)

Check for
updates

What’s Wrong with On-the-Fly Partial
Order Reduction

Stephen F. Siegel ™)

University of Delaware, Newark, DE, USA
siegel@udel.edu

Abstract. Partial order reduction and on-the-fly model checking are
well-known approaches for improving model checking performance. The
two optimizations interact in subtle ways, so care must be taken when
using them in combination. A standard algorithm combining the two
optimizations, published over twenty years ago, has been widely stud-
ied and deployed in popular model checking tools. Yet the algorithm is
incorrect. Counterexamples were discovered using the Alloy analyzer. A
fix for a restricted class of property automata is proposed.

Keywords: Model checking - Partial order reduction - On-the-fly -
Spin

1 Introduction

Partial order reduction (POR) refers to a family of model checking techniques
used to reduce the size of the state space that must be explored when verifying
a property of a program. The techniques vary, but all share the core observation
that when two independent operations are enabled in a state, it is often safe to
ignore traces that begin with one of them. A large number of POR, techniques
have been explored, differing in details such as the range of properties to which
they apply. This paper focuses on ample set POR, [4], an approach which applies
to stutter-invariant properties and is used in the model checker Spin [8].

In the automata-theoretic view of model checking, the negation of the prop-
erty to be verified is represented by an w-automaton. The basic algorithm com-
putes the product of this automaton with the state space of the program. The
language of the product is empty if and only if the program cannot violate the
property. On-the-fly model checking refers to an optimization of this basic algo-
rithm in which the enumeration of the reachable program states, computation of
the product, and language emptiness check are interleaved, rather than occurring
in sequence.

These two optimizations must be combined with care, because they interact
in subtle ways.! A standard algorithm for on-the-fly ample set POR is described

! Previous work, for example, has dealt with problems, distinct from those discussed
in this paper, that arise when combining nested depth first search and POR [7,14].
© The Author(s) 2019

I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11562, pp. 478-495, 2019.
https://doi.org/10.1007/978-3-030-25543-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25543-5_27&domain=pdf
http://orcid.org/0000-0001-9359-3332
https://doi.org/10.1007/978-3-030-25543-5_27

What’s Wrong with On-the-Fly Partial Order Reduction 479

in [12] and in further detail in [13]. I shall refer to this algorithm as the combined
algorithm. Theorem 4.2 of [13] asserts the soundness of the combined algorithm.
A proof of the theorem is also given in [13].

The proof has a gap. This was pointed out in [16, Sect. 5], with details in
[15]. The gap was rediscovered in the course of developing mechanized correctness
proofs for model checking algorithms; an explicit counterexample to the incorrect
proof step was also found ([2, Sect.8.4.5] and [3, Sect.5]). The fact that the
proof is erroneous, however, does not imply the theorem is wrong. To the best
of my knowledge, no one has yet produced a proof or a counterexample for the
soundness of the combined algorithm.

In this paper, I show that the combined algorithm is not sound; a counterex-
ample is given in Sect.3.1. I found this counterexample by modeling the com-
bined algorithm in Alloy and using the Alloy analyzer [11] to check its soundness.
Sect. 4 describes this model. Spin’s POR is based on the combined algorithm,
and in Sect.5, Spin is seen to return an incorrect result on a Promela model
derived from the theoretical counterexample.

There is a small adjustment to the combined algorithm, yielding an algo-
rithm that is arguably more natural and that returns the correct result on the
previous counterexample; this is described in Sect. 6. It turns out this one is also
unsound, as demonstrated by another Alloy-produced counterexample. However,
in Sect. 7, I show that this variation is sound if certain restrictions are placed on
the property automaton.

2 Preliminaries

Definition 1. A finite state program is a triple P = (T, Q,.), where Q is a
finite set of states, ¢ € @ is the initial state, and T is a finite set of operations.
Each operation o € T is a function from a set en, C Q to Q.

Fix a finite state program P = (T, Q,).
Definition 2. For g € Q, define en(q) ={a €T | g € en,}.

Definition 3. An execution of P is an infinite sequence of operations cyag - - -
that generates the sequence of states & = qoqiqz--- such that qo = ¢ and for
120, q €eng,,, and ¢i11 = a;+1(¢;). An admissible sequence is any segment
of an execution.

Definition 4. A Biichi automaton is a tuple B = (S, A, X, 6, F'), where S is a
finite set of automaton states, A C S is the set of initial states, X' is a finite
set called the alphabet, § C S x X x S is the transition relation, and FF C S
is the set of accepting states. The language of B, denoted L(B), is the set of
all £ € X% generated by infinite paths in B that pass through an accepting state
infinitely often.
Fix a finite set AP of atomic propositions and let X = 2AP.

Fix an interpretation mapping for P, i.e., a function L: @ — X.

480 S. F. Siegel

Definition 5. The language of P, denoted L(P), is the set of all infinite words
L(go)L(q1) -+ € X%, where qog1 -+ 1s the sequence of states generated by an
execution of P.

Definition 6. A language L C X is stutter-invariant if, for any ag,a1,... € ¥
and positive integers ig,iy ..., agai -+ € L < allal’ - € L, where a' denotes
the concatenation of i copies of a.

