Formal Methods in Software Development

Probabilistic Model Checking Ivano Salvo

Computer Science Department

Lesson 11, December 14 ${ }^{\text {th }}, 2020$

Probabilistic Systems

Real systems are often dependent on phenomena of a stochastic nature. Here, we address verification of probabilistic systems.

By contrast, probabilistic verification means no complete coverage ("there is no error with a probability of 90% ").

* Randomized algorithms: several algorithms (distributed) such leader election use tossing coins to break symmetries.
* Modelling unreliable or unpredictable behaviours (ex: message loss, system failures): modelling that with nondeterminism can be too coarse. In late stage of model design, probabilistic valuation can take place of nondet.
* Performance evaluation: distribution of inputs, messages, etc. are importat to evaluate quantitative aspects such as waiting time, queue length, expected time between failures.

Verifying Probabilistic Systems

We will see:

- Markov chains as generalisation of Kripke structures: in this view we will have a "state based" approach to Markov chains;
- A logic for defining probabilistic properties (here probabilities are in the syntax): PCTL.

Quantitative properties: "The probability for delivering a message in the next t time units is 98% "

Qualitative properties: A desired event happens almost surely (i.e. with probability 1) or a bad event occurs almost never (i. e. with probability 0): reachability, persistency, repeated reachability.

Lesson 11a:

Markov Chains

Markov Chains: definition

Definition: A (discrete time) Markov chain is a tuple $\mathcal{M}=(S, \mathcal{P}, \iota, A P, L)$ where:
$S, A P, L$ as usual are states, atomic propositions and labelling
$\mathcal{P}: S \times S \rightarrow[0,1]$ is the transition probability function, such that for all $s \in S, \sum_{t \in S} \mathcal{P}(s, t)=1$
$\iota: S \rightarrow[0,1]$ is the initial distribution, such that $\sum_{s \in S} \iota(s)=1$
\mathcal{M} is finite if S and $A P$ are finite, and the size of \mathcal{M} is:

$$
|\mathcal{M}|=|S|+|\{(s, t) \in S: \mathcal{P}(s, t)>0\}|
$$

(it is the size of the underlying digraph)
We will identify \mathcal{P} with the matrix of probability $[\mathcal{P}(s, t)]_{s, t \in S}$ where the row $\mathcal{P}(s, \cdot)$ contains probability to reach successors of s, and the column $\mathcal{P}(\cdot, s)$ contains probability to enter state s from its predecessors.
States such that $l(s)>0$ are initial states and it is the probability that system evolution starts in s.

Markov Chains: Example

Let us consider an error prone communication protocol, that with probability 10% can loose a message. The message is sent until it is eventually delivered.

Probability matrix and initial states (start, try, lost, delivered):

$$
\mathbf{P}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{10} & \frac{9}{10} \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad \iota_{\mathrm{init}}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

Markov Chains: Example

Observe that in the underline Kripke structure (without probabilities) we can check LTL or CTL properties, like:

G X ${ }^{100}$ delivered and $E G \neg$ delivered
Both these two properties does not hold, even though with very low probability.

In particular, the second has probability 0 !
Probabilistic model checking allow quantitative properties to be checked.

Qualitative properties are a special case, when we ask for an event to have probability 0 or 1 .

Markov Chains: terminology

Paths (M) denotes the set of paths, Paths fin $^{(\mathcal{M})}$ finite paths. When \mathcal{M} is clear from the context, and s is a state, we can use $\operatorname{Paths}(s)$ and Path $s_{\text {fin }}(s)$ to denote paths starting at s.

Direct successors of a state s are denoted by $\operatorname{Post}(s) . \operatorname{Post}^{*}(s)$ is the set of states reachable from s.

Similarly, direct predecessors of s are denoted by Pre(s). Pre* ${ }^{*}(s)$ is the set of states backward reachable from s.

