
An Improvement in Formal Verification

Gerard J. Holzmann
Doron Peled

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Critical safety and liveness properties of a concurrent system can often be proven with the
help of a reachability analysis of a finite state model. This type of analysis is usually
implemented as a depth−first search of the product state−space of all components in the
system, with each (finite state) component modeling the behavior of one asynchronously
executing process. Formal verification is achieved by coupling the depth−first search
with a method for identifying those states or sequences of states that violate the correct-
ness requirements.

It is well known, however, that an exhaustive depth−first search of this type performs
redundant work. The redundancy is caused by the many possible interleavings of inde-
pendent actions in a concurrent system. Few of these interleavings can alter the truth or
falsity of the correctness properties being studied.

The standard depth−first search algorithm can be modified to track additional information
about the interleavings that have already been inspected, and use this information to avoid
the exploration of redundant interleavings. Care must be taken to perform the reductions
in such a way that the capability to prove both safety and liveness properties is fully pre-
served. Not all known methods have this property. Another potential drawback of the
existing methods is that the additional computations required to enforce a reduction dur-
ing the search can introduce overhead that diminishes the benefits. In this paper we dis-
cuss a new reduction method that solves some of these problems.

Keywords: I.3, I.6, III.2, IV.5

Proceedings FORTE 1994 Conference, Bern, Switzerland, 4–7 October 1994.

August 20, 1994

An Improvement in Formal Verification

Gerard J. Holzmann
Doron Peled

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

The depth-first search algorithm that is used for on-the-fly reachability analyses can explore many execu-
tion sequences that are not strictly required to prove the safety and liveness properties of a concurrent sys-
tem. In the last few years, several proposals have been made for revised search algorithms that can avoid
some or all of this redundancy, e.g., [V90], [GW91], [HGP92], [V93], [P93].

The methods that have been studied so far can be classified as ‘dynamic reduction methods.’ They attempt
to compute mostly at runtime (i.e., during the search) which parts of the reachability analysis are redundant
and can be skipped. Unavoidably, the additional computations also consume resources: they require mem-
ory to store additional data structures, and they require CPU time to discover the redundancies. This over-
head reduces the amount of improvement that can be achieved. In some cases, the costs of improvement
outweigh the gains, which means that the unoptimized full search can sometimes outperform the ‘opti-
mized’ reduced search.

This paper considers the feasibility of performing the computations before the search, instead of during the
search. We prove for one such reduction strategy that it preserves both the safety and the liveness proper-
ties of a concurrent system. The new reduction strategy is therefore generally usable for linear time tempo-
ral logic (LTL) model checking.

Section 2 discusses the main concepts needed for a definition of the static reduction method. Section 3
introduces the algorithm itself, and Section 4 contains its proof of correctness. Section 5 discusses an
implementation of the static reduction method, as an experimental addition to the verification tool SPIN
[H92]. Section 6 contains an evaluation of the performance of this implementation, and a comparison
against both the classic search method and an existing dynamic reduction method, all implemented as part
of the same verification system. Section 7 summarizes the results.

2. DEFINITIONS

We consider any verification problem that can be formalized as a reachability analysis problem in a finite
labeled transition system (LTS). This specifically includes the problems of proving safety, liveness, and
linear time temporal logic properties for any finite state concurrent system.

An LTS is defined as a triple {S,s0 ,T}, whereS is a finite set of states,s0 is a distinguished initial state in
S, andT is a finite set of transitions, withT ⊆ (S×S). In a simple form, an LTS can be used to formalize the
behavior of a single sequential process. It can also formalize the combined behavior of a finite number of
interacting and asynchronously executing sequential processes. Each transition of the LTS then corre-
sponds to the execution of a specific atomic statement within one of the processes, in accordance with a
standard interleaving semantics of concurrency. The LTS can be represented by a graph with nodes corre-
sponding to the states inS and directed edges corresponding to the transitions inT. A connected path
through this graph then defines the effects of a possible execution in the underlying concurrent system.
There will be at least one path through the graph for every possible way in which the execution of process
statements could be interleaved in time.

Given a transitiont ∈ T in an LTS, we will use the notationLabel(t) to refer to the process statement that is
represented by transitiont, and we will usePid(t) to refer to the sequential process that contains the state-
mentLabel(t). Without loss of generality, we assume that the mapping from transitions to process state-
ments is unique. The reverse mapping will, in general, not be unique.

- 2 -

The semantics of a statementa =Label(t) are defined by two functionsCond andAct, where

Cond(a) is the subset ofS wherea is enabled (or ‘executable’ [H92]), and
Act(a,s) is that state ofS that is reached whena is executed in a givens ∈ Cond(a).

Normally, a statement in a sequential process is ‘enabled’ or ‘executable’ only if it is pointed to by the cur-
rent program counter of the sequential process that contains that statement. In a concurrent system, how-
ever, we can define additional constraints on the enabledness or executability of statements. A message
send operation, for instance, can be defined to be enabled only if also the destination message buffer is
non-full, and a message receive operation can be defined to be enabled when also the source message buffer
is non-empty.

