
ON NESTED DEPTH FIRST SEARCH

non-progress cycles ([Hol92]) are both incompatible with partial order re-
duction, such as proposed in [Peled94, HP94]. We have discussed a mod-
i�cation of one of the two algorithms that secures compatibility with reduc-
tion methods, and that su�ces to solve both search problems e�ciently and
uniformly.

Acknowledgement: The authors are most grateful to Michael Ferguson,
whose keen observations lead us to the discovery of the incompatibility of
the nested depth �rst search algorithms with partial order reduction.

References

[CVWY92] C. Courcoubetis, M. Vardi, P. Wolper, M, Yannakakis, Memory-e�cient algo-
rithms for the veri�cation of temporal properties, Formal methods in system
design 1 (1992) 275{288.

[GodHol93] P. Godefroid, G.J. Holzmann, On the Veri�cation of Temporal Properties
In Proc. PSTV93,, Protocol Speci�cation Testing and Veri�cation, Liege,
Belgium, 1993, North-Holland, 109{124.

[Hol92] G. J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall
Software Series, 1992.

[HP94] G.J. Holzmann, D. Peled, An improvement in formal veri�cation, 7th Inter-

national Conference on Formal Description Techniques, Berne, Switzerland,
1994, 177{194.

[Peled94] D. Peled. Combining partial order reductions with on-the-
y model checking.
Formal Methods in System Design 8 (1996), 39{64.

[VW86] M.Y. Vardi, P. Wolper, An automata-theoretic approach to automatic pro-
gram veri�cation, 1st Annual IEEE Symposium on Logic in Computer Sci-

ence, 1986, Cambridge, England, 322{331.

Bell Laboratories 2C-521, 700 Mountain Avenue, Murray Hill, NJ 07974

E-mail address: fgerard,doron,mihalisgresearch.bell-labs.com

G.J. HOLZMANN, D. PELED, AND M. YANNAKAKIS

never f /* non-progress: 32:progress */
do
:: skip
:: !progress � > break
od;

accept: do
:: !progress
od

g

Figure 6. Non-Progress B�uchi Automaton, expressed as
Never Claim

to the root of the second depth-�rst search (the seed state). (The path that
exists is invalid if it contains progress states.)

Although we do not know how to modify the algorithm from Figure 5
for compatibility with partial order reduction, there is a simple alternative.
The non-progress property can trivially be expressed as a model checking
problem, for instance by expressing it with the LTL property: 32:progress,
where progress is a boolean function that yields true in progress states,
and false otherwise. This LTL property can be translated into the B�uchi
automaton shown in Figure 6, which can be used to solve the problem with
the algorithm from Figure 4.

The method from Figures 4 and Figure 6 are part of the latest version
of the model checker Spin (Version 2.9). The automaton from Figure 6
does not have to be speci�ed by the user, but is automatically generated by
Spin when the user selects a search for non-progress cycles. The addition
of the two-state non-progress automaton in Figure 6 can in the worst case
double the memory requirements of the search based on Figure 4, compared
to a direct application of the algorithm from Figure 5 (avoiding the need
for the automaton from Figure 6). The algorithm from Figure 4, however,
can be optimized signi�cantly by combining it with a partial order reduction
strategy. The measurements in [HP94] suggest that a reduced search based
on Figure 4 should in almost all cases outperform an exhaustive search based
on Figure 5.

7. Conclusion

The original algorithms for performing nested depth �rst searches to
detect the presence of acceptance cycles ([CVWY92]) or the presence of

