passing it as an argument to Graphics method drawPolygon.

Lines 21–22 create two int arrays and use them to specify the points for a series of
connected lines. Array xValues2 contains the x-coordinate of each point and array
yValues2 the y-coordinate of each point. Line 23 uses Graphics method drawPolyline to

35
36
37
38 } // end method paintComponent
39 } // end class PolygonsJPanel

1 // Fig. 15.28: DrawPolygons.java
2 // Drawing polygons.
3 import javax.swing.JFrame;
4
5 public class DrawPolygons
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for PolygonsJPanel
11 JFrame frame = new JFrame("Drawing Polygons");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 PolygonsJPanel polygonsJPanel = new PolygonsJPanel();
15 frame.add(polygonsJPanel); // add polygonsJPanel to frame
16 frame.setSize(280, 270); // set frame size
17 frame.setVisible(true); // display frame
18 } // end main
19 } // end class DrawPolygons

Fig. 15.28 | Creating JFrame to display polygons.

Fig. 15.27 | Polygons displayed with drawPolygon and fillPolygon. (Part 2 of 2.)

polygon2.addPoint(200, 220);
polygon2.addPoint(130, 180);
g.fillPolygon(polygon2);

Result of line 18

Result of line 23

Result of line 28

Result of line 37

15.8 Java 2D API 657

display the series of connected lines specified with the arguments xValues2, yValues2 and
7 (the number of points).

Lines 26–27 create two int arrays and use them to specify the points of a polygon.
Array xValues3 contains the x-coordinate of each point and array yValues3 the y-coordi-
nate of each point. Line 28 displays a polygon by passing to Graphics method fill-
Polygon the two arrays (xValues3 and yValues3) and the number of points to draw (4).

Line 31 creates Polygon polygon2 with no points. Lines 32–36 use Polygon method
addPoint to add pairs of x- and y-coordinates to the Polygon. Line 37 displays Polygon
polygon2 by passing it to Graphics method fillPolygon.

15.8 Java 2D API
The Java 2D API provides advanced two-dimensional graphics capabilities for program-
mers who require detailed and complex graphical manipulations. The API includes fea-
tures for processing line art, text and images in packages java.awt, java.awt.image,
java.awt.color, java.awt.font, java.awt.geom, java.awt.print and java.awt.im-
age.renderable. The capabilities of the API are far too broad to cover in this textbook.
For an overview, see the Java 2D demo (discussed in Chapter 23, Applets and Java Web
Start) or visit download.oracle.com/javase/6/docs/technotes/guides/2d/. In this
section, we overview several Java 2D capabilities.

Drawing with the Java 2D API is accomplished with a Graphics2D reference (package
java.awt). Graphics2D is an abstract subclass of class Graphics, so it has all the graphics
capabilities demonstrated earlier in this chapter. In fact, the actual object used to draw in
every paintComponent method is an instance of a subclass of Graphics2D that is passed to
method paintComponent and accessed via the superclass Graphics. To access Graphics2D
capabilities, we must cast the Graphics reference (g) passed to paintComponent into a
Graphics2D reference with a statement such as

The next two examples use this technique.

Lines, Rectangles, Round Rectangles, Arcs and Ellipses
This example demonstrates several Java 2D shapes from package java.awt.geom, includ-
ing Line2D.Double, Rectangle2D.Double, RoundRectangle2D.Double, Arc2D.Double
and Ellipse2D.Double. Note the syntax of each class name. Each class represents a shape
with dimensions specified as double values. There’s a separate version of each represented
with float values (e.g., Ellipse2D.Float). In each case, Double is a public static nested
class of the class specified to the left of the dot (e.g., Ellipse2D). To use the static nested
class, we simply qualify its name with the outer class name.

In Figs. 15.29–15.30, we draw Java 2D shapes and modify their drawing characteris-
tics, such as changing line thickness, filling shapes with patterns and drawing dashed lines.
These are just a few of the many capabilities provided by Java 2D.

Common Programming Error 15.1
An ArrayIndexOutOfBoundsException is thrown if the number of points specified in the
third argument to method drawPolygon or method fillPolygon is greater than the num-
ber of elements in the arrays of coordinates that specify the polygon to display.

Graphics2D g2d = (Graphics2D) g;

658 Chapter 15 Graphics and Java 2D

Line 25 of Fig. 15.29 casts the Graphics reference received by paintComponent to a
Graphics2D reference and assigns it to g2d to allow access to the Java 2D features.