These notions are naturally extended to sets.
A state s of a Markov Chain \mathcal{M} is said absorbing if $\operatorname{Post}^{*}(s)=\{s\}$, that is $\mathcal{P}(s, s)=1$ and $\mathcal{P}(s, t)=0$ when $s \neq t$.

A taste of probability: σ-algebras

Definition: A σ-algebra is a pair (O, \mathscr{E}) where O is a nonempty set (outcomes) and $\mathscr{E} \subseteq \mathcal{P}(O)$ is the set of events and it contains the empty set and it is closed under complementation and countable unions. More formally:

- $\varnothing \in \mathscr{E}$,
- If $E \in \mathscr{E}$ then $O \backslash E \in \mathscr{E}$,
- If $E_{1}, E_{2} \ldots \in \mathscr{E}$ then $\cup_{i \geq 1} E_{i} \in \mathscr{E}$.

Observations: $\mathrm{O} \in \mathscr{E}$ as the complement of $\varnothing . \mathscr{E}$ is closed under countable intersections, since $\cap_{i \geq 1} E_{i}=O \backslash \cup_{i \geq 1}\left(O \backslash E_{i}\right)$.
$\mathcal{P}(O)$ is always a σ-algebra and also $\mathscr{E}=\{\varnothing, O\}$.
Definition: A probability measure on (O, \mathscr{E}) is a function $\operatorname{Pr}: \mathscr{E} \rightarrow[0,1]$ such that $\operatorname{Pr}(O)=1$, and for a family of pairwise disjoint sets: $\operatorname{Pr}\left(\cup_{i \geq 1} E_{i}\right)=\sum_{i \geq 1} \operatorname{Pr}\left(E_{i}\right)$.
A probability space is the triple $(O, \mathscr{E}, \operatorname{Pr})$.

Probability spaces: properties

When O is countable, fixing a function $\mu: \mathrm{O} \rightarrow[0,1]$, such that $\sum_{e \in O} \mu(e)=1$ defines a probability measure on $(O, \mathcal{P}(O))$, defined by $\operatorname{Pr}(E)=\sum_{e \in E} \mu(e)$.

Since $E \cup(O \backslash E)=O$ and $E \cap(O \backslash E)=\varnothing$, we have $\operatorname{Pr}(O \backslash E)=1-\operatorname{Pr}(E)$. In particular, $\operatorname{Pr}(\varnothing)=1-\operatorname{Pr}(O)=0$.

Probability measures are monotonic: if $E \subseteq F$, then

$$
\operatorname{Pr}(F)=\operatorname{Pr}(E)+\operatorname{Pr}(F \backslash E) \geq \operatorname{Pr}(E) .
$$

For each set $P \subseteq \mathcal{P}(O)$, there exists a smallest σ-algebra \mathscr{E}_{P} that contains P. \mathscr{E}_{P} is called the σ-algebra generated by P, and P is the basis.

Example: Let us consider the experiment of tossing a fair coin once. The set O of outcomes is \{head, tail\}. The singletons \{head\}, $\{$ tail $\}$ can be the set of events. The smallest σ-algebra containg such events is $\mathcal{P}(\{$ head, tail $\})$ with:

$$
\operatorname{Pr}(\varnothing)=0, \operatorname{Pr}(\{\text { head }\})=\operatorname{Pr}(\{\text { tail }\})=1 / 2, \text { and } \operatorname{Pr}(\{\text { head }, \text { tail }\})=1 .
$$

σ-algebras and Markov chains

Definition: The cylinder set of a finite path $\pi=s_{0} s_{1} \ldots s_{n}$ is $\operatorname{Cyl}(\pi)=\left\{\pi^{\prime} \mid \pi^{\prime}=\pi \pi^{\prime \prime}\right\}$.