Definition 7. Let B = (S, A, X, 0, F), be a Biichi automaton with alphabet X
The product of P and B is the Biichi automaton

PB=(Q xS, {t} xATxXig,QX%xF),
where

dg = {(<q’s>’ <a70>’ (q/73/>) | 0= L(q) A <570’ sl> ETN q/ = a(q)}'

Note 1. A transition from product state x = (g,s) can be viewed as taking

. . .- L . .
place in two steps. First, a transition s L, s’ in B executes, leading to an

“intermediate state” 2’ = (g,s’). Then a program transition ¢ - ¢’ executes,
culminating in y = (¢, s’). While this is a good mental model, the product
automaton does not necessarily contain a transition from x to z’ or from z’ to y.
The intermediate state 2’ is not even necessarily reachable in the product. The
transition in the product goes directly from z to y with label («, L(q)).

It is well-known that
LIP)NLB)=0< L(PR®B)=0.

In the context of model checking, B is used to represent the negation of a desir-
able property; the program P satisfies the property if, and only if, no execution
of P is accepted by B, i.e., L(P) N L(B) = (). The automaton B may be generated
from a (negated) LTL formula, but that assumption is not needed here.

The goal of “offline” (not on-the-fly) partial order reduction is to generate
some subspace P’ of P with the guarantee that

LPYNLB) =0 < L(P)NLB) =0

The emptiness of L(P' ® B) = L(P’') N L(B) can be decided in various ways,
such as a nested depth first search (NDFS) [5].

3 On-the-Fly Partial Order Reduction

In on-the-fly model checking, the state space of the product automaton is enu-
merated directly, without first enumerating the program states. Adding POR
to the mix means that at each state reached in the product automaton, some
subset of enabled transitions will be explored. The goal is to ensure that if the

What’s Wrong with On-the-Fly Partial Order Reduction 481

language of the full product automaton is nonempty, then the language of the
resulting reduced automaton must be nonempty.

To make this precise, fix a finite state program P = (T,Q,), a set AP of
atomic propositions, an interpretation L: Q — X = 2AP and Biichi automaton
B=(SA X F) Let A=P® B.

Definition 8. A function amp: Q x S — 2T is an ample selector if amp(q, s) C
en(q) for all g € Q,s € S. Each amp(q, s) is an ample set.

An ample selector determines a subautomaton A’ = reduced(A, amp) of A:
A’ is defined exactly as in Definition 7, except that the transition relation has
the additional restriction that « € amp(q, s’):

A =(Q xS, {t} xATxX,§,QxF) (1)

&' ={((g,5), (@, 0),{(q',5)) € (Q x 8) x (T x) x (@ x 5) |

o=L(qg) AN(s,0,8)y € Na€amp(q,s') Nqd =alq)}. @

Definition 9. An ample selector amp is POR-sound if the following holds:
L(reduced(A,amp)) =0 < L(P)NL(B) =0.

The goal is to define some constraints on an ample selector that guarantee
it is POR-sound. Before stating the constraints, we need two more concepts:

Definition 10. An independence relation is an irreflexive and symmetric rela-
tion I C T x T satisfying the following: if (o, 3) € I and q € en, Neng, then
a(q) € eng, B(q) € eny, and a(B(q)) = B(alq)).

Fix an independence relation I. We say « and (3 are dependent if (o, 3) & I.

Definition 11. An operation o € T is invisible with respect to L if, for all
q € ena, L(q) = L(a(q))-

Note 2. The definition in [13] is slightly different. Given an LTL formula ¢ over
AP, let AP’ be the set of atomic propositions occurring syntactically in ¢. The
definition in [13] says « is invisible in ¢ if, for all p € AP’ and ¢ € en,, p €
L(q) & p € L(a(q)). However, there is no loss of generality using Definition 11,
since one can define a new interpretation L': Q — 2AF by L'(q) = L(q) N AP’.
Then « is invisible for ¢ if, and only if, « is invisible with respect to L', and the
results of this paper can be applied without modification to P, AP’, and L'.

We now define the following constraints on an ample selector amp:?

CO Forallge Q,s€ S:en(q) #0 = amp(q, s) # 0.

2 T am using the numbering from [4]. In [13], C2 and C3 are swapped.

482 S. F. Siegel

C1 For all ¢ € @, s € S: in any admissible sequence in P starting from ¢, no
operation in T\ amp(q, s) that is dependent on an operation in amp(g, s) can
occur before some operation in amp(g, s) occurs.

C2 For all g € Q, s € S: if amp(q, s) # en(q) then Yo € amp(q, s), « is invisible.

C3 There is a depth-first search of A’ = reduced(A,amp) with the following
property: whenever there is a transition in A’ from a node (g, s) on the top
of the stack to a node (¢’, s’) on the stack, amp(q, s’) = en(q).

Condition C3 is the interesting one. The combined algorithm of [13] enforces
it using a DFS (the outer search of the NDFS) of the reduced space and the
following protocol: given a new state (g, s) that has just been pushed onto the
stack, first iterate over all Biichi transitions (s, L(q),s’) departing from s and
labeled by L(g). For each of these, a candidate ample set for amp(q,s’) that
satisfies the first three conditions is computed; this computation does not depend
on s’. If any operation in that candidate set leads back to a state on the search
stack (a “back edge”), a different candidate is tried and the process is repeated
until a satisfactory one is found. If no such candidate is found, en(q) is used for
the ample set.

Hence the process for choosing the ample set depends on the current state of
the search. If y; # ys, it is not necessarily the case that amp(x,y1) = amp(z, y2),
because it is possible that when (x,y1) was encountered, a back edge existed for
a candidate, but when (z,ys) was encountered, there was no back edge.