1 // Fig. 15.29: ShapesJPanel.java
2 // Demonstrating some Java 2D shapes.
3 import java.awt.Color;
4 import java.awt.Graphics;
5
6
7
8 import java.awt.Rectangle;
9

10
11
12
13
14
15
16 import javax.swing.JPanel;
17
18 public class ShapesJPanel extends JPanel
19 {
20 // draw shapes with Java 2D API
21 public void paintComponent(Graphics g)
22 {
23 super.paintComponent(g); // call superclass's paintComponent
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 // obtain Graphics2D from buffImage and draw on it
42
43 gg.setColor(Color.YELLOW); // draw in yellow
44 gg.fillRect(0, 0, 10, 10); // draw a filled rectangle
45 gg.setColor(Color.BLACK); // draw in black
46 gg.drawRect(1, 1, 6, 6); // draw a rectangle
47 gg.setColor(Color.BLUE); // draw in blue
48 gg.fillRect(1, 1, 3, 3); // draw a filled rectangle
49 gg.setColor(Color.RED); // draw in red

Fig. 15.29 | Java 2D shapes. (Part 1 of 2.)

import java.awt.BasicStroke;
import java.awt.GradientPaint;
import java.awt.TexturePaint;

import java.awt.Graphics2D;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Rectangle2D;
import java.awt.geom.RoundRectangle2D;
import java.awt.geom.Arc2D;
import java.awt.geom.Line2D;
import java.awt.image.BufferedImage;

Graphics2D g2d = (Graphics2D) g; // cast g to Graphics2D

// draw 2D ellipse filled with a blue-yellow gradient
g2d.setPaint(new GradientPaint(5, 30, Color.BLUE, 35, 100,

Color.YELLOW, true));
g2d.fill(new Ellipse2D.Double(5, 30, 65, 100));

// draw 2D rectangle in red
g2d.setPaint(Color.RED);
g2d.setStroke(new BasicStroke(10.0f));
g2d.draw(new Rectangle2D.Double(80, 30, 65, 100));

// draw 2D rounded rectangle with a buffered background
BufferedImage buffImage = new BufferedImage(10, 10,

BufferedImage.TYPE_INT_RGB);

Graphics2D gg = buffImage.createGraphics();

15.8 Java 2D API 659

50 gg.fillRect(4, 4, 3, 3); // draw a filled rectangle
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74 } // end method paintComponent
75 } // end class ShapesJPanel

1 // Fig. 15.30: Shapes.java
2 // Demonstrating some Java 2D shapes.
3 import javax.swing.JFrame;
4
5 public class Shapes
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for ShapesJPanel
11 JFrame frame = new JFrame("Drawing 2D shapes");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 // create ShapesJPanel
15 ShapesJPanel shapesJPanel = new ShapesJPanel();
16
17 frame.add(shapesJPanel); // add shapesJPanel to frame
18 frame.setSize(425, 200); // set frame size
19 frame.setVisible(true); // display frame
20 } // end main
21 } // end class Shapes

Fig. 15.30 | Creating JFrame to display shapes. (Part 1 of 2.)

Fig. 15.29 | Java 2D shapes. (Part 2 of 2.)

// paint buffImage onto the JFrame
g2d.setPaint(new TexturePaint(buffImage,

new Rectangle(10, 10)));
g2d.fill(

new RoundRectangle2D.Double(155, 30, 75, 100, 50, 50));

// draw 2D pie-shaped arc in white
g2d.setPaint(Color.WHITE);
g2d.setStroke(new BasicStroke(6.0f));
g2d.draw(

new Arc2D.Double(240, 30, 75, 100, 0, 270, Arc2D.PIE));

// draw 2D lines in green and yellow
g2d.setPaint(Color.GREEN);
g2d.draw(new Line2D.Double(395, 30, 320, 150));

// draw 2D line using stroke
float[] dashes = { 10 }; // specify dash pattern
g2d.setPaint(Color.YELLOW);
g2d.setStroke(new BasicStroke(4, BasicStroke.CAP_ROUND,

BasicStroke.JOIN_ROUND, 10, dashes, 0));
g2d.draw(new Line2D.Double(320, 30, 395, 150));

660 Chapter 15 Graphics and Java 2D

Ovals, Gradient Fills and Paint Objects
The first shape we draw is an oval filled with gradually changing colors. Lines 28–29 in-
voke Graphics2D method setPaint to set the Paint object that determines the color for
the shape to display. A Paint object implements interface java.awt.Paint. It can be
something as simple as one of the predeclared Color objects introduced in Section 15.3
(class Color implements Paint), or it can be an instance of the Java 2D API’s Gradient-
Paint, SystemColor, TexturePaint, LinearGradientPaint or RadialGradientPaint
classes. In this case, we use a GradientPaint object.

Class GradientPaint helps draw a shape in gradually changing colors—called a gra-
dient. The GradientPaint constructor used here requires seven arguments. The first two
specify the starting coordinate for the gradient. The third specifies the starting Color for
the gradient. The fourth and fifth specify the ending coordinate for the gradient. The sixth
specifies the ending Color for the gradient. The last argument specifies whether the gra-
dient is cyclic (true) or acyclic (false). The two sets of coordinates determine the direc-
tion of the gradient. Because the second coordinate (35, 100) is down and to the right of
the first coordinate (5, 30), the gradient goes down and to the right at an angle. Because
this gradient is cyclic (true), the color starts with blue, gradually becomes yellow, then
gradually returns to blue. If the gradient is acyclic, the color transitions from the first color
specified (e.g., blue) to the second color (e.g., yellow).