Two statementsa andb are defined to beindependent at states ∈ S, written as{ a,b } ∈ Ind(s), if and only
if the following five conditions are met:

(1) s ∈ Cond(a), i.e., statementa is enabled ins,
(2) s ∈ Cond(b), i.e., statementb is enabled ins,
(3) Act(a,s) ∈ Cond(b), i.e., the execution ofa cannot disableb,
(4) Act(b,s) ∈ Cond(a), i.e., the execution ofb cannot disablea,
(5) Act(b,Act(a,s))=Act(a,Act(b,s)), i.e., the effect of executinga followed by b is indistin-
guishable from that of executingb followed bya.

Note that two statements from the same sequential process, i.e., withPid(a) =Pid(b), can not be indepen-
dent. If the two statements are executed sequentially, they cannot be simultaneously enabled. If they
appear together in a single selection, the execution of either one statement will disable the other. Two state-
ments from distinct sequential processes can be independent under certain conditions. Two send operations
on distinct message queues will in general be independent, but two send operations on the same message
queue will not. The send operation that executes first may disable the second if its message fills the queue
to capacity, which violates requirements (3) and (4). In addition, the order in which the two statements are
executed can be distinguished by the order in which the messages appear in the destination queue, which
violates requirement (5).

Statementsa andb are defined to beglobally independent if and only if they are independent in every pos-
sible state where they are simultaneously enabled:

(6) s ∈ (Cond(a) ∩Cond(b)) → { a,b } ∈ Ind(s).

Note thata andb are trivially globally independent whenCond(a) ∩Cond(b) = ∅ . Two assignment state-
ments from two distinct sequential processes, i.e.,Pid(a) ≠Pid(b), that access only local variables within
each process, will in general also be globally independent.

Because it is known that both safety and liveness properties can be expressed by next-time-free linear-time
temporal logic (LTL) formulae [W83], we will focus on a method for proving the satisfiability of LTL for-
mulae (cf. [V90], [V93], [P93]). TheLTL formulae we consider may contain boolean propositions on
system-states, the boolean operators∧ , ∨ , ! (not), and the temporal operators(always),◊ (eventually),
andU (until), but not the temporal operatorO (next-time).

Wolper [W83] showed that any next-time-free LTL formula can be formalized as a nondeterministic Büchi
Automaton with a predefined initial state, and a finite set of acceptance states. Thetransitions in the Büchi
Automaton carry predicate labels, each of which represents a boolean proposition. In our case, the boolean
propositions can refer only to the (global) system-state of the labeled transition system for which the LTL
formula formalizes a property. The Büchi Automaton itself can be represented by an LTS with predefined
acceptance states. The satisfaction of an LTL formula can now be proven by detecting acceptance cycles in
the synchronous product of two labeled transition systems: one representing the concurrent system and one
representing the Büchi Automaton (e.g., [CVWY92]). The absence of acceptance cycles can similarly
prove that the LTL formula cannot be satisfied [H92].

The synchronous product F×G of a labeled transition systemF, representing a concurrent system, and a
Büchi Automaton G, derived from a next-time-free LTL formula, is defined as follows. Let
F = (S F , f 0 ,T F) andG = (S G ,g0 ,T G). Each state of the synchronous productF×G is a pair (f ,g), with
f ∈ S F andg ∈ S G. Each transition, similarly, is a pair (v,w), with v ∈ T F andw ∈ T G. We define the LTS
for the synchronous productF×G recursively as follows. The initial state ofF×G is (f 0 ,g0). For each

- 3 -

state (f ,g) there is a successor state (h,k), reachable via transition (v,w), if and only if:

(1) v = (f ,h) ∈ T F, i.e.,h is a successor off via v in F,
(2) w = (g,k) ∈ T G, i.e.,k is a successor ofg via w in G, and
(3) The boolean proposition defined byLabel(w) is true in statef ∈ S F.

A statementa in F is said to beobservable by Büchi AutomatonG if there exists a label inG for which the
corresponding proposition can have a different truth-value in at least one system-states ∈ Cond(a) and in
Act(a,s). The statementa can now be said to be

• Safe if a is non-observable toG and globally independent from everyb with Pid(a) ≠Pid(b), and
• Conditionally Safe for conditionP(s), if a is safe in every states whereP(s) holds.

The reduction algorithm that we will describe in the next section relies on the fact that the safety or condi-
tional safety of statements can in many cases be determined statically.

3. REDUCTION ALGORITHM

We first consider the standard depth-first search algorithm that implements the generation of the labeled
transition systemF from a specification of a concurrent system. We then consider how this search can be
extended to generate the synchronous productF×G, whereG is a Büchi Automaton that encodes an LTL
formula, and to detect the existence of acceptance cycles in that product.