3.1 Counterexample

Theorem 4.2 of [13] can be expressed as follows: if £(B) is stutter-invariant and
the language of an LTL formula, and amp satisfies CO—C3, then amp is POR-
sound.

Y
1

5 s,
0 B,@ s
. . Y N
@O ST G GO

Fig. 1. Counterexample to combined theorem. Left: program and interpretation. Cen-
ter: property automaton B; and ample selector function. Right: the reachable product
state space; dashed edges are in the full, but not reduced, space.

A counterexample to this claim is given in Fig. 1. The program consists of two
states, A and B, and two operations, o and (3. There is a single atomic proposi-
tion, p, which is false at A and true at B. Note that o and 3 are independent.
Also, « is invisible, and 3 is not.

What’s Wrong with On-the-Fly Partial Order Reduction 483

The property automaton, B, is shown in Fig. 1 (center top). It has two states,
numbered 0 and 1. State 1 is the sole accepting state. The language consists of
all infinite words of the following form: a finite nonempty prefix of @s followed
by an infinite sequence of {p}s. This language is stutter-invariant, and is the
language of the LTL formula (—p) A ((—=p)U Gp).

The ample selector is specified by the table (center bottom). Notice that
amp(A4,1) # en(A), but the other three ample sets are full. CO holds because
the ample sets are never empty. C1 holds because (is independent of a. C2
holds because « is invisible. The reachable product space is shown in Fig. 1
(right). In any DFS of reduced(A, amp), the only back edge is the self-loop on
A0 labeled (o, &). Since amp(A,0) is full, C3 holds. Yet there is an accepting
path in the full space, but not in the reduced space.

4 Alloy Models of POR Schemes

Alloy is a “lightweight formal methods” language and tool. It has been used
in a wide variety of contexts, from exploring software designs to studying weak
memory-consistency models. An Alloy model specifies signatures, each of which
defines a type, relations on signatures, and constraints on the signatures and
relations. Constraints are expressed in a logic that combines elements of first
order logic and relational logic, and includes a transitive closure operator. An
instance of a model assigns a finite set of atoms to each signature, and a finite set
of tuples (of the right type) to each relation, in such a way that the constraints
are satisfied. The Alloy analyzer can be used to check that an assertion holds
on all instances in which the sizes of the signatures are within some specified
bounds. The analyzer converts the question of the validity of the assertion into
a SAT problem and invokes a SAT solver. Based on the result, it reports either
that the assertion holds within the given bounds, or it produces an instance of
the model violating the assertion.

I developed an Alloy model to search for counterexamples to various POR
claims, such as the one in Sect. 3.1. The model encodes the main concepts of the
previous two sections, including program, operations, interpretation, invisibility
and independence, property automaton, the product space, ample selectors and
the constraints on them, and a language emptiness predicate. The model cul-
minates in an assertion which states that an ample selector satisfying the four
constraints is POR~sound.

I was not able to find a way to encode stutter-invariance. In the end, I
developed a small set of Biichi automata based on my own intuition of what
would make interesting tests. I encoded these in Alloy and used the analyzer to
explore all possible programs and ample selectors for each.

The first part of the model is a simple encoding of a finite state automaton.
The following is a listing of file ba.als:

1 module ba -- module for simple model of Biichi automata
2 sig Sigma {} -- alphabet of BA, valuation on atomic props
3 sig BState {} -- a state in the Biichi Automaton

484

~N o o

S. F. Siegel

one sig Binit extends BState {} -- initial state of BA

sig AState in BState {} -- accepting states of BA

-- a transition has a source state, label, and destination state...

sig BTrans { src: one BState, label: one Sigma, dest: one BState }

The alphabet is some unconstrained set Sigma. The set of states is represented
by signature BState. There is a single initial state, and any number of accepting
states. Each transition has a source and destination state, and label. Relations
declared within a signature declaration have that signature as an implicit first
argument. So, for example, src is a binary relation of type BTrans x BState.
Furthermore, the relation is many-to-one: each transition has exactly one BState
atom associated to it by the src relation.

© 00 N O 0w N

W oW W W W W wWNNNDNDNDNDNNNDNR B BB B R R s s e
D P W N R O © N0 WN R, O VW 00N W N = O

The remaining concepts are incorporated into module por_vO0:

module por_v0 -- on-the-fly POR variant 0, corresponding to [13]
open ba -- import the Bichi automata module
sig Operation {} -- program operation
sig PState { -- program state
label: one Sigma, -- the set of propositions which hold in this state
enabled: set Operation, =-- the set of all operations enabled at this state
nextState: enabled -> one PState, -- the next-state function
ample: BState -> set Operation -- ample(q,s)
}{ all s: BState | ample[s] in enabled } -- ample sets subsets of enabled
fun amp[q: PState, s: BState] : set Operation { q.ample[s] }
one sig Pinit extends PState {} -- initial program state
fact { -- all program states are reachable from Pinit
let r = {q, q’: PState | some op: Operation | g.nextStatel[opl=q’} |
PState = Pinit.*r
}
sig ProdState { -- state in the product of program and property automaton
pstate: PState, -- the program state component
bstate: BState, -- the property state component
nextFull: set ProdState, -- all next states in the full product space
nextReduced: set ProdState -- all next states in the reduced product space
}
one sig ProdInit extends ProdState {} -- initial product state
pred transitionInProduct[q,q’: PState, op: Operation, s,s’: BState] {
q->op->q’ in nextState
some t : BTrans | t.src = s and t.dest = s’ and t.label = q.label