Line 30 uses Graphics2D method fill to draw a filled Shape object—an object that
implements interface Shape (package java.awt). In this case, we display an
Ellipse2D.Double object. The Ellipse2D.Double constructor receives four arguments
specifying the bounding rectangle for the ellipse to display.

Rectangles, Strokes
Next we draw a red rectangle with a thick border. Line 33 invokes setPaint to set the
Paint object to Color.RED. Line 34 uses Graphics2D method setStroke to set the char-
acteristics of the rectangle’s border (or the lines for any other shape). Method setStroke
requires as its argument an object that implements interface Stroke (package java.awt).
In this case, we use an instance of class BasicStroke. Class BasicStroke provides several
constructors to specify the width of the line, how the line ends (called the end caps), how
lines join together (called line joins) and the dash attributes of the line (if it’s a dashed
line). The constructor here specifies that the line should be 10 pixels wide.

Line 35 uses Graphics2D method draw to draw a Shape object—in this case, a
Rectangle2D.Double. The Rectangle2D.Double constructor receives arguments speci-
fying the rectangle’s upper-left x-coordinate, upper-left y-coordinate, width and height.

Fig. 15.30 | Creating JFrame to display shapes. (Part 2 of 2.)

15.8 Java 2D API 661

Rounded Rectangles, BufferedImages and TexturePaint Objects
Next we draw a rounded rectangle filled with a pattern created in a BufferedImage (pack-
age java.awt.image) object. Lines 38–39 create the BufferedImage object. Class Buff-
eredImage can be used to produce images in color and grayscale. This particular
BufferedImage is 10 pixels wide and 10 pixels tall (as specified by the first two arguments
of the constructor). The third argument BufferedImage.TYPE_INT_RGB indicates that the
image is stored in color using the RGB color scheme.

To create the rounded rectangle’s fill pattern, we must first draw into the Buffered-
Image. Line 42 creates a Graphics2D object (by calling BufferedImage method create-
Graphics) that can be used to draw into the BufferedImage. Lines 43–50 use methods
setColor, fillRect and drawRect to create the pattern.

Lines 53–54 set the Paint object to a new TexturePaint (package java.awt) object.
A TexturePaint object uses the image stored in its associated BufferedImage (the first
constructor argument) as the fill texture for a filled-in shape. The second argument spec-
ifies the Rectangle area from the BufferedImage that will be replicated through the tex-
ture. In this case, the Rectangle is the same size as the BufferedImage. However, a smaller
portion of the BufferedImage can be used.

Lines 55–56 use Graphics2D method fill to draw a filled Shape object—in this case,
a RoundRectangle2D.Double. The constructor for class RoundRectangle2D.Double
receives six arguments specifying the rectangle dimensions and the arc width and arc
height used to determine the rounding of the corners.

Arcs
Next we draw a pie-shaped arc with a thick white line. Line 59 sets the Paint object to
Color.WHITE. Line 60 sets the Stroke object to a new BasicStroke for a line 6 pixels wide.
Lines 61–62 use Graphics2D method draw to draw a Shape object—in this case, an
Arc2D.Double. The Arc2D.Double constructor’s first four arguments specify the upper-left
x-coordinate, upper-left y-coordinate, width and height of the bounding rectangle for the
arc. The fifth argument specifies the start angle. The sixth argument specifies the arc angle.
The last argument specifies how the arc is closed. Constant Arc2D.PIE indicates that the
arc is closed by drawing two lines—one line from the arc’s starting point to the center of
the bounding rectangle and one line from the center of the bounding rectangle to the end-
ing point. Class Arc2D provides two other static constants for specifying how the arc is
closed. Constant Arc2D.CHORD draws a line from the starting point to the ending point.
Constant Arc2D.OPEN specifies that the arc should not be closed.

Lines
Finally, we draw two lines using Line2D objects—one solid and one dashed. Line 65 sets
the Paint object to Color.GREEN. Line 66 uses Graphics2D method draw to draw a Shape
object—in this case, an instance of class Line2D.Double. The Line2D.Double construc-
tor’s arguments specify the starting coordinates and ending coordinates of the line.

Line 69 declares a one-element float array containing the value 10. This array
describes the dashes in the dashed line. In this case, each dash will be 10 pixels long. To
create dashes of different lengths in a pattern, simply provide the length of each dash as an
element in the array. Line 70 sets the Paint object to Color.YELLOW. Lines 71–72 set the
Stroke object to a new BasicStroke. The line will be 4 pixels wide and will have rounded

662 Chapter 15 Graphics and Java 2D

ends (BasicStroke.CAP_ROUND). If lines join together (as in a rectangle at the corners),
their joining will be rounded (BasicStroke.JOIN_ROUND). The dashes argument specifies
the dash lengths for the line. The last argument indicates the starting index in the dashes
array for the first dash in the pattern. Line 73 then draws a line with the current Stroke.

Creating Your Own Shapes with General Paths
Next we present a general path—a shape constructed from straight lines and complex
curves. A general path is represented with an object of class GeneralPath (package ja-
va.awt.geom). The application of Figs. 15.31 and 15.32 demonstrates drawing a general
path in the shape of a five-pointed star.