The σ-algebra $\mathscr{E}_{\mathcal{M}}$ associated with a Markov chain \mathcal{M} is generated by all $\mathcal{C y l}(\pi)$, for any π finite path in \mathcal{M}.

$$
\operatorname{Pr}\left(\operatorname{Cyl}\left(s_{0} s_{1} \ldots s_{n}\right)\right)=\iota\left(s_{0}\right) \prod_{0 \leq i<n} \mathcal{P}\left(s_{i}, s_{i+1}\right)
$$

Notation: We will use LTL-like syntax to denote events in the probability space (Path $_{\mathcal{M}}, \mathscr{E}_{\mathcal{M}}, P r$).
For example, if $B \subseteq S, " \mathbf{F} B$ " is the set of paths that reach the set B after a finite number of steps.
"GF B " is the event of visiting B infinitely often.
Sometimes we will write $\pi \vDash \varphi$ for $\pi \in \varphi$ and we denote with $\operatorname{Pr}(s \vDash \varphi)$ the probability of φ to hold in the state s, that is $\operatorname{Pr}(\{\pi \in \operatorname{Path}(s) \mid \pi \vDash \varphi\}$.

Reachability problems

As for classical Model Checking, one of the basic problems is reachability: here, the problem is to compute the probability of reaching a given set of states $B \subseteq S$.
$\operatorname{Path}(\mathbf{F} B)=\operatorname{Path}_{f i n}(\mathcal{M}) \cap(S \backslash B)^{*} B$ is the set of path that reach B.

$$
\operatorname{Pr}(\mathbf{F} B)=\sum_{\pi \in \operatorname{Path}(\mathbf{F} B)} \operatorname{Cyl}(\pi)
$$

Example [COMmUnICATION Protocol]: The probability of reaching the state delivered depends on the cylinder of:

$$
\pi=\text { start try (lost try })^{n} \text { delivered }
$$

from which we derive:

$$
\operatorname{Pr}(\mathbf{F} \text { delivered })=\sum_{n \geq 0}(1 / 10)^{n} 9 / 10=1
$$

Intuition: any message will be eventually delivered. If we put a bound on retransmissions, say 3, we have:

$$
\operatorname{Pr}(\mathbf{F} \text { delivered })=9 / 10+1 / 10 * 9 / 10+1 / 100 * 9 / 10=0.999
$$

Computing probabilities

Lex $x_{s}=\operatorname{Pr}(s \vDash \mathbf{F} B)$. For $s \in B, x_{s}=1$. For $s \in S \backslash B$, we have: reach B in one step

$$
\begin{equation*}
x_{s}=\sum_{t \in S \backslash B} P(s, t) \cdot x_{t}+\sum_{u \in B} P(s, u) \tag{*}
\end{equation*}
$$

This is a sort of "probabilistic expansion law". By considering only states in $S^{\prime}=\operatorname{Pr} e^{*}(B) \backslash B,(*) x=\left(x_{s}\right)_{s \in S^{\prime}}$ becomes: $x=\mathbf{A} x+\mathbf{b}$, where \mathbf{A} is $(\mathcal{P}(s, t))_{s, t \in S^{\prime}}$ and \mathbf{b} is the probability of reaching S^{\prime} in one step which can be rewritten as $(\mathbf{I}-\mathbf{A}) x=\mathbf{b}$, where \mathbf{I} is the identity matrix of size $\left|S^{\prime}\right| \times\left|S^{\prime}\right|$.

Example [Communication Protocol]: let $B=\{$ delivered $\}$ and $S^{\prime}=\{$ start, try, lost $\}$. We can easily obtain the following equations:

$$
x_{\text {start }}=x_{\text {try }} \quad x_{\text {try }}=1 / 10 x_{\text {lost }}+9 / 10 \quad x_{\text {lost }}=x_{\text {try }}
$$

that correspond to the system (the solution is 1 for all states):

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -\frac{1}{10} \\
0 & -1 & 1
\end{array}\right) x=\left(\begin{array}{c}
0 \\
\frac{9}{10} \\
0
\end{array}\right)
$$

Algorithm

First compute the set S^{\prime}. This can be done simply by a backward visit starting from B.