}
pred nextProd[x: ProdState, op: Operation, x’: ProdState] {
transitionInProduct[x.pstate, x’.pstate, op, x.bstate, x’.bstatel]
}
pred independent[opl, op2 : Operation] {
all q: PState | (opl+op2 in q.enabled) implies (
op2 in q.nextState[opl].enabled and
opl in q.nextState[op2].enabled and
q.nextState[opl] .nextState[op2] =q.nextState [op2] .nextState [opl])
}
pred invisible[op: Operation] {

37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

What’s Wrong with On-the-Fly Partial Order Reduction 485

all q: PState | op in q.enabled => q.nextState[op].label = g.label
}
fact CO { all q: PState, s: BState | some q.enabled => some ampl[q,s] }
fact C1 {
all q: PState, s: BState | let A=ampl[q,s] |
let r = { g1, g2: PState | some op: Operation-A |
ql->op->g2 in nextState 1} |
all q’: q.*r, opl: q’.enabled-A, op2: A | independent[opl, op2]
}
fact C2 {
all q: PState, s: BState | let A = amplq,s] |
A '= g.enabled implies all op: A | invisible[op]
}
fact €3’ {
let r = { x, x’ : ProdState | x->x’ in nextReduced and
amp[x.pstate, x’.bstate] != x.pstate.enabled } |
no x: ProdState | x in x.°r
}
fact { -- generate all reachable product states, etc.
nextFull = {x,y: ProdState | some op: Operation | nextProd[x,op,yl}
nextReduced = {x,y: ProdState |
some op: amp[x.pstate, y.bstate] | nextProd[x,op,yl}
ProdState = ProdInit.*nextFull
all x,y: ProdState | (x.pstate=y.pstate && x.bstate=y.bstate) => x=y
ProdInit.pstate = Pinit and ProdInit.bstate = Binit
all x: ProdState, op: Operation, q’: PState, s’: BState |
transitionInProduct [x.pstate, q’, op, x.bstate, s’] implies
some y: ProdState | y.pstate = q’ and y.bstate = s’
}
pred nonemptyLang[r: ProdState->ProdState] { -- r reaches accepting cycle
some x: ProdInit.*r | (x.bstate in AState and x in x.°r)

}

assert PORsoundness { -- if full space has a lasso, so does the reduced
nonemptyLang [nextFull] => nonemptyLang[nextReduced]

}

The facts are constraints that any instance must satisfy; some of the facts are
given names for readability. A pred declaration defines a (typed) predicate.

Most aspects of this model are self-explanatory; I will comment only on the

less obvious features. The relations nextFull and nextReduced represent the
next state relations in the full and reduced spaces, respectively. They are declared
in ProdState, but specified completely in the final fact on lines 56-58. Strictly
speaking, one could remove those predicates and substitute their definitions, but
this seemed more convenient. Line 60 asserts that a product state is determined
uniquely by its program and property components. Line 61 specifies the initial
product state.

486 S. F. Siegel

Line 59 insists that only states reachable (in the full space) from the initial
state will be included in an instance (* is the reflexive transitive closure oper-
ator). Lines 62-64 specify the converse. Hence in any instance of this model,
ProdState will consist of exactly the reachable product states in the full space.

The encoding of C1 is based on the following observation: given ¢ € ¢ and
a set A of operations enabled at ¢, define » C @ x @ by removing from the
program’s next-state relation all edges labeled by operations in A. Then “no
operation dependent on an operation in A can occur unless an operation in A
occurs first” is equivalent to the statement that on any path from ¢ using edges
in r, all enabled operations encountered will either be in A or independent of
every operation in A.

Condition C3 is difficult to encode, in that it depends on specifying a depth-
first search. I have replaced it with a weaker condition, which is similar to a
well-known cycle proviso in the offline theory:

C3' In any cycle in reduced(A, amp), there is a transition from (g, s) to (¢, s’)
for which amp(q, s’) = en(q).

Equivalently: if one removes from the reduced product space all such transitions,
then the resulting graph should have no cycles. This is the meaning of lines 50-54
(" is the strict transitive closure operator).

The next step is to create tests for specific property automata. This example
is for the automaton B; of Fig. 1:

T1.src=Binit && T1.label=X0 && T1.dest=Binit
T2.src=Binit && T2.label=X0 && T2.dest=B1
T3.src=B1 && T3.label=X1 && T3.dest=B1

1 module bal

2 open ba

3 one sig X0, X1 extends Sigma {}

4 one sig Bl extends BState {}

5 one sig T1, T2, T3 extends BTrans {}

6 fact {

7 AState = B1 -- BI is the sole accepting state
8

9

[
o

}

[
-

The final step is a test that combines the modules above:

1 open por_v0

2 open bal

3 checkPORsoundness for exactly 2 Sigma, exactly 2 BState,
4 exactly 3 BTrans, 2 Operation, 2 PState, 4 ProdState

It places upper bounds on the numbers of operations, program states, and prod-
uct states while checking the soundness assertion. Using the Alloy analyzer to
check the assertion above results in a counterexample like the one in Fig. 1. The
runtime is a fraction of a second. The Alloy instance uses two uninterpreted
atoms for the elements of Sigma; I have simply substituted the sets @ and {p}
for them to produce Fig.1. As we have seen, this counterexample happens to
also satisfy the stronger constraint C3.