The initialization of the search is illustrated in Figure 1a. First, the basic transition structure of the concur-
rent system is obtained and optimized. The optimization step, can, as we shall argue, also include a pre-
computation of independence relations, with a static identification of all safe and conditionally safe
process-statements. Two sets of states are then initialized with the predefined initial system states0: the
Statespace and theStack. The search begins with a call of the depth-first search routine,Dfs(), with param-
eter 1. The relevance of the parameter will become clear shortly.

1 start_search(s 0)
2 { derive and optimize transition structures
3 enter s 0 into Statespace;
4 push s 0 onto Stack;
5 Dfs(1); /* see Figure 1c */
6 }

Figure 1a – Initialization
Figure 1b first shows the expansion step for process statements, in routinedfs() (note: not the routine from
line 5). In the absence of a Büchi Automaton, the calls on lines 5 and 16 could both be implemented as
calls ondfs(N).

7 dfs(N)
8 { s = top(Stack);
9 for each sequential process i

10 { nxt = all transitions in F enabled in s with Pid(t) = i
11 for all t in nxt
12 { s’ = successor of s after t;
13 if {s’,N} NOT in Statespace
14 { enter {s’,N} into Statespace;
15 push s’ onto Stack;
16 Dfs(N);
17 } } }
18 pop s from Stack
19 }

Figure 1b – Expansion Step for the Sequential Processes

In the general version of the verification algorithm, however, the calls on lines 5 and 16 invoke the routine
shown in Figure 1c, which implements the expansion step for the transitions in the Büchi Automaton. The
state of the Büchi Automaton is part of compound system states. Because the transitions in the Büchi
Automaton represent boolean propositions from an underlying LTL formula, a transitiont ∈ T G in Büchi
AutomatonG will only be enabled if and only if propositionLabel(t) holds. The synchronous coupling of

- 4 -

systemF and Büchi AutomatonG is achieved by alternating the calls toDfs(N), on line 16, anddfs(N)
on line 28. Each pair of subsequent calls, explores one synchronous transition ofF×G.

20 Dfs(N)
21 { s = top(Stack);
22 nxt = all transitions in G enabled in s; /* the Büchi Automaton */
23 for all t in nxt
24 { s’ = successor of s after t;
25 if {s’,N} NOT in Statespace
26 { enter {s’,N} into Statespace;
27 push s’ onto Stack;
28 dfs(N);
29 } }
30 pop s from Stack
31 }

Figure 1c – Interleaved Transitions of Büchi Automaton

Figure 1c shows only the basic expansion step without the extra hooks that are required to detect the pres-
ence of acceptance cycles in the synchronous product of concurrent system and Büchi Automaton. To
enable also the detection of acceptance cycles, we can check for every reachable acceptance state inG if
that state is also reachable from itself. We do so with a second depth-first search, in post-order, in a sepa-
rate state space. Two separate values for parameterN serve to indicate in which part of the search the algo-
rithm operates. To initiate the second search, we include four extra lines between lines 28 and 29 of Figure
1c, as illustrated in Figure 1d. If the seed state is reachable from itself this can be detected and reported at
line 24, as illustrated by lines 24a-d in Figure 1d.

20 Dfs(N)
21 { s = top(Stack);
22 nxt = all transitions in G enabled in s; /* the Büchi Automaton */
23 for all t in nxt
24 { s’ = successor of s after t;
24a if N == 2 and s’ == seed
24b { report acceptance cycle
24c return
24d }
25 if {s’,N} NOT in Statespace
26 { enter {s’,N} into Statespace;
27 push s’ onto Stack;
28 dfs(N);
28a if N == 1 and s is an accepting state in G
28b { seed = s
28c dfs(2)
28d }
29 } }
30 pop s from Stack
31 }

Figure 1d – Extension for Cycle Detection

A description, and correctness proof, for this method of cycle detection was given in [CVWY92]. The
algorithm generates at least one example of an acceptance cycle, if one or more such cycles exist. It is not
guaranteed to generateall such cycles. If, however, the Büchi Automaton is used to formalize an undesir-
able behavior, i.e., the violation of a correctness requirement, a proof of either the existence or the absence
of acceptance cycles that satisfy the claim is always sufficient for a conclusive verification result.

Note that when the existence of an acceptance cycle is discovered, its complete traversal is contained in the
Stack, and can be generated as a counter-example to the correctness claim.

- 5 -

Static Reduction

To implement a static reduction technique, it suffices to modify only the algorithm from Figure 1b, since
the safety of transitions applies only to the transitions in the sequential processes, not to those of the Büchi
Automaton. The change is illustrated in Figure 1e. The aim of the reduction method is to find the smallest
set of transitions that will suffice to perform the expansion (given that we want to preserve both safety and
liveness properties). Clearly, the expansion cannot be complete unless for every transition selected, we also
select all those simultaneously enabled transitions that that arenot independent from it. This means that if
we selecta, we must minimally also select all simultaneously enabled transitionsb with Pid(b) =Pid(a)
(cf. line 10 in Figure 1e).