Then generate the matrix \mathbf{A} and the vector \mathbf{b} and solve the linear system $(\mathbf{I}-\mathbf{A}) x=\mathbf{b}$.

Problem: This system can have more than one solutions when $\mathbf{I}-\mathbf{A}$ is singular. We are interested is the least solution in $[0,1]$.

Solution: apply an iterative method (instead of direct methods) for a more general problem constrained reachability (property of the form $C \mathbf{U} B$).

Iterative constrained reachability

Let $B, C \subseteq S$. We consider the problem of reaching B via a finite path fragment in C, that is $C \mathbf{U} B$. For $n \geq 0$, the event $C \mathbf{U}^{\leq n} B$ is as $C \mathbf{U} B$, but it is required that B is reached in at most n steps.

We partition S as follows:

- $S \backslash(C \mathbf{U} B) \subseteq S_{0} \subseteq\{s \in S \mid \operatorname{Pr}(s \vDash C \mathbf{U} B)=0\}$
- $B \subseteq S_{1} \subseteq\{s \in S \mid \operatorname{Pr}(s \vDash C \mathbf{U})=1\}$
- $S_{?}=S \backslash\left(S_{0} \cup S_{1}\right)$

Theorem: Let $\left(x_{s}\right)_{s \in S}$ be the least fixed point of the operator \mathbf{Y} : $[0,1]^{n} \rightarrow[0,1]^{n}$ defined by: $\mathbf{Y}(y)=\mathbf{A} y+\mathbf{b}$, where n is the cardinality of $S_{?}, \mathbf{A}$ is the probability transition restricted on states in $S_{?}$, and \mathbf{b} is the vector of probability of enter B in one step. Then, if x^{0} is $\mathbf{0}$ and $x^{n+1}=\mathbf{Y}\left(x^{n}\right)$, we have:

- $x_{s}{ }^{n}=\operatorname{Pr}\left(s \vDash C \mathbf{U}^{\leq n} S_{1}\right)$,
- $\quad x_{s}{ }^{0} \leq x_{s}{ }^{1} \leq x_{s}{ }^{2} \leq \ldots$,
- $x=\lim _{n \rightarrow \infty} x^{n}$

Iterative Algorithm

The previous theorem suggests an iterative algorithm to compute $x_{s} . x^{0}=\mathbf{0}$ and $x^{n+1}=\mathbf{Y}\left(x^{n}\right)$. Since this sequence converges, we can stop when $\left|x^{n+1}-x^{n}\right|<\varepsilon$, for some small tolerance ε.

Remark: Sets S_{0} and S_{1} are not uniquely identified. For example, $S_{0}=S \backslash(C \mathbf{U} B)$ and $S_{1}=B$ suffices. However, the largest S_{0} and S_{1}, the faster is the convergence (smaller matrices, etc.). A reasonable choice is:

$$
S_{0}=\{s \in S \mid \operatorname{Pr}(s \vDash C \mathbf{U} B)=0\} \text { and } S_{1}=\{s \in S \mid \operatorname{Pr}(s \vDash C \mathbf{U} B)=1\}
$$

Bounded Until Properties. Taking $S_{0}=S \backslash C \mathbf{U} B$ and $S_{1}=B$ and $S_{?}=C \backslash B$ we have that $x^{n}(s)=\operatorname{Pr}\left(\mathrm{s} \vDash C \mathbf{U}^{\leq n} B\right)$.

Remark: The $n^{\text {th }}$ power of \mathbf{A} contains probabilities to reach a state in exactly n steps. More precisely, $\mathbf{A}^{n}(s, t)$ is the sum of probabilities of all paths of the form $s=s_{0} s_{1} \ldots s_{n}=t$.
In other words: $\mathbf{A}^{n}(s, t)=\operatorname{Pr}\left(s \vDash S \mathbf{U}^{=n} t\right)$

Lesson 11b:

Qualitative properties

Qualitative properties

Qualitative properties require some event to happen with probability 1 or, dually, check if some event occurs with probability 0 .