What’s Wrong with On-the-Fly Partial Order Reduction 487
5 Spin

The POR algorithm used by Spin is described in [10] and is similar to the
combined algorithm. We can see what Spin actually does by encoding examples
in Promela and executing Spin with and without POR.

bit p = 0;
active proctype p0() { p=1 }
active proctype p1() { bit x=0; do :: x=0 od }

never {
BO: do :: !p :: !p -> break od
accept_Bl: do :: p od

}

Fig. 2. Promela representation of counterexample using B: of Fig. 1

Figure 2 shows an encoding of the example of Fig. 1. Transition « corresponds
to the assignment x = 0, where x is a variable local to pl. Transition corre-
sponds to the assignment p = 1, where p is a shared variable. Applying Spin
with the following commands allows one to see the structure of the program
graphs for each process, as well as each step in the search of the full space:

spin -a testl.pml; cc -o pan -DCHECK -DNOREDUCE pan.c; ./pan -d; ./pan -a

I did this with Spin version 6.4.9, the latest stable release. The output indicates
that 4 states and 5 transitions are explored, and one state is matched—exactly
as in Fig. 1 (right). As expected, the output also reports a violation—a path to
an accepting cycle that corresponds to the transition from A0 to B1 followed by
the self-loop on B1 repeated forever.

Repeat this experiment without the -DNOREDUCE, however, and Spin finds no
errors. The output indicates that it misses the transition from AO to B1.

6 Ignoring the Intermediate States

An interesting aspect of the combined algorithm is that the ample set is a func-
tion of an intermediate state. Le., given a product state x = (g, s), the ample set
is determined by the intermediate state &’ = (g, s’) obtained after executing a
property transition. This introduces a difference between the on-the-fly scheme
and offline schemes, where there is no notion of intermediate state. It also intro-
duces other complexities. For example, it is possible that x’ was reached earlier

in the search through some other state (g, s2), because of a property transition

L
So Lo, s’. How does the algorithm guarantee that the ample set selected for z’

will be the same as the earlier choice? This issue is not addressed in [13] or [10].
These problems go away if one simply makes the ample set a function of
the source product state z. The intermediate states do not have to play a role.

488 S. F. Siegel

Specifically, given an ample selector amp, define reduceds (A, amp) as in (1) and
(2), except replace “a € amp(q,s’)” in (2) with “a € amp(g, s)”. Perform the
same substitution in C3 and call the resulting condition C3;. The weaker version
of C3; is simply:

C3] In any cycle in reduceds(A,amp) there is a state (g, s) with amp(g,s) =
en(q).

Conditions C0—-C2 are unchanged. I refer to this scheme as V1, and to the
original combined algorithm as V0. The Alloy model of VO in Sect.4 can be
easily modified to represent V1.

Using V1, the example of Fig. 1 is no longer a counterexample. In fact, Alloy
reports there are no counterexamples using By, at least for small bounds on the
program size. Figure 5 gives detailed results for this and other Alloy experiments.

Unfortunately, Alloy does find a counterexample for a slightly more compli-
cated property automaton, By, which is shown in Fig. 3.

{r}

Fig. 3. Counterexample to V1 with By (center). A0 and A2 have proper ample set {a}.

The program is the same as the one in Sect.3.1. Automaton By has four
states, with state 3 the sole accepting state. The language is the same as that
of B;: all infinite words formed by concatenating a finite nonempty prefix of @s
and an infinite sequence of {p}s. If the prefix has odd length, the accepting run
begins with the transition 0 — 1, otherwise it begins with the transition 0 — 2.

In the ample selector, only A0 and A2 are not fully enabled:

amp| 0 1 2 3
A Ha}{a, b} {a} {o, 5}
B [{a} {a} {a} {a}.

C0-C2 hold for the reasons given in Sect. 3.1. C31 holds for any DFS in which
A2 is pushed onto the stack before Al. In that case, there is no back edge from
A2; there will be a back edge when Al is pushed, but Al is fully enabled.

What’s Wrong with On-the-Fly Partial Order Reduction 489

7 What’s Right

In this section, I show that POR scheme V1 of Sect.6 is sound if one intro-
duces certain assumptions on the property automaton. The following definition
is similar to the notion of stutter invariant (SI) automaton in [6] and to that
of closure under stuttering in [9]. The main differences derive from the use of
Muller automata in [6] and Biichi transition systems in [9], while we are dealing
with ordinary Biichi automata.

Definition 12. A Biichi automaton B = (S,{Sinit}, 2,0, F), is in SI normal
form if it has a single initial state s;n;; with mo incoming edges, and for each
s € S\ {Sinit}, there is some as € X' such that the following all hold:

1. Every edge terminating in s is labeled as.

2. s has exactly one outgoing edge with label as.

3. If s ¢ F then (s,as,s) € 0.

4. If (s,as,8) € 3, then there exists s* € S\ F such that (i) (s,as,s*) € § and
(ii) for alla € ¥ and s' € S, (s,a,8') € § & (s%,a,s") € 6.

Lemma 1. Let B be a Biichi automaton in SI normal form. Suppose a,b € X
and a # b. Both of the following hold:

1. Ifs1 5 s9 b, s3 s a path in B, then for some s € S, 51 — 85 — s LA S3 18
a path in B.

2. If s1 5 59 = s3 b, s4 is a path in B, then s; — so b, sS4 18 a path in B.
Moreover, if s3 is accepting, then so is accepting.

