
Formal Methods in Software Development

Resume of the 07/10/2020 lesson

Igor Melatti and Ivano Salvo

� Murphi or Murϕ, the simplest among “model checkers”

– as all model checkers we will see in this course, Murphi may be freely
downloaded with the source code, thus it may also be modified

– links for download of all model checkers we will see are on
the course web-page: http://twiki.di.uniroma1.it/twiki/view/
MFS/FormalMethodsInSoftwareDevelopment20202021

� Formally, as all model checkers, Murphi needs the following input:

1. a description of the system S you want to verify (i.e., the “model”
you want to “check”)

2. this is essentially a Kriepke structure

3. a property ϕ you want the system S to satisfy

� The output will be either OK or FAIL

– if FAIL, it is possible to tell Murphi to print a counterexample

� In Murphi, both the description of S and of ϕ must be written in a single
text file, following a precise syntax

– in other model checkers we will see (e.g., SPIN), this syntax has a
name; but this is not the case for Murphi

– thus, we will refer to it simply as Murphi input language

– as we will see, in many points Murphi input language is similar to
some imperative programming language, especially Pascal (for state-
ments) and C (for expressions)

� A description for S and ϕ written in the Murphi input language must be
organized as follows:

1. definitions of:

– constants, also named parameters

1

– data types, divided in simple and composed

* simple types are only two: enumerations and integer sub-
ranges

* the boolean boolean data type is predefined as an enumera-
tion (true, false)

* the composed types are formed using array and/or records
(structs), possibly mixed, following the Pascal syntax

– global variables, each having one of the types above

* global variables are fundamental, as they define the states
space S

* that is, S is defined by all possible values of all global vari-
ables

· thus, is defined by the Cartesian product of all types of all
global variables defined

· as all types are finite, S may be huge but it is always finite

· see example below

– note that such types of definitions may be mixed, of course keep-
ing in mind variables scoping (e.g., if you need constant A to
define variable B, you must define constant A before B)

2. definitions of:

– functions

* return a value

* may have side effects (i.e., modify a global variable)

* may modify input arguments, but must be explicitly stated
as in Pascal (parameter passed as reference)

– procedures

* do not return a value

* may have side effects (i.e., modify a global variable)

* may modify input arguments, but must be explicitly stated
as in Pascal (parameter passed as reference)

– for both functions and procedures:

* Pascal-like syntax

* it is possible to define and use local variables

* local variables must not be considered in the definition of the
state space S

– again, you can mix them, provided scoping is respected (if func-
tion F calls function G, then G must be defined before F)

3. definitions (mixed as you like it) of:

– start states, defined as Pascal-like statements, intended as atom-
ically executed

2

* may contain the typical statements of imperative program-
ming languages: assignments, cycles, ifs, functions and pro-
cedures calls

* local variables may be defined

– rules, each defined by:

* a (application) guard, defining if a rule is applicable (fired,
as Murphi says) or not

· of course it must be a boolean expression

· only global variables and constants may occur in a guard

· it is of course possible to call functions

* a body, again formed by atomically executed Pascal-like
statements

· may contain the typical statements of imperative program-
ming languages: assignments, cycles, ifs, functions and
procedures calls

· local variables may be defined

* an optional string, working as a short comment for the rule

* by the way, comments may be either with C syntax (/**/)
or Pascal syntax (--)

– invariants, each of them defines a property to be checked

* same as guards: it must be a boolean expression

* only global variables and constants may occur in a guard

* it is of course possible to call functions

� Finally, at least an initial state and one rule must be present (see
00.minimal model.m)

� Murphi checks that all reachable states of S satisfy all invariants

– a state s ∈ S is reachable if there exists a path in the transition graph
from an initial state to s

– that is: starting from an initial state, there exists a chain of rules,
each applied to the state obtained from the preceding one, leading to
s

– this is a safety property

� Example: G. L. Peterson protocol for mutual exclusion of 2 processes
(1981)

– two identical processes

* the first is as in Figure 2, for the second it is necessary to ex-
change 1’s with 2’s and viceversa

* each applies Peterson protocol to access to the critical section L3

3

Figure 1: Peterson’s protocol in pseudo-code

* the first issuing the request enters L3

* Q is a global variable, defined as an array of two integers

· each process i may modify Q[i] and read Q[(i + 1)mod2]

* turn is another global variable, which may be both read and
modified by both processes

– Murphi description for Peterson protocol: let’s start with the vari-
ables

* of course turn and Q, but also two variables P for the modality
(“states” in Figure 2)

* see 01.2 peterson.no rulesets.no parametric.m

* to this aim, we define constants and types

* the N constant (number of processes) is here fictious: only 2
processes, not more

* this version of Peterson protocol only works for 2 processes

– thus, the state space is S = label t2 × {true, false}2 × {1, 2}
– see Figure 3

– hence, |S| = 52 × 22 × 2 = 200 (there are 200 possible states)

* as a matter of comparison, the “state” L0 in Figure 2 actually
contains 51 × 22 × 2 = 40 states...

4

L1 L2 L3 L4L0

turn := 1; !Q[2] or turn = 2

Q[2] and turn = 1

Q[1] := false;

Q[1] := true;

Figure 2: Peterson’s protocol for process 1

turn v ∈ {1..N}

v ∈ {L0, L1, L2, L3, L4}

v ∈ {true, false} v ∈ {true, false}

P

Q

v ∈ {L0, L1, L2, L3, L4}

Figure 3: Variables for Murphi model describing Peterson protocol

5

– however, as we will see, reachable states are about 10 times less

– 2 initial states: turn may be initialied with any value in its domain

– note that 01.2 peterson.no rulesets.no parametric.m we have
rules repeated 2 times in a nearly equal fashion

– this can be done in this very simple model, but in general descriptions
must be parametric

– that is, if we want to check Peterson with 3 processi, currently we
would have to add one more rule in the desciprion

– instead, it must be possible to only change the value of N from 2 to 3

– to write parametric descriptions in Murphi, rules are grouped with
rulesets

* an index will allow to describe the behavior of the generic process
i

* see 02.2 peterson.with rulesets.no parametric.m

– invariant: of course, at any execution instant, there must be only one
state in L3 (mutual exclusion)

* in a first order logic, it would be something like:

∀k ∈ {1, . . . , N}. ∀k′ ∈ {1, . . . , N}. (k 6= k′∧P[k] = L3)⇒ P[k′] 6= L3

* or, as a reverse:

¬(∃k ∈ {1, . . . , N}. ∃k′ ∈ {1, . . . , N}. k 6= k′∧P[k] = L3∧P[k′] = L3)

* in the first version, it is stated what is correct to happen

* in the first version, it is stated what is wrong to happen

* in both 00.2 peterson.with rulesets.no parametric.m and
02.2 peterson.no rulesets.no parametric.m invariant is not
parametric

* see 03.2 peterson.with rulesets.parametric.m

* note that in S there surely are states violating mutual exclusion,
e.g., 〈L3, L3, false, false, 1〉

* but they are not reachable

6