Most of qualitative properties can be established just looking at the underlying digraph, because in a finite Markov chain almost surely paths eventually enter in a Bottom Strongly Connected Component (BSCC).

Persistence Properties. The event GF B is measurable. This event can be written as a countable intersections of countable unions of cylinder sets (prove this equality is an easy exercise):

$$
\text { GF } B=\cap_{n \geq 0} \cup_{m \geq n} C y l\left(" m+1^{\text {th }} \text { state is in } \mathrm{B}^{\prime \prime}\right)
$$

Persistence properties of the form FG B are measurable as the complement of GF B. As a matter of fact, FG $B=S \backslash(\mathbf{G F} S \backslash B)$.

Probabilistic Choice \& Fairness

In a Markov chain, if a state t is visited infinitely often, then almost surely all finite path fragments starting in t will be taken infinitely often.

Here "almost surely" has to be read as conditional probability: an event E holds almost surely under another event D, if $\operatorname{Pr}(D)$ $=\operatorname{Pr}(E \cap D)$.

Theorem: Let \mathcal{M} be a finite Markov Chain, and $s, t \in S$. Then:

$$
\operatorname{Pr}(s \vDash \mathbf{G F} t)=\operatorname{Pr}\left(\bigwedge_{\pi \in \operatorname{PathFin}(t)} \mathbf{G F} \pi\right)
$$

The above theorem implies that each transition $\left(t, t^{\prime}\right)$ such that $\mathcal{P}\left(t, t^{\prime}\right)>0$ will be taken almost surely if t is visited infinitely often. In this sense, probabilistic choice is strongly fair.

Theorem: Let \mathcal{M} be a MC, and $s \in S$. Then:

$$
\operatorname{Pr}(\{\pi \in \operatorname{Path}(s) \mid \inf (\pi) \in \operatorname{BSCC}(\mathcal{M})\}=1
$$

In every MC, almost surely, a path ends in a BSCC of \mathcal{M}.

Almost sure reachability

The problem of almost sure reachability amounts to determine the set of states that reach a given set of goal states B almost surely.

Theorem: Let \mathcal{M} be a finite $\mathrm{MC}, s \in S$, and $B \subseteq S$. Then the following statements are equivalent:

1. $\quad \operatorname{Pr}(s \vDash \mathbf{F} B)=1$
2. $\operatorname{Post}^{*}(t) \cap B \neq \varnothing$ for each $t \in \operatorname{Post}^{*}(s)$
3. $s \in S \backslash \operatorname{Pre}^{*}\left(\mathrm{~S} \backslash \operatorname{Pre}^{*}(B)\right)$

This theorem gives a purely graph-theoretic characterisation (condition (3)) of almost-sure reachability. Observe that from s such that $\operatorname{Pr}(s \vDash \mathbf{F} B)=1$ we cannot go outside $\operatorname{Pre}^{*}(B)$.

Algorithm: Build the $\mathrm{MC} \mathcal{M}_{B}$ where all states in B are made absorbing. Then use two backward reachability on \mathcal{M}_{B} to compute the set of states $S \backslash \operatorname{Pr} e^{*}\left(S \backslash \operatorname{Pr} e^{*}(B)\right)$ [the first from B and the second from $S \backslash \operatorname{Pre}^{*}(B)$]

Qualit. constrained reachability

The problem of qualitative constrained reachability amounts to determine the sets of states S_{0} and S_{1} such that:
$S_{0}=\{s \in S \mid \operatorname{Pr}(s \vDash C \mathbf{U} B)=0\}$ and $S_{1}=\{s \in S \mid \operatorname{Pr}(s \vDash C \mathbf{U} B)=1\}$.
S_{0} corresponds to the set of states satisfying $\neg \mathrm{E}(C \mathbf{U} B)$ and can be computed by a backward reachability from B.