In the static reduction method we try to identify at least one process that can execute only safe, or condi-
tionally safe, transitions. Such a process can be found by a prescan of the processes. In Figure 1e, this crit-
ical step is performed on line 8a and is used to re-order the processes in such a way that processes that per-
form only (conditionally) safe transitions can be selected first for the expansion step on line 9. If the expan-
sion succeeded (more about this below) we can ignore the (independent) transitions from all other processes
by breaking out of the loop over processes on line 16f. The ordering step itself introduces virtually no run-
time overhead. In the implementation discussed in Section 5, for instance, it is implemented by a table-
lookup for unconditionally safe transitions, and by the evaluation of a precomputed boolean condition for
conditionally safe transitions.

A check is added on lines 16a-b, to see if the last transition explored returned the search to a states ′ that is
already contained in the search stack or not. If there is at least one such transition, the value of a local
boolean variableNotInStack is set tofalse. Once all transitions of the process have been explored, the val-
ues ofNotInStack andAtLeastOneSuccessor are inspected. The reduction attempt fails unless all transitions
explored for the current process have produced successor states that are currentlynot contained inStack. If
this requirement is not met, the algorithm will try to make another selection of transitions, by moving to the
next process in the outer for-loop. In the worst case, this will mean that the reduced expansion step will
explore all enabled transitions, just as it did in Figure 1b.

The condition on line 16e that has to be fulfilled for the reduction attempt to be considered successful is
known as thereduction proviso. The need for such a proviso was first recognized by Valmari in [V90].
The version of the proviso used here was first proposed in [P93]. A weaker version of the same test, for the
preservation of safety properties only, was discussed in [HGP92]. In the next section we will show that the
stronger proviso from [P93] guarantees the preservation of both safety and liveness properties.

7 dfs(N)
8 { s = top(Stack);
8a order processes; /* using safety as ordering principle - see text */
9 for each sequential process i
9a { boolean NotInStack = true
9b boolean AtLeastOneSuccessor = false

10 nxt = all transitions t in F enabled in s with Pid(t) = i
11 for all t in nxt
12 { s’ = successor of s after t;
13 if {s’,N} NOT in Statespace
14 { enter {s’,N} into Statespace;
15 push s’ onto Stack;
16 Dfs(N);
16a } else if s’ in Stack /* reduction proviso */
16b NotInStack = false
16c AtLeastOneSuccessor = true
16d }
16e if AtLeastOneSuccessor ∧ NotInStack
16f break /* from the loop over processes */
17 }
18 pop s from Stack
19 }

Figure 1e – Reduced Expansion Step

- 6 -

The tests on line 16a and 16e introduce virtually no overhead to the algorithm.

4. PROOF OF CORRECTNESS [skip on first reading]

We will give the main proof argument that supports the correctness of the reduction algorithm. The
remaining steps that are required for a rigorous proof are only briefly indicated.

An execution sequence σ of an LTS can be defined either as a sequence of transitions or as the sequence of
states that is traversed by these transitions. LetEq(σ) be the set of all execution sequences that can be
obtained fromσ by zero or more permutations of adjacent, globally independent, transitions. For each
sequence in this set we can define thedistance to σ as the smallest number of permutations that must be
performed to retrieveσ. (This distance can be eithe finite or infinite.)

Any sequenceρ that equals a finite prefix of at least one sequence inEq(σ) is called apermuted prefix of
σ. Let PP(ρ,σ) be the set of sequences inEq(σ) that containρ as a prefix. LetPP ′ (ρ,σ) further be the
subset of those sequences inPP(ρ,σ) that have the shortest distance toσ. Note that the sequences in this
set differ fromσ in at most a prefix of finite length. For each such sequence, therefore, we can define a
finite prefix ρ ′, such that the remainder of the sequence (after the deletion ofρ ′) equalsσ. This prefix,
which can be longer thanρ, is called theminimal stable extension of ρ in σ.

A generalized permuted prefix ρ of an execution sequenceσ is finite execution sequence that can be
transformed into a permuted prefix ofσ by omitting zero or more non-observable transitions.

To prove the correctness of the reduced search algorithm, we first prove the following Lemma.

Lemma – At each state that is reached during the search, the reduced search algorithm generates at least
one generalized permuted prefixρ for every execution sequenceσ that can start from that state.

Proof – The proof is by induction on the order in which states are removed from the depth-first stack in the
reduced search algorithm.

[1.] For the induction basis, consider the first state that is removed from the stack in the reduced search
algorithm. There are two cases to consider, depending on the number of enabled transitions in that state.

[1.1.] The state has no enabled transitions, and thus no successor states. In this case there exist no further
executions from this state, and the Lemma holds.