ON NESTED DEPTH FIRST SEARCH

proc dfs(s)
if error(s) then report error �
add fs,0g to Statespace
add s to Stack
for each (selected) successor t of s do

if ft,0g not in Statespace then dfs(t) �
od
if accepting(s) then ndfs(s) �
delete s from Stack

end
proc ndfs(s) /* the nested search */

add fs,1g to Statespace
for each (selected) successor t of s do

if ft,1g not in Statespace then ndfs(t) �
else if t in Stack then report cycle �

od
end

Figure 4. Optimized Nested Depth First Search, Compat-
ible with Reduction

proc dfs(s)
if error(s) then report error �
add fs,0g to Statespace
for each successor t of s do

if ft,0g not in Statespace then dfs(t) �
od
ndfs(s) /* di�erent */

end
proc ndfs(s) /* the nested search */

if s is Progress State then return � /* new */
add fs,1g to Statespace
add s to Stack /* new */
for each successor t of s do

if ft,1g not in Statespace then ndfs(t) �
else if t is in Stack then report cycle � /* di�erent */

od
delete s from Stack /* new */

end

Figure 5. Nested Depth First Search for Non-Progress Cycles

G.J. HOLZMANN, D. PELED, AND M. YANNAKAKIS

To eliminate also this problem, one must preserve information about the
selection of successors between the two searches. There are several possibil-
ities:

� Add an integer that holds a \selection number." The partial order
reduction algorithm can make several attempts to select a safe (re-
duced) subset of successor states. In Spin, these selections correspond
to process numbers [HP94]. When all attempts to chose a safe se-
lection fail, a complete expansion of all successors is done. The �rst
depth-�rst search would keep the selection number for the use of the
second depth-�rst search. The second depth-�rst search would gener-
ate the sets of successors (ample sets, in the terminology of [Peled94])
according to the same order, and use the selection number that was
held by the �rst depth-�rst search, ignoring its own cycle closing. A
selection number of zero would mean selecting all successors from the
current state.

� A more modest solution uses only one bit as a selection number. In
this case, if a selection caused closing a cycle in the �rst depth-�rst
search, no alternative subset is sought, and the entire set of successors
is generated from the current node. The selection bit communicates
to the second depth-�rst search whether to use its �rst subset or to
do a full successor expansion.

The addition of the selection bit is a small modi�cation of the reduction
algorithm discussed in [HP94] that we will not elaborate further here.

6. Absence of Starvation

In [Hol92] a di�erent version of a nested depth-�rst search is described
to solve a slightly di�erent type of problem. The problem here is the detec-
tion of cycles in the reachability graph that do not contain any user-de�ned
progress states. Any in�nite execution that contains only �nitely many tra-
versals of progress states corresponds to starvation.

The algorithm from [Hol92] is shown in Figure 5 (shown here in the
same format as Figures 1 and 2). The di�erences with Figure 2 are as
follows. From every reachable state we start the nested search, but in the
second search no traversals through progress states are allowed. Whenever a
cycle is closed on the stack from this second depth-�rst search, an error can
be reported. In this variant of the search, therefore, also the non-reduced
variant relies on information from the search stack. (Note that an explicit
search stack must be maintained here only for the second search, while in
Figure 4 the explicit stack must be maintained only for the �rst search.)

A direct combination of this algorithm with the reduction strategy from
[Peled94] fails for the same reasons as before, but this time the correction
also fails. Note that when the second search intersects the search stack from
the �rst depth-�rst search, there does not necessarily exist a valid path back

ON NESTED DEPTH FIRST SEARCH

5. The Correction

To correct the algorithm it will su�ce if we can guarantee that the second
depth-�rst search always explores the same states that are found in the �rst
depth-�rst search. We will present two changes to accomplish this.

5.1. Intersection with Search Stack from First Search. The prob-
lem in Figure 3 occurs when the second depth-�rst search reaches a state
that exists also on the �rst search stack (state s1). Continuing the sec-
ond search from this state, the search can now reach states with a di�erent
(longer) search stack in the second depth-�rst search than in the �rst. This
means that the third condition from the partial order reduction algorithm is
applied to di�erent states, and the second search might not follow the �rst
search. Where the sets of successor states that is selected in the two phases
of the search can di�er.

The solution to this problem is remarkably simple: when the second
depth-�rst search reaches a state that exists also on the stack from the �rst
search, the search can be terminated. The reason is that reaching such a state
from the seed state implies immediately that a path exists that leads back
to the seed state: it is the path of states on the �rst depth-�rst search stack
that starts at the point of intersection. This property is independent of the
use of the partial order reduction. Stopping the search when reaching a state
on the �rst search stack shortens the search, it improves the performance
of the algorithm, and it allows for shorter counter-examples to an invalid
correctness claim to be generated.