As for S_{1}, we reduce the problem to an almost sure reachablity in a slightly modified Markov chain \mathfrak{M}^{\prime}. We make absorbing all states in B and in $\mathrm{S} \backslash(C \mathbf{U} B)$.

- $\operatorname{Pr}_{\mathcal{M}}(s \vDash C \mathbf{U})=\operatorname{Pr}_{\mathcal{M}}(s \vDash \mathbf{F} B)$ for all $s \in C \backslash B$
- $\operatorname{Pr}_{\mathcal{M}}(s \vDash C \mathbf{U} B)=\operatorname{Pr}_{\mathcal{M}^{\prime}}(s \vDash \mathbf{F} B)=1$ for all $s \in B$
- $\operatorname{Pr}_{\mathcal{M}}(s \vDash C \mathbf{U} B)=\operatorname{Pr}_{\mathcal{M}^{\prime}}(s \vDash \mathbf{F} B)=0$ for all $s \in S \backslash(C \backslash B)$

This give a polynomial algorithm (the transformation from \mathcal{M} to ${ }^{\mathrm{M}}$ ' is clearly linear in the size of \mathcal{M}).

Qualitative repeated reachability

Corollary: Let \mathcal{M} be a finite $\mathrm{MC}, s \in S$, and $B \subseteq S$. Then the following are equivalent:

- $\operatorname{Pr}(s \vDash \mathbf{G F} B)=1$
- $T \cap B \neq \varnothing$ for each BSCC T reachable from s.
- $s \vDash$ AG EF B.

Corollary: Let \mathcal{M} be a finite $\mathrm{MC}, s \in S$, and $B \subseteq S$ and let V be the union of all BSCC T of \mathcal{M} such that $T \cap B \neq \varnothing$. Then:

$$
\operatorname{Pr}(s \vDash \mathbf{G F} B)=\operatorname{Pr}(s \vDash \mathbf{F} V)
$$

Lesson 12a:

Probabilistic CTL

Probabilistic CTL

Probabilistic CTL (PCTL) extends the syntax of CTL with a probabilistic operator $\mathbf{P}_{[a, b]}(\varphi)$ whose intended semantics is that the probability of φ is in the interval $[a, b](0 \leq a \leq b \leq 1)$.

In PCTL we can define quantitative properties to be checked in a Markov chain.

The interpretation of formula is boolean. $\mathbf{P}_{[a, b]}(\varphi)$ is the probabilistic counterpart of the path quantifiers \mathbf{E} and \mathbf{A}.

Example: In the communication protocol, the PCTL formula:

$$
\mathbf{P}_{=1}(\mathbf{F} \text { delivered }) \wedge \mathbf{P}_{=1}\left(\mathbf{G}\left(\text { try } \rightarrow \mathbf{P}_{\geq 0.99}\left(\mathbf{F}^{\leq 3} \text { delivered }\right)\right)\right)
$$

asserts that almost surely some message will be delivered and that almost surely, for any attempt to send a message, with probability at least 99% the message will be sent within 3 steps.

Probabilistic CTL: Syntax

State formulae:

$$
\psi::=\text { true }|a| \psi_{1} \wedge \psi_{2}|\neg \psi| \mathbf{P}_{\mathrm{J}}(\varphi)
$$

where $a \in A P, \varphi$ is a path formula, and $\mathrm{J} \subseteq[0,1]$ is an interval with rational bounds.

Path formulae:

$$
\varphi::=\mathbf{X} \psi\left|\psi_{1} \mathbf{U} \psi_{2}\right| \psi_{1} \mathbf{U}^{\leq n} \psi_{2}
$$

where ψ_{1}, ψ_{2} are state formulae and n is a natural number.
As in CTL, temporal operators \mathbf{X} and \mathbf{U} are required to be preceded by \mathbf{P}. Intervals can be abbreviated: $\mathbf{P}_{\leq 0.5}$ means $\mathbf{P}_{[0,0.5]}$, $\mathbf{P}_{=1}$ means $\mathbf{P}_{[1,1]}$, and $\mathbf{P}_{>0}$ means $\mathbf{P}_{[0,1]}$ etc.
Semantics is similar to CTL. Step bounded until $\psi_{1} \mathbf{U}^{\leq n} \psi_{2}$ requires that ψ_{2} holds after at most n steps.