[1.2.] The state has enabled transitions. All these transitions must have returned the search to previously
visited states: they cannot be new states because such states would have been removed from the stack
before the current one. Since no states were previously removed from the stack, all previously visited states
are still contained in the stack. The reduction proviso from the reduced search algorithm will in this case
force a complete exploration of all enabled transitions from this state (line 16a, Figure 1e). This set
includes the first transitiona from σ. This transitiona is a generalized permuted prefix of length one. The
Lemma therefore holds for this case.

[2.] Next, we must show that if the Lemma holds for the firstN states that are removed from the stack, it
necessarily also holds for the (N +1)-th state. Lets be that state. There are again two cases to consider.

[2.1.] The set of enabled transitions ins doesnot contain a true subset of (conditionally) safe transitions
that includes all the enabled transitions for one sequential process, and none of which leads to a successor
state on the stack. In this case, the reduced search algorithm explores all enabled transitions froms and the
Lemma holds by the same construction as was used in the proof of step [1.2].

[2.2.] The set of enabled transitions ins does contain a true subset of (conditionally) safe transitions that
includes all enabled transitions for one sequential process, and none of which leads to a successor state on
the stack. Call that subsetx, and call the (non-empty) set of all remaining transitionsy. The reduced search
algorithm explores only the sequences that start with a transition fromx.

First note that any transition inx forms a generalized permuted prefix of length one forσ. That is: each
such transition either appears inσ after a finite number of globally independent transitions, or it does not
appear inσ and is globally independent of all transitions that do appear.

There are two cases to consider.

[2.2.1.] If σ starts with a transition fromx, the Lemma again holds.

- 7 -

[2.2.2.] Next, consider the case whereσ starts from states with a transition fromy and reaches successor
states ′. We distinguish two further sub-cases.

[2.2.2.1.] First, consider the case whereσ starts with a transition fromy and where that transition is glob-
ally independent of all transitions inσ. In this case, none of the transitions inσ can have been disabled by
the execution of the globally independent transition fromy, and the transition itself forms a generalized per-
muted prefix of length one. The transition fromy is now itself a non-observable transition that could be
deleted from generalized permuted prefix to obtain the (empty) permuted prefix ofσ. The Lemma there-
fore holds for this case.

[2.2.2.2.] Next, consider the case whereσ starts with a transition fromy and where that transition isnot
globally independent of all transitions inσ. Let a be the first transition inσ, andb a transition from the
chosen setx that appears also inσ. (The case whereb does not appear inσ was already covered in the sec-
ond half of proof step [2.2.].) Calls ′ the state that is reached after the execution ofb. We can now find a
minimal stable extension ofb in σ, as defined above, which includes all the occurrences of transitions in the
prefix of σ that ends at the first occurrence ofb. Call that prefixρ. Further, callσ ′ the suffix ofσ that fol-
lows first occurrence ofb. Then the sequenceρ.σ ′ is equal to a copy ofσ from which this first occurrence
of b is deleted. The prefixρ is then a generalized permuted prefix of the sequenceρ.σ ′ that starts at state
s ′. But then, the prefixb .ρ must be a generalized permuted prefix ofσ, which starts at states, which means
that the Lemma also holds for this case. This completes the proof of the Lemma.

The Lemma can be shown to imply that for every execution sequenceσ, the reduced search algorithm
explores at least one execution sequence that becomes equivalent toσ when a finite number of non-
observable transitions are deleted from it. (This proof step is not detailed here.) Next we must show that
this property is sufficient for the completeness of the search itself. To do this, we must take a closer look at
the synchronous product of a concurrent system and a Büchi Automaton.

Given a concurrent systemC and a Büchi AutomatonM, we can construct an ordered set of predicates
P(M) with one predicate for each boolean proposition on the states ofC that appears inM. For each reach-
able system state ofC, each predicate inP(M) then uniquely defines a boolean value, and the setP(M)
similarly defines a unique vector of boolean values. For givenP(M), an execution sequence ofC corre-
sponds to a sequence of boolean value vectors. Call that sequence ‘the vector-sequence induced byM.’

We define two execution sequences to beM-equivalent, for given Büchi AutomatonM, if and only if the
corresponding vector-sequences induced byM are equal up to stuttering, i.e., if the two sequences are equal
when each series of two or more consecutive occurrences of the same value vectorv is replaced by a single
occurrence ofv.

The Lemma implies that the reduced search algorithm generates at least oneM-equivalent sequence for
each execution sequence of the concurrent system. The intuition for this is that all non-observable transi-
tions correspond to stuttering steps. (This proof step is not further detailed here.) The correctness of the
reduced search algorithm can now be formalized in the following theorem.

Theorem – If there exist acceptance cycles in the synchronous product of a Büchi Automaton and a con-
current system, the reduced search algorithm will detect at least one of these cycles.