1 // Fig. 15.31: Shapes2JPanel.java
2 // Demonstrating a general path.
3 import java.awt.Color;
4 import java.awt.Graphics;
5 import java.awt.Graphics2D;
6 import java.awt.geom.GeneralPath;
7 import java.util.Random;
8 import javax.swing.JPanel;
9

10 public class Shapes2JPanel extends JPanel
11 {
12 // draw general paths
13 public void paintComponent(Graphics g)
14 {
15 super.paintComponent(g); // call superclass's paintComponent
16 Random random = new Random(); // get random number generator
17
18
19
20
21 Graphics2D g2d = (Graphics2D) g;
22
23
24
25
26
27 // create the star--this does not draw the star
28 for (int count = 1; count < xPoints.length; count++)
29
30
31
32
33
34
35 // rotate around origin and draw stars in random colors
36 for (int count = 1; count <= 20; count++)
37 {
38
39

Fig. 15.31 | Java 2D general paths. (Part 1 of 2.)

int[] xPoints = { 55, 67, 109, 73, 83, 55, 27, 37, 1, 43 };
int[] yPoints = { 0, 36, 36, 54, 96, 72, 96, 54, 36, 36 };

GeneralPath star = new GeneralPath(); // create GeneralPath object

// set the initial coordinate of the General Path
star.moveTo(xPoints[0], yPoints[0]);

star.lineTo(xPoints[count], yPoints[count]);

star.closePath(); // close the shape

g2d.translate(150, 150); // translate the origin to (150, 150)

g2d.rotate(Math.PI / 10.0); // rotate coordinate system

15.8 Java 2D API 663

Lines 18–19 declare two int arrays representing the x- and y-coordinates of the points
in the star. Line 22 creates GeneralPath object star. Line 25 uses GeneralPath method
moveTo to specify the first point in the star. The for statement in lines 28–29 uses Gen-
eralPath method lineTo to draw a line to the next point in the star. Each new call to

40 // set random drawing color
41 g2d.setColor(new Color(random.nextInt(256),
42 random.nextInt(256), random.nextInt(256)));
43
44
45 } // end for
46 } // end method paintComponent
47 } // end class Shapes2JPanel

1 // Fig. 15.32: Shapes2.java
2 // Demonstrating a general path.
3 import java.awt.Color;
4 import javax.swing.JFrame;
5
6 public class Shapes2
7 {
8 // execute application
9 public static void main(String[] args)

10 {
11 // create frame for Shapes2JPanel
12 JFrame frame = new JFrame("Drawing 2D Shapes");
13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14
15 Shapes2JPanel shapes2JPanel = new Shapes2JPanel();
16 frame.add(shapes2JPanel); // add shapes2JPanel to frame
17 frame.setBackground(Color.WHITE); // set frame background color
18 frame.setSize(315, 330); // set frame size
19 frame.setVisible(true); // display frame
20 } // end main
21 } // end class Shapes2

Fig. 15.32 | Creating JFrame to display stars.

Fig. 15.31 | Java 2D general paths. (Part 2 of 2.)

g2d.fill(star); // draw filled star

664 Chapter 15 Graphics and Java 2D

lineTo draws a line from the previous point to the current point. Line 31 uses General-
Path method closePath to draw a line from the last point to the point specified in the last
call to moveTo. This completes the general path.

Line 33 uses Graphics2D method translate to move the drawing origin to location
(150, 150). All drawing operations now use location (150, 150) as (0, 0).

The for statement in lines 36–45 draws the star 20 times by rotating it around the
new origin point. Line 38 uses Graphics2D method rotate to rotate the next displayed
shape. The argument specifies the rotation angle in radians (with 360° = 2π radians). Line
44 uses Graphics2D method fill to draw a filled version of the star.

15.9 Wrap-Up
In this chapter, you learned how to use Java’s graphics capabilities to produce colorful
drawings. You learned how to specify the location of an object using Java’s coordinate sys-
tem, and how to draw on a window using the paintComponent method. You were intro-
duced to class Color, and you learned how to use this class to specify different colors using
their RGB components. You used the JColorChooser dialog to allow users to select colors
in a program. You then learned how to work with fonts when drawing text on a window.
You learned how to create a Font object from a font name, style and size, as well as how
to access the metrics of a font. From there, you learned how to draw various shapes on a
window, such as rectangles (regular, rounded and 3D), ovals and polygons, as well as lines
and arcs. You then used the Java 2D API to create more complex shapes and to fill them
with gradients or patterns. The chapter concluded with a discussion of general paths, used
to construct shapes from straight lines and complex curves. In the next chapter, we discuss
class String and its methods. We introduce regular expressions for pattern matching in
strings and demonstrate how to validate user input with regular expressions.

Summary
Section 15.1 Introduction
• Java’s coordinate system (p. 632) is a scheme for identifying every point (p. 643) on the screen.
• A coordinate pair (p. 632) has an x-coordinate (horizontal) and a y-coordinate (vertical).