The change in the algorithm of Figure 2 from [CVWY92] is shown in
Figure 4. In the new version of this algorithm, there is no longer a need
to store the seed state, but we do need information about the presence of
states on the search stack.

5.2. Preserving Information Between Searches. The �rst correc-
tion of the nested depth-�rst search algorithm improves its performance and
it eliminates the error that occurred in Figure 3. But, it does not completely
solve the problem.

A failure can still happen. First note that the �rst depth-�rst search
can backtrack from a graph component without performing a second search.
(The second search is only initiated from accepting states.) While searching
another component of the graph, that does contain accepting states, there
can be a transition that leads back to the earlier states, that do not as
yet appear in the second state space. This return transition would not be
followed in the �rst search, since it leads only to previously visited states.
During a second search, however, the transition must be followed, A similar
scenario now exists, in which the states are visited with a di�erent search
stack in each of the two searches, and the reachability properties are not
preserved.

G.J. HOLZMANN, D. PELED, AND M. YANNAKAKIS

s4

s3

s2

s1

e1

e5

e4

e3

e2

Figure 3. Failure of the Reduced Nested Depth-First
Search

that reachability properties during a reduced search that is based on this
condition can depend on the precise search order and the contents of the
search stack at each point during the search.

A direct combination of the partial order reduction technique presented
in [Peled94, HP94] with the nested depth-�rst search method described in
[CVWY92] therefore results in an incorrect algorithm. Since the contents
of the depth-�rst search stacks in the �rst and in the second search in the
nested depth-�rst search algorithm from Figure 2 di�er, the state space that
is constructed during the �rst and the second part of the search need no
longer be equal during a reduced search. This means that the second search
may be incapable of proving that an accepting state is reachable from itself,
even if it is part of a strongly connected component in the reachability graph
that is constructed during the �rst search.

The example in Figure 3 illustrates the problem. Consider the case where
the �rst search reaches state s1. Its successors are s2 and s3. In the full
state space, there is another successor s4, but it is not selected. First edge
e1 is taken, leading to accepting state s2. Now, the �rst search continues
to search all the nodes accessible from s2. When backtracking to s2, the
second search starts, with s2 as its seed state, looking for a cycle. Such a
cycle exists by taking the edges e2, e3 and then e1 again. However, once
reaching s1 during the second search, a cycle consisting of e3 and e4 is found.
Notice that this cycle was not found in the �rst search, as s3 was not on the
search stack of the �rst search while searching for successors of s1. Closing
this cycle with the edge e4 in the second search makes the second search
select an alternative subset of successors, e.g., s4, via the edge e5. But now,
it is possible that the cycle through seed state s2 remains undetected.

ON NESTED DEPTH FIRST SEARCH

proc dfs(s)
if error(s) then report error �
add fs,0g to Statespace
for each successor t of s do

if ft,0g not in Statespace then dfs(t) �
od
if accepting(s) then seed:=s; ndfs(s) �

end
proc ndfs(s) /* the nested search */

add fs,1g to Statespace
for each successor t of s do

if ft,1g not in Statespace then ndfs(t) �
else if t==seed then report cycle �

od
end

Figure 2. Nested Depth-First Search

resumes from the point where it was interrupted. It is shown in [GodHol93]
that adding two bits to every global state that is stored in the Statespace
that is constructed by the algorithm from Figure 1 su�ces to separate the
two searches. That is: the size of Statespace need not double as initially
suggested in [CVWY92], but can remain virtually unchanged. The search
time, however, can double when all states are reachable in both the �rst and
the second search, and no cycles through accepting states exist.

Notice that also in the modi�ed algorithm, there is still no need to store
the edges of the graph, nor to access the depth-�rst search stack.

4. Reduced Search

The statespace that is constructed with the depth-�rst search procedure
can be reduced substantially if we limit the number of successor states that
is explored from each reachable state.

In [Peled94] a reduction of this type is discussed that preserves the
B�uchi acceptance properties from the full statespace also in the reduced
statespace, provided that three conditions are satis�ed. Two of the three
conditions deal with dependency between execution steps, and the visibility
of individual execution steps. They do not alter the properties of either the
basic or the nested the depth-�rst search.