Proof – by the Lemma and the fact that the set of sequences satisfying a next-time-free LTL formula is
closed under stuttering [L83]. The reduced search generates at least oneM-equivalent sequence for each
complete sequence that satisfies the LTL formula. All sequences that satisfy the LTL formula are detected
in the non-reduced depth-first search as acceptance cycles in the synchronous product of the corresponding
Büchi Automaton and the concurrent system (e.g., [W83][CVWY92][H92]). Therefore, if at least oneM-
equivalent sequence for such a satisfying sequence is generated in the reduced search, at least one accep-
tance cycle is necessarily detected.

5. IMPLEMENTATION

For a sample implementation of the static reduction technique in the verification system SPIN and its speci-
fication language PROMELA [H92], we identified five types of statements that can be marked statically as
unconditionally safe when they appear separately, and conditionally safe when they appear as guards in
selection structures.

- 8 -

(1) Any access to exclusively local variables. Any atomic process-statement that reads or writes exclu-
sively objects that are non-observable to other processes, is also non-observable to the PROMELA
never claim (which formalizes the Büchi Automaton).

(2) Any receive operation on a message queueq, provided that no more than one process can either
receive messages fromq or test the contents or length ofq. We mark such a queue with a special sta-
tus:exclusive receive-access. Exclusive receive-access implies that anever claim contains no propo-
sitions on the contents ofq.

(3) Any send operation on a message queueq, provided that no more than one process can send mes-
sages toq, or test the contents or length ofq. We say that such a queue hasexclusive send-access.
Exclusive send-access implies that anever claim contains no propositions on the contents ofq.

(4) The boolean testnfull(q), that returnstrue when message queueq is currently non-full, and false oth-
erwise, provided that the statement is performed by a process that has exclusive send-access to that
queue.

(5) The boolean testnempty(q), that returnstrue when message queueq is currently non-empty, and
false otherwise, provided that the statement is performed by a process that has exclusive receive-
access from that queue.

The statements of types (1)-(5) areconditionally safe if they do appear as guards in selection structures.
The condition for the conditionally safe statements is defined as the logicaland combination of the follow-
ing clauses for each type of guard: (1)true (i.e., these statements contribute no additional constraints), (2)
and (5)nempty(q), and (3) and (4)nfull(q). Note that statements of type (2-5) can only contribute con-
straints of two statically determined types.

We extended the PROMELA grammar with the two new primitivesnfull() andnempty(), referred to in (4)
and (5). A simple grammar rule in the parser prevents attempts to include negations of these two tests.

The observability of the effect of statements to the propositions of the Büchi Automaton (i.e., the
PROMELA never claim) is already guaranteed by the scope rules of PROMELA: in the absence of remote
referencing, thenever claim can only refer to global objects in the specification. All safe and conditionally
safe operations are therefore necessarily non-observable to the claim. Any reference to a queue, for
instance, breaks the exclusive access status of that queue, and automatically marks the send or receive oper-
ations as observable, and therefore non-safe.

Because PROMELA allows the dynamic creation of a finite number of processes, it is not always possible
to determine a priori which processes will be able to access which queues. Exclusive send and receive
access, in our implementation, is therefore entered into the PROMELA specification as a logical assertion,
which can be checked at runtime. The Appendix shows an example of a complete PROMELA specifica-
tion for a leader election protocol from [DKR82], with the exclusive send and receive assertions added. It
can easily be shown that the validity of an assertion of this type can be proven by both the non-reduced and
the reduced search, even when the reduction is based on an invalid assertion of this type. The intuition
behind this is that the reduced search can onlypermute globally independent statements, it cannot prevent
their execution alltogether. Therefore, at least one send or receive operation that violates an exclusive
access assertion will eventually be executed in the reduced search, though perhaps at a different place then
in the non-reduced search. There is, of course, also the possibility that the reduced search is stopped on the
detection of an acceptance cyclebefore the violation of an exclusive access assertion can be demonstrated.
In that case, however, the search has already reached its goal: it has detected the existence of at least one
error (i.e., an acceptance cycle). If the violation of an exclusive access assertion can be demonstrated first,
our implementation also reports an error (i.e., an assertion violation), which in that case means that the
reduction itself was invalid.

For the correctness of the reduction algorithm itself it must be demonstrated that if there exist one or more
acceptance cycles inF×G, the reduced search algorithm will always report at least one of them. The proof
of this property is given in [P94]. Note that it is not guaranteed, neither for the reduced nor for the standard
algorithm, thatall acceptance cycles will be reported.

- 9 -

6. PERFORMANCE

We have measured the performance of the new reduction algorithm on five sample protocols, including a
best-case example, a worst-case example, and two average protocol applications produced independently by
users of SPIN [H92]. The performance is compared both to the non-reduced ‘classic’ verification algo-
rithm, and to an existing dynamic reduction method based on Godefroid’s sleep-set method [GW91],
[HGP92], which is publicly available (in binary form) via anonymous FTP from the University of Liege as
and extension to SPIN. In the comparisons, it should be observed that the dynamic reduction method pre-
serves only safety properties, while the other two methods preserve both safety and liveness properties, and
thus provide a stronger and more general model checking system. There exist other reduction methods that
preserve both safety and liveness properties (e.g., [V90], [V93]), but at the time of writing no implementa-
tion of these methods was available for these comparisons.