• Coordinates are used to indicate where graphics should be displayed on a screen.
• Coordinate units are measured in pixels (p. 632). A pixel is a display monitor’s smallest unit of

resolution.

Section 15.2 Graphics Contexts and Graphics Objects
• A Java graphics context (p. 634) enables drawing on the screen.

• Class Graphics (p. 632) contains methods for drawing strings, lines, rectangles and other shapes.
Methods are also included for font manipulation and color manipulation.

• A Graphics object manages a graphics context and draws pixels on the screen that represent text
and other graphical objects, e.g., lines, ellipses, rectangles and other polygons(p. 654).

• Class Graphics is an abstract class. Each Java implementation has a Graphics subclass that pro-
vides drawing capabilities. This implementation is hidden from us by class Graphics, which sup-
plies the interface that enables us to use graphics in a platform-independent manner.

Summary 665

• Method paintComponent can be used to draw graphics in any JComponent component.

• Method paintComponent receives a Graphics object that is passed to the method by the system
when a lightweight Swing component needs to be repainted.

• When an application executes, the application container calls method paintComponent. For
paintComponent to be called again, an event must occur.

• When a JComponent is displayed, its paintComponent method is called.
• Calling method repaint (p. 635) on a component updates the graphics drawn on that component.

Section 15.3 Color Control
• Class Color (p. 632) declares methods and constants for manipulating colors in a Java program.
• Every color is created from a red, a green and a blue component. Together these components are

called RGB values (p. 636). The RGB components specify the amount of red, green and blue in
a color, respectively. The larger the RGB value, the greater the amount of that particular color.

• Color methods getRed, getGreen and getBlue (p. 636) return int values from 0 to 255 repre-
senting the amount of red, green and blue, respectively.

• Graphics method getColor (p. 636) returns a Color object with the current drawing color.
• Graphics method setColor (p. 636) sets the current drawing color.
• Graphics method fillRect (p. 636) draws a rectangle filled by the Graphics object’s current color.
• Graphics method drawString (p. 638)draws a String in the current color.
• The JColorChooser GUI component (p. 639) enables application users to select colors.
• JColorChooser static method showDialog (p. 641) displays a modal JColorChooser dialog.

Section 15.4 Manipulating Fonts
• Class Font (p. 632) contains methods and constants for manipulating fonts.
• Class Font’s constructor takes three arguments—the font name (p. 643), font style and font size.
• A Font’s font style can be Font.PLAIN, Font.ITALIC or Font.BOLD (each is a static field of class

Font). Font styles can be used in combination (e.g., Font.ITALIC + Font.BOLD).
• The font size is measured in points. A point is 1/72 of an inch.
• Graphics method setFont (p. 643) sets the drawing font in which text will be displayed.
• Font method getStyle (p. 645) returns an integer value representing the current Font’s style.
• Font method getSize (p. 643) returns the font size in points.
• Font method getName (p. 643) returns the current font name as a string.
• Font method getFamily (p. 645) returns the name of the font family to which the current font

belongs. The name of the font family is platform specific.
• Class FontMetrics (p. 645) contains methods for obtaining font information.
• Font metrics (p. 645) include height, descent and leading.

Section 15.5 Drawing Lines, Rectangles and Ovals
• Graphics methods fillRoundRect (p. 649) and drawRoundRect (p. 649) draw rectangles with

rounded corners.
• Graphics methods draw3DRect (p. 651) and fill3DRect (p. 651) draw three-dimensional rect-

angles.
• Graphics methods drawOval (p. 651) and fillOval (p. 651) draw ovals.

Section 15.6 Drawing Arcs
• An arc (p. 651) is drawn as a portion of an oval.

666 Chapter 15 Graphics and Java 2D

• Arcs sweep from a starting angle by the number of degrees specified by their arc angle (p. 651).
• Graphics methods drawArc (p. 651) and fillArc (p. 651) are used for drawing arcs.

Section 15.7 Drawing Polygons and Polylines
• Class Polygon contains methods for creating polygons.

• Polygons are closed multisided shapes composed of straight-line segments.
• Polylines (p. 654) are a sequence of connected points.
• Graphics method drawPolyline (p. 656) displays a series of connected lines.

• Graphics methods drawPolygon (p. 656) and fillPolygon (p. 657) are used to draw polygons.
• Polygon method addPoint (p. 657) adds pairs of x- and y-coordinates to the Polygon.

Section 15.8 Java 2D API
• The Java 2D API (p. 657) provides advanced two-dimensional graphics capabilities.

• Class Graphics2D (p. 632)—a subclass of Graphics—is used for drawing with the Java 2D API.
• The Java 2D API’s classes for drawing shapes include Line2D.Double, Rectangle2D.Double,

RoundRectangle2D.Double, Arc2D.Double and Ellipse2D.Double (p. 657).
• Class GradientPaint (p. 632) helps draw a shape in gradually changing colors—called a gradient

(p. 660).