Following the approach of [6], one can show that the language of an automa-
ton in SI normal form is stutter-invariant. Moreover, any Biichi automaton with
a stutter-invariant language can be transformed into SI normal form without
changing the language. The conversion satisfies |S’| < O(|X||S]), where |S]| and
|S’| are the number of states in the original and new automaton, respectively.
For details and proofs, see [17]. An example is given in Fig. 4; the language of
Bs (or By) consists of all words with a finite number of {p}s.

Fig. 4. Property automaton Bs and result of transformation to SI normal form, B4.

Theorem 1. Suppose B is in SI normal form and amp: Q xS — 27 is an ample
selector satisfying CO-C2 and C3}. Then amp is POR-sound.

490 S. F. Siegel

The remainder of this section is devoted to the proof of Theorem 1. The proof
is similar to the proof of the offline case in [4].

Let 6 be an accepting path in the full space A. An infinite sequence of accept-
ing paths mg, 71, . .. will be constructed, where 1y = 6. For each i > 0, 7; will be
decomposed as 7; 06;, where 7, is a finite path of length 7 in the reduced space, 6;
is an infinite path, n; is a prefix of 7,11, and o denotes concatenation. For ¢ = 0,
7o is empty and 6y = 6.

Assume ¢ > 0 and we have defined 7; and 6; for j <i. Write

(a1,00)
-

(1, 51) Saz,on) (3)

where o, = L(gg) for £ > 0. Then n;41 and 6;41 are defined as follows. Let
A = amp(qo, o). There are two cases:

0; = (qo,s0)

Case 1: a7 € A. Let 1,11 be the path obtained by appending the first transition
of 0; to n;, and ;1 the path obtained by removing the first transition from 6,.

Case 2: a1 € A. Then there are two sub-cases:

Case 2a: Some operation in A occurs in #;. Let n be the index of the first
occurrence, so that a,, € A, but a; € A for 1 < j < n. By C1, a; and oy,
are independent for 1 < j < n. By repeated application of the independence
property, there are paths in P

[e51 D} [e%:} Qp—2 Qn—1
do q1 q2 T qn—2 n—1
J/OC n J/a n J/a n J/a n J/Oz n
/ (e%1 / (e / as Qn—2 / QAn—1 QAn41 An42
a1 qs q3 T dn—1 qn Qn+1 —— "

By C2, ay, is invisible, whence L(q}) = 0 for 0 < j <n—2, and 0,1 = 0op.
Hence the admissible sequence

Qn Q1 Q2 g QAn—2 4 Qn—1 Qn41 Qpt2
Q=G —GB=q = = G Gn Gl — Qa2 — 0 (4)
generates the word
00000102 "+ Op—20p0ni10n42 " - (5)

Now the projection of §; onto B has the form

oo o1 o2 On—2 On On On+41 On+42
S0 S1 S2 e > Sp—1 Sn Sn+1 Sn+2
since 0,1 = 0p,. By Lemma 1, there is a path in B
o) o) ;7 01 (o2} On—2 On On+41 On+4+2
50— 81— 8] — Sy —> s —— Sy — Sy, Snt2 - (6)

which accepts the word (5). Composing (4) and (6) therefore gives a path through
the product space. Removing the first transition (labeled (., 0¢)) from this path
yields ;1. Appending that transition to n; yields 7;y1.

What’s Wrong with On-the-Fly Partial Order Reduction 491

Case 2b: No operation in A occurs in ;. By CO0, A is nonempty. Let 5 € A. By
C2, every operation in 6; is independent of 5. With an argument that is similar
to the one for Case 2a, we can see there is a path in the product space for which
the projection onto the program component has the form

;a1) G2 /
4o — q1 — qg — 43—
and the projection onto the property component has the form
oo oo /] O1 o2
So —>S1 —> 81 —> S —> -

Removing the first transition from this path yields ;1. Appending that tran-
sition to 7; yields 7;+1. This completes the definitions of 7,41 and ;4.

Let 1 be the limit of the n;. Clearly 7 is an infinite path through the reduced
product space, starting from the initial state. We must show that it passes
through an accepting state infinitely often. To do so, we must examine more
closely the sequence of property states through which each 6; passes.

Let ¢ > 0, and sp the final state of n;. Say 6; passes through states sgsyss---.
Then the final state of n;+1 will be s1, and the state sequence of 6,11 is deter-
mined by the three cases as follows:

Case 1: 5189 - - -
Case 2a: 18182+ $pSpta - ($pt1 €EF = s, €F) (7)
Case 2b: 518789

We first claim that for all ¢ > 0, 6; passes through an accepting state infinitely
often. This holds for 6y, which is an accepting path by assumption. Assume it
holds for 6;. In each case of (7), we see that the state sequence of 6;;1 has a
suffix which is a suffix of the state sequence of 6;, so the claim holds for 6;.

Definition 13. For any path & = sg — s1 — - -+ through B which passes through
an accepting state infinitely often, define the accepting distance of &, written
AD(¢), to be the minimum k > 1 for which sy, is accepting.

Lemma 2. Let i > 0 and say the state sequence of 0; is sgs1S2---. If s1 is not
accepting then one of the following holds:

— Case 1 holds and AD(6;+1) < AD(6;), or
- Case 2a or 2b holds and AD(6;1+1) < AD(6;).