Probabilistic CTL: semantics

The semantics is the same as that of CTL, except for $\mathbf{P}_{\mathrm{J}}(\varphi)$ and bounded until. We have:

$$
\begin{gathered}
s \vDash \mathbf{P}_{\mathrm{J}}(\varphi) \text { iff } \operatorname{Pr}(s \vDash \varphi) \in \mathrm{J} \\
\pi \vDash \psi_{1} \mathbf{U}^{\leq n} \psi_{2} \text { iff } \exists 0 \leq j \leq n . \pi_{j} \vDash \psi_{2} \wedge\left(\forall 0 \leq k<j . \pi_{k} \vDash \psi_{1}\right)
\end{gathered}
$$

Formally, we need to check whether events specified by PCTL path formulae are measurable.

Theorem: For each PCTL path formula φ and state s of a Markov chain, $\operatorname{Path}(s, \varphi)=\{\pi \in \operatorname{Path}(s) \mid \pi \vDash \varphi\}$ is measurable.

Proof: Induction on φ. If $\varphi \equiv \mathbf{X} \varphi^{\prime}$, then $\operatorname{Path}(\mathrm{s}, \varphi)$ is the union of $\operatorname{Path}\left(t, \varphi^{\prime}\right)$, such that $t \vDash \varphi^{\prime}$. If $\varphi \equiv \psi_{1} \mathrm{U}^{\leq n} \psi_{2}$, then Path (s, φ) is the union of all cylinder sets $\operatorname{Cyl}\left(s_{0} s_{1} \ldots s_{k}\right)$, where $k \leq n, s_{k} \vDash \psi_{2}$ and $s_{i} \vDash \psi_{1}$ for $0 \leq i<k$. If $\varphi \equiv \psi_{1} \cup \psi_{2}$, then $\operatorname{Path}(\mathrm{s}, \varphi)$ can be written as $\cup_{n \geq 0}\left\{\pi \in \operatorname{Path}(s) \mid \pi \vDash \psi_{1} \mathbf{U}^{\leq n} \psi_{2}\right\}$.

Probabilistic CTL: equivalences

As usual, other operators, such as \mathbf{F} and \mathbf{R} as well as other boolean connectives can be derived using duality. For example: $\mathbf{F}^{\leq n} \psi \equiv$ true $\mathbf{U}^{\leq n} \psi$.

We have that $\mathbf{P}_{<p}(\varphi) \equiv \mathbf{P}_{>p}(\neg \varphi)$ and $\mathbf{P}_{\mathrm{l} a, b]}(\varphi) \equiv \neg \mathbf{P}_{\leq a}(\varphi) \wedge \mathbf{P}_{>b}(\varphi)$.
Be careful to the duality between lower and upper bounds!
Therefore we could limit to consider only upper-bounds and one between $\mathbf{P}_{=1}$ and $\mathbf{P}_{=0}$ for qualitative properties.

If an event E holds with probability at most p, then the complementary event E holds with probability at least 1-p.