• Graphics2D method fill (p. 660) draws a filled object of any type that implements interface
Shape (p. 660).

• Class BasicStroke (p. 632) helps specify the drawing characteristics of lines.

• Graphics2D method draw (p. 660) is used to draw a Shape object.
• Classes GradientPaint and TexturePaint (p. 632) help specify the characteristics for filling

shapes with colors or patterns.

• A general path (p. 662) is a shape constructed from straight lines and complex curves and is rep-
resented with an object of class GeneralPath (p. 662).

• GeneralPath method moveTo (p. 663) specifies the first point in a general path.

• GeneralPath method lineTo (p. 663) draws a line to the next point in the path. Each new call to
lineTo draws a line from the previous point to the current point.

• GeneralPath method closePath (p. 664) draws a line from the last point to the point specified
in the last call to moveTo. This completes the general path.

• Graphics2D method translate (p. 664) is used to move the drawing origin to a new location.
• Graphics2D method rotate (p. 664) is used to rotate the next displayed shape.

Self-Review Exercises
15.1 Fill in the blanks in each of the following statements:

a) In Java 2D, method of class sets the characteristics of a line used to
draw a shape.

b) Class helps specify the fill for a shape such that the fill gradually changes from
one color to another.

c) The method of class Graphics draws a line between two points.
d) RGB is short for , and .
e) Font sizes are measured in units called .
f) Class helps specify the fill for a shape using a pattern drawn in a BufferedImage.

Answers to Self-Review Exercises 667

15.2 State whether each of the following is true or false. If false, explain why.
a) The first two arguments of Graphics method drawOval specify the center coordinate of

the oval.
b) In the Java coordinate system, x-coordinates increase from left to right and y-coordi-

nates from top to bottom.
c) Graphics method fillPolygon draws a filled polygon in the current color.
d) Graphics method drawArc allows negative angles.
e) Graphics method getSize returns the size of the current font in centimeters.
f) Pixel coordinate (0, 0) is located at the exact center of the monitor.

15.3 Find the error(s) in each of the following and explain how to correct them. Assume that g
is a Graphics object.

a) g.setFont("SansSerif");

b) g.erase(x, y, w, h); // clear rectangle at (x, y)

c) Font f = new Font("Serif", Font.BOLDITALIC, 12);

d) g.setColor(255, 255, 0); // change color to yellow

Answers to Self-Review Exercises
15.1 a) setStroke, Graphics2D. b) GradientPaint. c) drawLine. d) red, green, blue. e) points.
f) TexturePaint.

15.2 a) False. The first two arguments specify the upper-left corner of the bounding rectangle.
b) True.
c) True.
d) True.
e) False. Font sizes are measured in points.
f) False. The coordinate (0,0) corresponds to the upper-left corner of a GUI component

on which drawing occurs.

15.3 a) The setFont method takes a Font object as an argument—not a String.
b) The Graphics class does not have an erase method. The clearRect method should be

used.
c) Font.BOLDITALIC is not a valid font style. To get a bold italic font, use Font.BOLD +

Font.ITALIC.
d) Method setColor takes a Color object as an argument, not three integers.

Exercises
15.4 Fill in the blanks in each of the following statements:

a) Class of the Java 2D API is used to draw ovals.
b) Methods draw and fill of class Graphics2D require an object of type as their

argument.
c) The three constants that specify font style are , and .
d) Graphics2D method sets the painting color for Java 2D shapes.

15.5 State whether each of the following is true or false. If false, explain why.
a) Graphics method drawPolygon automatically connects the endpoints of the polygon.
b) Graphics method drawLine draws a line between two points.
c) Graphics method fillArc uses degrees to specify the angle.
d) In the Java coordinate system, values on the y-axis increase from left to right.
e) Graphics inherits directly from class Object.
f) Graphics is an abstract class.
g) The Font class inherits directly from class Graphics.

668 Chapter 15 Graphics and Java 2D

15.6 (Concentric Circles Using Method drawArc) Write an application that draws a series of eight
concentric circles. The circles should be separated by 10 pixels. Use Graphics method drawArc.

15.7 (Concentric Circles Using Class Ellipse2D.Double) Modify your solution to Exercise 15.6
to draw the ovals by using class Ellipse2D.Double and method draw of class Graphics2D.

15.8 (Random Lines Using Class Line2D.Double) Modify your solution to Exercise 15.7 to
draw random lines in random colors and random line thicknesses. Use class Line2D.Double and
method draw of class Graphics2D to draw the lines.

15.9 (Random Triangles) Write an application that displays randomly generated triangles in dif-
ferent colors. Each triangle should be filled with a different color. Use class GeneralPath and meth-
od fill of class Graphics2D to draw the triangles.

15.10 (Random Characters) Write an application that randomly draws characters in different
fonts, sizes and colors.

15.11 (Grid Using Method drawLine) Write an application that draws an 8-by-8 grid. Use
Graphics method drawLine.

15.12 (Grid Using Class Line2D.Double) Modify your solution to Exercise 15.11 to draw the
grid using instances of class Line2D.Double and method draw of class Graphics2D.