A third condition, however, introduces a dependency on the information
that is stored in the depth-�rst search stack. The condition states that a
reduction of the set of successor states from state s is invalid if at least one of
those successor states appears on the depth-�rst search stack. This means

G.J. HOLZMANN, D. PELED, AND M. YANNAKAKIS

proc dfs(s)
if error(s) then report error �
add s to Statespace
for each successor t of s do

if t not in Statespace then dfs(t) �
od

end

Figure 1. Basic Depth-First Search Algorithm, Used For
Reachability Analysis

to be compatible with the reduction strategy. An alternative technique, that
is compatible, is also discussed.

2. Basic Depth-First Search

A basic depth-�rst search algorithm generates and examines every global
state that is reachable from a given initial state �, as illustrated in Figure 1.

After a �rst check for the validity of the state and its properties, the
state descriptor is entered into a global Statespace, usually with the help
of standard hash-table lookup procedures. A recursive call to the search
procedure is then made for each state that is reachable from this state in
one atomic execution step, i.e., for each possible successor in the reachability
graph that is not already represented in Statespace.

Note that Statespace needs to represent only the nodes of the reachability
graph; the representation of the edges between the nodes is not needed. Note
also that no information is needed about the presence of any state on the
depth-�rst search stack.

3. Nested Depth-First Search

The procedure from Figure 1 cannot be used directly to solve a model
checking problem, but it can readily be adapted. In model checking, the
reachability graph, partially represented in the Statespace structure, is used
to de�ne a B�uchi automaton. The acceptance conditions in this automaton
are usually derived from a special property automaton that is added to the
global system, as described in [VW86, Hol92].

The model checking problem in this context reduces to the problem of
detecting the existence in the graph of accepting states that are part of a
strongly connected component and therefore reachable from themselves.

The procedure in [CVWY92] applies a nested depth-�rst procedure
to solve this problem, as illustrated in Figure 2. When the normal search
retracts to an accepting state, a second search is started, to search for a cycle
through this state. If the second search fails to �nd a cycle, the �rst search

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00, 19xx

On Nested Depth First Search

Gerard J. Holzmann, Doron Peled, and Mihalis Yannakakis

Abstract. We show in this paper that the algorithm for solving the
model checking problem with a nested depth-�rst search can interfere
with algorithms that support partial order reduction. We introduce
a revised version of the algorithm that guarantees compatibility. The
change also improves the performance of the nested depth-�rst search
algorithm when partial order reduction is not used.

1. Introduction

The model checking problem for concurrent systems can be solved el-
egantly by modeling the system and its correctness requirements as au-
tomata on in�nite words (i.e., B�uchi Automata), and by verifying that the
language of the product of system and requirement automata is empty.
The emptiness problem itself would normally require the computation of
the strongly connected components of the product system. This computa-
tion can be avoided with a nested depth-�rst search procedure, as discussed
in [CVWY92, GodHol93, Hol92]. The memory requirements of a reach-
ability analysis, based on either depth-�rst or breadth-�rst search order, can
be reduced further with the help of property preserving reduction strategies.
One such method was described in [Peled94, HP94]. We recently discov-
ered that the two methods are not completely compatible, which means that
a direct combination will result in an incomplete model checking procedure.

Section 2 �rst gives a synopsis of the basic and nested depth-�rst search
methods. Section 3 discusses reduction, and illustrates the undesirable side-
e�ects of a direct combination of the algorithms. Section 4 describes a mod-
i�cation of the nested depth-�rst search algorithm that avoids the problem.
In Section 5, �nally, we discuss a variation of the algorithm from [Hol92]
that can be used for proving absence of starvation, but that does not appear

1991 Mathematics Subject Classi�cation. Primary 68Q65, 68Q22, 68M15; Secondary
68N20.

Key words and phrases. Veri�cation, Depth-First Search, Partial Order Reduction,
Spin.

c
0000 American Mathematical Society
1052-1798/00 $1.00 + $.25 per page