Table I – Measurements
_ __ ___

Protocol Algorithm States Transitions Time(sec.) Memory (Mb)_ ___
Best-Case Non-Reduced 100,001 450,002 13.2 4.3

Static Reduction 47 47 (<0.1) 1.0
Dynamic Reduction 47 47 0.1 1.4_ ___

Worst-Case Non-Reduced 100,001 450,002 14.5 5.0
Static Reduction 100,001 450,002 16.7 5.1
Dynamic Reduction 100,001 450,002 84.5 5.3_ ___

Tpc Non-Reduced 3,918,286 11,762,426 630.6 268.4
Static Reduction 391,534 466,753 30.6 26.2
Dynamic Reduction 267,204 295,395 131.4 18.9_ ___

Snoopy Non-Reduced 91,920 305,460 14.4 11.5
Static Reduction 16,279 23,532 1.7 3.2
Dynamic Reduction 7,158 8,459 6.8 2.6_ ___

Pftp Non-Reduced 417,321 1,244,865 73.2 62.3
Static Reduction 53,244 67,901 6.8 9.3
Dynamic Reduction 125,718 163,459 105.5 20.6_ ___

Leader Non-Reduced 45,885 185,032 8.1 9.6
Static Reduction 79 79 0.1 1.1
Dynamic Reduction 79 79 0.2 1.4_ ___ 
























































Not all types of reduction can be computed with a static algorithm. For instance, if multiple sequential pro-
cesses share access to the elements of a data array, the precise values of the array indices may only be
known dynamically, which makes it impossible for a static algorithm to determine if the access of any
given element is safe. Because every reduction that can be made with a static algorithm can also be made
with a dynamic algorithm, we should expect that dynamic algorithms can achieve greater reductions than
static ones in terms of the numbers of states and transitions explored. If the bottom-line commodities of
run-time and memory used are measured, however, the results are less predictable, and it should be possible
for a static algorithm, with lower overhead, to defeat a dynamic one.

The best and the worst case examples are artificial cyclic models, containing only local and only global
statements, respectively.Tpc is a model of a telephone switch, specified in 279 lines of PROMELA.
Snoopy is a model of a cache coherence protocol specified in 255 lines of PROMELA.Pftp is a version of
the file transfer protocol of 204 lines from [H92].Leader is the leader election protocol with 5 processes,
as shown in the Appendix. All measurements were made on a Sparc-10 workstation with 128Mbyte of
RAM. The runtimes are the sum of system-time and user-time.

The static reduction method gave the shortest run-time in all cases tested, despite the fact that it sometimes
searched a larger statespace compared to the dynamic method. In one case (Pftp) the static reduction
method even completes its search in a smaller search space than the dynamic method, but presumably, this

- 10 -

is a deficiency in the dynamic method that could be remedied. The amount of memory used by the static
and the dynamic reduction method is comparable, and not decisively in favor of either method. For both
the dynamic and the static reduction method, the amount of memory used is significantly lower than in a
non-reduced search.

In the worst case, the performance of the reduced search is not significantly different from that of a non-
reduced search, which is not true for the dynamic method. The best-case application, as expected, shows a
(literally) exponential reduction of both runtime and memory requirements.

Exploiting Structure

The reduction rules for the static reduction algorithm also have an unexpected, and sometimes quite dra-
matic, positive effect on our capability to prove essential properties of large protocol specifications.
Because it can lower the complexity of the search if we can mark queues as having exclusive send-access or
exclusive receive-access, the user can consciously avoid using queues that do not have this property. It is
often possible to rewrite a specification in this way, without changing its functionality. As an example,
consider the system from Figure 2a, which corresponds to a validation model that we built in 1988 for the
validation of the IEEE 802.2 Logical Link Control Protocol [IEEE84].

User-1 LLC-1 LLC-2 User-2

Figure 2a – Model of IEEE LLC 802.2

An exhaustive search for this protocol generates 1,851,049 reachable states. The reduced search brings this
down 111,159 reachable states. Notice, however, that the input queues of the LLC processes are non-
exclusive. By splitting these two queues, as illustrated in Figure 2b, using a separate queue for each source
of information, all queues in the revised model obtain both exclusive receive- and exclusive send-access.

User-1 LLC-1 LLC-2 User-2

Figure 2b – Revised Model

The reduction algorithm will be able to do a better job in this case, but the revision also has an effect on the
complexity of thenon-reduced search, by avoiding the generation of all non-deterministic interleavings of
messages from different sources in the shared input queues of the LLC processes. The search space reduces
from 1,851,049 reachable states to 19,407 reachable states, for the non-reduced algorithm. The reduction
algorithm reduces this further to 2,000 reachable states. The reduction method in this case successfully
guides us to a solution that requires three orders of magnitude less resources than before.