15.13 (Grid Using Method drawRect) Write an application that draws a 10-by-10 grid. Use the
Graphics method drawRect.

15.14 (Grid Using Class Rectangle2D.Double) Modify your solution to Exercise 15.13 to draw
the grid by using class Rectangle2D.Double and method draw of class Graphics2D.

15.15 (Drawing Tetrahedrons) Write an application that draws a tetrahedron (a three-dimension-
al shape with four triangular faces). Use class GeneralPath and method draw of class Graphics2D.

15.16 (Drawing Cubes) Write an application that draws a cube. Use class GeneralPath and meth-
od draw of class Graphics2D.

15.17 (Circles Using Class Ellipse2D.Double) Write an application that asks the user to input
the radius of a circle as a floating-point number and draws the circle, as well as the values of the
circle’s diameter, circumference and area. Use the value 3.14159 for π. [Note: You may also use the
predefined constant Math.PI for the value of π. This constant is more precise than the value
3.14159. Class Math is declared in the java.lang package, so you need not import it.] Use the fol-
lowing formulas (r is the radius):

diameter = 2r
circumference = 2πr
area = πr2

The user should also be prompted for a set of coordinates in addition to the radius. Then draw the
circle and display its diameter, circumference and area, using an Ellipse2D.Double object to repre-
sent the circle and method draw of class Graphics2D to display it.

15.18 (Screen Saver) Write an application that simulates a screen saver. The application should
randomly draw lines using method drawLine of class Graphics. After drawing 100 lines, the appli-
cation should clear itself and start drawing lines again. To allow the program to draw continuously,
place a call to repaint as the last line in method paintComponent. Do you notice any problems with
this on your system?

15.19 (Screen Saver Using Timer) Package javax.swing contains a class called Timer that is capa-
ble of calling method actionPerformed of interface ActionListener at a fixed time interval (speci-
fied in milliseconds). Modify your solution to Exercise 15.18 to remove the call to repaint from
method paintComponent. Declare your class to implement ActionListener. (The actionPerformed

Exercises 669

method should simply call repaint.) Declare an instance variable of type Timer called timer in your
class. In the constructor for your class, write the following statements:

timer = new Timer(1000, this);
timer.start();

This creates an instance of class Timer that will call this object’s actionPerformed method every
1000 milliseconds (i.e., every second).

15.20 (Screen Saver for a Random Number of Lines) Modify your solution to Exercise 15.19 to
enable the user to enter the number of random lines that should be drawn before the application
clears itself and starts drawing lines again. Use a JTextField to obtain the value. The user should be
able to type a new number into the JTextField at any time during the program’s execution. Use an
inner class to perform event handling for the JTextField.

15.21 (Screen Saver with Shapes) Modify your solution to Exercise 15.19 such that it uses ran-
dom-number generation to choose different shapes to display. Use methods of class Graphics.

15.22 (Screen Saver Using the Java 2D API) Modify your solution to Exercise 15.21 to use classes
and drawing capabilities of the Java 2D API. Draw shapes like rectangles and ellipses, with randomly
generated gradients. Use class GradientPaint to generate the gradient.

15.23 (Turtle Graphics) Modify your solution to Exercise 7.21—Turtle Graphics—to add a
graphical user interface using JTextFields and JButtons. Draw lines rather than asterisks (*). When
the turtle graphics program specifies a move, translate the number of positions into a number of
pixels on the screen by multiplying the number of positions by 10 (or any value you choose). Im-
plement the drawing with Java 2D API features.

15.24 (Knight’s Tour) Produce a graphical version of the Knight’s Tour problem (Exercise 7.22,
Exercise 7.23 and Exercise 7.26). As each move is made, the appropriate cell of the chessboard
should be updated with the proper move number. If the result of the program is a full tour or a closed
tour, the program should display an appropriate message. If you like, use class Timer (see
Exercise 15.19) to help animate the Knight’s Tour.

15.25 (Tortoise and Hare) Produce a graphical version of the Tortoise and Hare simulation
(Exercise 7.28). Simulate the mountain by drawing an arc that extends from the bottom-left corner
of the window to the top-right corner. The tortoise and the hare should race up the mountain. Im-
plement the graphical output to actually print the tortoise and the hare on the arc for every move.
[Hint: Extend the length of the race from 70 to 300 to allow yourself a larger graphics area.]

15.26 (Drawing Spirals) Write an application that uses Graphics method drawPolyline to draw
a spiral similar to the one shown in Fig. 15.33.

Fig. 15.33 | Spiral drawn using method drawPolyline.

670 Chapter 15 Graphics and Java 2D

15.27 (Pie Chart) Write a program that inputs four numbers and graphs them as a pie chart. Use
class Arc2D.Double and method fill of class Graphics2D to perform the drawing. Draw each piece
of the pie in a separate color.

15.28 (Selecting Shapes) Write an application that allows the user to select a shape from a JCombo-
Box and draws it 20 times with random locations and dimensions in method paintComponent. The
first item in the JComboBox should be the default shape that is displayed the first time paintCompo-

nent is called.