Proof. If s is not accepting then there is some k > 2 for which s is accepting.
The result follows by examining (7). In Case 1, the accepting distance decreases
by 1. In Case 2a, the accepting distance is either unchanged (if & < n) or
decreases by 1 (if k£ > n). In Case 2b, the accepting distance is unchanged. 0O

492 S. F. Siegel

Lemma 3. For an infinite number of i > 0, Case 1 holds for 6;.

Proof. Suppose not. Then there is some 7 > 0 such that Case 2 holds for all
j > i. Let a1 be the first program operation of 6;. Then «; is the first program
operation of ¢;, for all j > 7. Furthermore, for all j > 4, o is not in the ample
set of the final state of 1;. Since the product space has only a finite number of
states, this means there is a cycle in the reduced space for which «; is enabled
but never in the ample set, contradicting C3]. O

We now show that 71 passes through an accepting state infinitely often. Note
that, if AD(6;) = 1, an accepting state is added to n; to form 7;11. Suppose 7 does
not pass through an accepting state infinitely often. Then there is some ¢ > 0
such that for all j > 4, AD(6;) > 1. By Lemma 2, (AD(6;));>; is a nonincreasing
sequence of positive integers, and by Lemma 3, this sequence strictly decreases
infinitely often, a contradiction. This completes the proof of Theorem 1.

Remark 1. The proof goes through with minor modifications for VO in place of
V1. Let A = amp(qo, s1) instead of amp(qo, So). In Case 2a (similarly in 2b), note
the first transition so —> s; in the path in B remains in the new path (6).

8 Summary of Experimental Results and Conclusion

We have seen that standard ways of combining POR and on-the-fly model check-
ing are unsound. This is not only a theoretical issue—the defect in the algorithm
is realized in Spin, which can produce an incorrect result. A modification (V1)
seems to help, but is still not enough to guarantee soundness for any Biichi
automaton with a stutter-invariant language. However, any such automaton can
be transformed into a normal form for which algorithm V1 is sound.

v BA Sigma BState BTrans Operation PState ProdState time (s) Result

V0 B 2 2 3 <2 <2 <4 03 X
V1 B 2 2 3 <3 <5 <10 423
VO Bs 2 4 6 <2 <2 <6 04 X
V1 B 2 4 6 <2 <2 <6 03 X
VO Bs 2 2 4 <3 <5 <10 2563
V1 Bs 2 2 4 <3 <5 <10 2807 V
VO By 2 4 9 <3 <4 < 16 305
V1 By 2 4 9 <3 <4 <16 377/
VO Bs <3 <4 <6 <3 <4 <16 22649 V
VI Bs <3 <4 <6 <3 <4 <16 16539

Fig. 5. Bounded verification of soundness of POR schemes V0 and V1 on various Biichi
automata using Alloy. Bs represents all automata in SI normal form within the bounds.
Each run resulted in either a counterexample (X) or not (v).

Alloy proved useful for reasoning about the algorithms and generating small
counterexamples. A summary of the Alloy experiments and results is given in

What’s Wrong with On-the-Fly Partial Order Reduction 493

Fig. 5. These were run on an 8-core 3.7GHz Intel Xeon W-2145 and used the plin-
geling SAT solver [1].> In addition to the experiments already discussed, Alloy
found no soundness counterexamples for property automata Bz or By, using VO
or V1. In the case of By, this is what Theorem 1 predicts. For further confir-
mation of Theorem 1, T constructed a general Alloy model of Biichi automata
in ST normal form, represented by Bs in the table. Alloy confirms that both VO
and V1 are sound for all such automata within small bounds on program and
automata size.

It is possible that the use of the normal form, while correct, cancels out the
benefits of POR. A comprehensive exploration of this issue is beyond the scope
of this paper, but I can provide data on one non-trivial example. I encoded
an n-process version of Peterson’s mutual exclusion algorithm in Promela, and
used Spin to verify starvation-freedom for one process in the case n = 5. If p is
the predicate that holds whenever the process is enabled, a trace violates this
property if p holds only a finite number of times in the trace, i.e., if the trace
is in £(B3) = L(By). Figure6 shows the results of Spin verification using Bs
without POR, and using B3 and B4 with POR. The results indicate that POR
significantly improves performance on this problem, and that using the normal
form By in place of B3 actually improves performance further by a small amount.

BA POR states(stored) transitions time(s) Result

Bs N 18,064,012 116,510,960 25.8 v
Bs Y 4,742,982 13,823,705 3.6 v
Bs Y 4,719,514 12,503,008 3.4 v

Fig. 6. Spin verification of starvation-freedom for 5-process Peterson. Using the SI
normal form By instead of the smaller Bs has little impact on performance.

It is likely that V1 is sound for other interesting classes of automata. Observe,
for example, that By of Fig. 3 has states v where the language of the automaton
with u considered as the initial state is not stutter-invariant. If we restrict to
automata in which every state has a stutter-invariant language, is V1 sound? I
have neither a proof nor a counterexample. (This is certainly not true of VO, as
B is a counterexample.) To explore this question, it would help to find a way to
encode the stutter-invariant property—or a suitable approximation—in Alloy.