7. CONCLUSION

We have described a new static reduction algorithm that preserves the capability of a depth-first search to
prove both safety and liveness properties of concurrent systems. We have shown that this static reduction
method performs considerably better than a non-reduced search. It also approaches the reduction achieved
by a dynamic method closely, while providing a greater correctness proving power. The static reduction
method has no significant worst-case behavior.

Because it is known which types of statements can be exploited by the algorithm, with a static reduction
method the designer of a protocol can reduce the complexity of a validationa priori, be choosing a specific
structure for the model. In certain cases, it may thus become possible to perform true ‘structured design
validation’ for concurrent systems.

- 11 -

8. REFERENCES

[CVWY92] C. Courcoubetis, M. Vardi, P. Wolper, M. Yannakakis, ‘‘Memory efficient algorithms for the
verification of temporal properties,’’ Formal Methods in Systems Design I, 1992, pp. 275-288.

[DKR82] D. Dolev, M. Klawe, and M. Rodeh, ‘‘An O(n log n) unidirectional distributed algorithm for
extrema finding in a circle,’’ Journal of Algorithms, Vol 3. (1982), pp. 245-260.

[GW91], P. Godefroid, P. Wolper, ‘‘A partial approach to model checking,’’ 6th LICS, 1991, Amsterdam,
pp. 406-415.

[H92] G.J. Holzmann, ‘‘Design and Validation of Computer Protocols,’’ Prentice Hall, 1992.

[HGP92] G.J. Holzmann, P. Godefroid, and D. Pirottin, ‘‘Coverage preserving reduction strategies for
reachability analysis,’’ Proc. IFIP, Symp. on Protocols Specification, Testing, and Verification, June 1992,
Orlando, Fl. pp. 349-364.

[IEEE84] ANSI/IEEE Standard 8802/2, Logical Link Control, ISBN 0-471-82748-7, New York, 1984.

[L83] L. Lamport, ‘‘What good is temporal logic?,’’ Information Processing 83: Proc. of the 9th IFIP
World Computer Congress. Ed. R.E.A. Mason, Elsevier Publ., pp. 657-668.

[P93] D. Peled, ‘‘All from one, one for all – on model checking using representatives,’’ 5th Int. Conf. on
Computer Aided Verification, Greece, 1993, LNCS 697, Springer Verlag, pp. 409-423.

[P94] D. Peled, ‘‘Combining Partial Order Reductions with On-the-fly Model Checking,’’ 6th Int. Conf. on
Computer Aided Verification, Stanford, Ca., June 1994.

[V90] A. Valmari, ‘‘A stubborn attack on state explosion,’’ 2nd Int. Conf. on Computer Aided Verification,
Rutgers University 1990, Dimacs Series, Vol 3, pp. 25-42.

[V93] A. Valmari, ‘‘On-the-fly verification of stubborn sets,’’ 5th Int. Conf. on Computer Aided Verifica-
tion, 1993, LNCS 697, Springer Verlag, pp. 397-408.

[W83] P. Wolper, M.Y. Vardi, and A.P. Sistla, ‘‘Reasoning about infinite computation paths,’’ Proceedings
of 24-th IEEE symposium on the foundations of computer science, Tuscan, 1983, pp. 185-194.

- 12 -

APPENDIX

Complete PROMELA Specification of a leader election protocol in a unidirectional ring from [DKR82].

#define I 3 /* The node to have smallest identifier */
#define N 5 /* number of processes */
#define L 10 /* size of message buffer */

mtype = { first, second };

chan q[N] = [L] of {byte,byte}; /* global FIFO buffer */

proctype node(chan in, out; byte id)
{ byte number, maxi=id, neighbourR; /* local */

bit active=1; /* local */

xr in; /* assert exclusive receive access to chan in */
xs out; /* assert exclusive send access to chan out */

out!first(id);
end: do /* repetition : valid end-state */

:: in?first(number) ->
if /* selection */
:: active ->

if /* selection */
:: number != maxi ->

out!second(number);
neighbourR = number

:: number == maxi ->
assert maxi == N

fi
:: !active -> out!first(number)
fi

:: in?second(number) ->
if /* selection */
:: active ->

if /* selection */
:: neighbourR > number && neighbourR > maxi ->

maxi = neighbourR;
out!first(neighbourR)

:: !(neighbourR > number && neighbourR > maxi) ->
active = 0

fi
:: !active -> out!second(number)
fi

od
}

init {
byte n=1; /* a local variable */
atomic { /* non-interleaved */

do /* repetition */
:: n <= N ->

run node(q[n-1], q[n%N], (N+I-n)%N+1);
n = n+1

:: n > N ->
break /* end repetition */

od
} }