15.29 (Random Colors) Modify Exercise 15.28 to draw each of the 20 randomly sized shapes in a
randomly selected color. Use all 13 predefined Color objects in an array of Colors.

15.30 (JColorChooser Dialog) Modify Exercise 15.28 to allow the user to select the color in
which shapes should be drawn from a JColorChooser dialog.

(Optional) GUI and Graphics Case Study: Adding Java 2D
15.31 Java 2D introduces many new capabilities for creating unique and impressive graphics.
We’ll add a small subset of these features to the drawing application you created in Exercise 14.17.
In this version, you’ll enable the user to specify gradients for filling shapes and to change stroke char-
acteristics for drawing lines and outlines of shapes. The user will be able to choose which colors com-
pose the gradient and set the width and dash length of the stroke.

First, you must update the MyShape hierarchy to support Java 2D functionality. Make the fol-
lowing changes in class MyShape:

a) Change abstract method draw’s parameter type from Graphics to Graphics2D.
b) Change all variables of type Color to type Paint to enable support for gradients. [Note:

Recall that class Color implements interface Paint.]
c) Add an instance variable of type Stroke in class MyShape and a Stroke parameter in the

constructor to initialize the new instance variable. The default stroke should be an in-
stance of class BasicStroke.

Classes MyLine, MyBoundedShape, MyOval and MyRectangle should each add a Stroke parameter
to their constructors. In the draw methods, each shape should set the Paint and the Stroke before
drawing or filling a shape. Since Graphics2D is a subclass of Graphics, we can continue to use Graph-

ics methods drawLine, drawOval, fillOval, and so on. to draw the shapes. When these methods are
called, they’ll draw the appropriate shape using the specified Paint and Stroke settings.

Next, you’ll update the DrawPanel to handle the Java 2D features. Change all Color variables
to Paint variables. Declare an instance variable currentStroke of type Stroke and provide a set
method for it. Update the calls to the individual shape constructors to include the Paint and
Stroke arguments. In method paintComponent, cast the Graphics reference to type Graphics2D and
use the Graphics2D reference in each call to MyShape method draw.

Next, make the new Java 2D features accessible from the GUI. Create a JPanel of GUI com-
ponents for setting the Java 2D options. Add these components at the top of the DrawFrame below
the panel that currently contains the standard shape controls (see Fig. 15.34). These GUI compo-
nents should include:

a) A check box to specify whether to paint using a gradient.
b) Two JButtons that each show a JColorChooser dialog to allow the user to choose the

first and second color in the gradient. (These will replace the JComboBox used for choos-
ing the color in Exercise 14.17.)

c) A text field for entering the Stroke width.
d) A text field for entering the Stroke dash length.
e) A check box for selecting whether to draw a dashed or solid line.

If the user selects to draw with a gradient, set the Paint on the DrawPanel to be a gradient of
the two colors chosen by the user. The expression

Making a Difference 671

new GradientPaint(0, 0, color1, 50, 50, color2, true))

creates a GradientPaint that cycles diagonally from the upper-left to the bottom-right every 50
pixels. Variables color1 and color2 represent the colors chosen by the user. If the user does not
select to use a gradient, then simply set the Paint on the DrawPanel to be the first Color chosen by
the user.

For strokes, if the user chooses a solid line, then create the Stroke with the expression

new BasicStroke(width, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND)

where variable width is the width specified by the user in the line-width text field. If the user
chooses a dashed line, then create the Stroke with the expression

new BasicStroke(width, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,
10, dashes, 0)

where width again is the width in the line-width field, and dashes is an array with one element
whose value is the length specified in the dash-length field. The Panel and Stroke objects should
be passed to the shape object’s constructor when the shape is created in DrawPanel.

Making a Difference
15.32 (Large-Type Displays for People with Low Vision) The accessibility of computers and the
Internet to all people, regardless of disabilities, is becoming more important as these tools play in-
creasing roles in our personal and business lives. According to a recent estimate by the World Health
Organization (www.who.int/mediacentre/factsheets/fs282/en/), 124 million people worldwide
have low vision. To learn more about low vision, check out the GUI-based low-vision simulation at
www.webaim.org/simulations/lowvision.php. People with low vision might prefer to choose a font
and/or a larger font size when reading electronic documents and web pages. Java has five built-in
“logical” fonts that are guaranteed to be available in any Java implementation, including Serif,
Sans-serif and Monospaced. Write a GUI application that provides a JTextArea in which the user
can type text. Allow the user to select Serif, Sans-serif or Monospaced from a JComboBox. Provide
a Bold JCheckBox, which, if checked, makes the text bold. Include Increase Font Size and Decrease
Font Size JButtons that allow the user to scale the size of the font up or down, respectively, by one
point at a time. Start with a font size of 18 points. For the purposes of this exercise, set the font size
on the JComboBox, JButtons and JCheckBox to 20 points so that a person with low vision will be able
to read the text on them.

Fig. 15.34 | Drawing with Java 2D.