Finally, the proof of Theorem1 is complicated and might also be flawed.
Recent work mechanizing such proofs [3] represents an important advance in
raising the level of assurance in model checking algorithms. It would be inter-
esting to see if the proof of this theorem is amenable to such methods. How-
ever, constructing such proofs requires far more effort than the Alloy approach
described here. One possible approach moving forward is to use tools such as
Alloy when prototyping a new algorithm, to get feedback quickly and root out

3 All artifacts needed to reproduce the experiments reported in this paper can be
downloaded from http://vsl.cis.udel.edu/cav19.

http://vsl.cis.udel.edu/cav19

494 S. F. Siegel

bugs. Once Alloy no longer finds any counterexamples, one could then expend
the considerable effort required to construct a formal mechanized proof.

Acknowledgements. I am grateful to Ganesh Gopalakrishnan and Julian Brunner
for fruitful conversations on partial order reduction, to Gerard Holzmann for help with
Spin, and to the anonymous reviewers for suggestions that improved this paper. This
material is based upon work by the RAPIDS Institute, supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific Computing Research,
Scientific Discovery through Advanced Computing (SciDAC) program. Funding was
also provided by the U.S. National Science Foundation under award CCF-1319571.

References

1. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT
Competition 2017. In: Balyo, T., Heule, M., Jirvisalo, M. (eds.) Proceedings of SAT
Competition 2017 - Solver and Benchmark Descriptions. Department of Computer
Science Series of Publications B, vol. B-2017-1, pp. 14-15. University of Helsinki
(2017)

2. Brunner, J.: Implementation and verification of partial order reduction for on-the-
fly model checking. Master’s thesis, Technische Universitat Miinchen, Department
of Computer Science, July 2014. https://www21.in.tum.de/~brunnerj/documents/
ivporotfmc.pdf

3. Brunner, J., Lammich, P.: Formal verification of an executable LTL model checker
with partial order reduction. J. Autom. Reason. 60, 3-21 (2018). https://doi.org/
10.1007/s10817-017-9418-4

4. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

5. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Form. Methods Syst. Des. 1(2),
275-288 (1992). https://doi.org/10.1007/BF00121128

6. Etessami, K.: Stutter-invariant languages, w-automata, and temporal logic. In:
Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 236-248. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6_22

7. Holzmann, G., Peled, D., Yannakakis, M.: On nested depth first search. In: The
Spin Verification System, DIMACS - Series in Discrete Mathematics and Theo-
retical Computer Science, vol. 32, pp. 23-31. AMS and DIMACS (1997). https://
bookstore.ams.org/dimacs-32/

8. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Boston (2004)

9. Holzmann, G.J., Kupferman, O.: Not checking for closure under stuttering. In:
Grégoire, J.C., Holzmann, G.J., Peled, D.A. (eds.) The SPIN Verification System.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.
32, pp. 17-22. American Mathematical Society (1997)

10. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: Hogrefe, D.,
Leue, S. (eds.) Proceedings of the 7th IFIP WG6.1 International Conference on
Formal Description Techniques (Forte 1994). IFIP Conference Proceedings, vol. 6,
pp. 197-211. Chapman & Hall (1995). http://dl.acm.org/citation.cfm?id=646213.
681369

https://www21.in.tum.de/~brunnerj/documents/ivporotfmc.pdf
https://www21.in.tum.de/~brunnerj/documents/ivporotfmc.pdf
https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/BF00121128
https://doi.org/10.1007/3-540-48683-6_22
https://bookstore.ams.org/dimacs-32/
https://bookstore.ams.org/dimacs-32/
http://dl.acm.org/citation.cfm?id=646213.681369
http://dl.acm.org/citation.cfm?id=646213.681369

11.

12.

13.

14.

15.

16.

17.

What’s Wrong with On-the-Fly Partial Order Reduction 495

Jackson, D.: Software Abstractions: Logic, Language, and Analysis, Revised edn.
MIT Press (2012)

Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377-390. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58179-0-69

Peled, D.: Combining partial order reductions with on-the-fly model-checking.
Form. Methods Syst. Des. 8(1), 39-64 (1996). https://doi.org/10.1007/
BF00121262

Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174-190. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1_12

Siegel, S.F.: Reexamining two results in partial order reduction. Technical report.
UD-CIS-2011/06, U. Delaware (2011). http://vsl.cis.udel.edu/pubs/por_tr_2011.
html

Siegel, S.F.: Transparent partial order reduction. Form. Methods Syst. Des. 40(1),
1-19 (2012). https://doi.org/10.1007/s10703-011-0126-0

Siegel, S.F.: What’s wrong with on-the-fly partial order reduction (extended ver-
sion). Technical report. UD-CIS-2019/05, University of Delaware (2019). http://
vsl.cis.udel.edu/pubs/onthefly.html

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-58179-0_69
https://doi.org/10.1007/BF00121262
https://doi.org/10.1007/BF00121262
https://doi.org/10.1007/978-3-540-31980-1_12
http://vsl.cis.udel.edu/pubs/por_tr_2011.html
http://vsl.cis.udel.edu/pubs/por_tr_2011.html
https://doi.org/10.1007/s10703-011-0126-0
http://vsl.cis.udel.edu/pubs/onthefly.html
http://vsl.cis.udel.edu/pubs/onthefly.html
http://creativecommons.org/licenses/by/4.0/

	What's Wrong with On-the-Fly Partial Order Reduction
	1 Introduction
	2 Preliminaries
	3 On-the-Fly Partial Order Reduction
	3.1 Counterexample

	4 Alloy Models of POR Schemes
	5 Spin
	6 Ignoring the Intermediate States
	7 What's Right
	8 Summary of Experimental Results and Conclusion
	References