For example:

$$
\mathbf{P}_{\leq p}(\mathbf{G} \varphi) \equiv \mathbf{P}_{\geq 1-p}(\mathbf{F} \neg \varphi) \text { and } \mathbf{P}_{[p, q]}\left(\mathbf{G}^{\leq n} \varphi\right) \equiv \mathbf{P}_{[1-q, 1-p \mathrm{p}}\left(\mathbf{F}^{\leq n} \neg \varphi\right) .
$$

PCTL: proving equivalences

Let us consider the equivalence:

$$
\mathbf{P}_{>0}\left(\mathbf{X} \mathbf{P}_{>0}(\mathbf{F} \psi)\right) \equiv \mathbf{P}_{>0}\left(\mathbf{F} \mathbf{P}_{>0}(\mathbf{X} \psi)\right)
$$

(\Rightarrow) Let s be such that $s \vDash \mathbf{P}_{>0}\left(\mathbf{X} \mathbf{P}_{>0}(\mathbf{F} \psi)\right)$, then there exists t, such that $\mathcal{P}(s, t)>0$ and $t \vDash \mathbf{P}_{>0}(\mathbf{F} \psi)$ and therefore there exists a finite path $t_{0} t_{1} \ldots t_{k}$ where $t=t_{0}$ and $t_{k} \vDash \psi$. Therefore $t_{k-1} \vDash \mathbf{X} \psi$. Since $s t_{0} t_{1} \ldots t_{k-1}$ is a path fragment starting in s with positive probability, we have $s \vDash \mathbf{P}_{>0}\left(\mathbf{F} \mathbf{P}_{>0}(\mathbf{X} \psi)\right)$.
(\Longleftarrow) Conversely, if $s \vDash \mathbf{P}_{>0}\left(\mathbf{F} \mathbf{P}_{>0}(\mathbf{X} \psi)\right)$ then there exists a path fragment $s_{0} s_{1} \ldots s_{k}$ with $s=s_{0}$ and $s_{k} \vDash \mathbf{P}_{>0}(\mathbf{X} \psi)$, but this means that s_{k} has a successor t such that $t \vDash \psi$. This means that the path fragment $s_{1} \ldots s_{k} t$ is a witness for $s_{1} \vDash \mathbf{P}_{>0}(\mathbf{F} \psi)$ and hence $s \vDash \mathbf{P}_{>0}\left(\mathbf{X} \mathbf{P}_{>0}(\mathbf{F} \psi)\right)$.

PCTL model checking

The problem is to verify in a Markov chain if $s \vDash \varphi$, where φ is a PCTL formula. As for CTL, the idea is to compute set of states Sat (ψ) for all subformulae ψ of φ. For propositional subformulae, the problem is essentially the same as in CTL, so the interesting case is to determine $\operatorname{Sat}\left(\mathbf{P}_{\mathrm{J}} \psi\right)=\{s \in S \mid \operatorname{Pr}(s \vDash \psi) \in \mathrm{J}\}$.

As for the operator \mathbf{X}, it suffices to multiply the matrix \mathcal{P} by the characteristic vector of $\operatorname{Sat}(\psi)$:

$$
\operatorname{Pr}(s \vDash \mathbf{X} \psi)=\sum_{s^{\prime} \in \operatorname{Sat}(\psi)} \mathcal{P}\left(s, s^{\prime}\right)
$$

If we have formulae of the form $\psi_{1} \mathbf{U}{ }^{\leq n} \psi_{2}$ or $\psi_{1} \mathbf{U} \psi_{2}$, we can just use technique we have seen for constrained reachability, where $C=\operatorname{Sat}\left(\psi_{1}\right)$ and $B=\operatorname{Sat}\left(\psi_{2}\right)$.

As for the bounded operator $\mathbf{U}^{\leq n}$ we have to stop after n iterations.

PCTL model checking

Theorem: Let \mathcal{M} be a finite MC and φ be a PCTL formula. The model checking problem $\mathcal{M} \vDash \varphi$ can be solved in time $\mathcal{O}\left(\operatorname{poly}(\operatorname{size}(\mathcal{M})) \cdot n_{\max } \cdot|\varphi|\right)$ where $n_{\max }$ is the maximum step bound that appears in formulae of the form $\psi_{1} \mathbf{U}^{\leq n} \psi_{2}$.

For efficiency reasons, qualitative properties such as $\mathbf{P}_{=1}\left(\psi_{1} \mathbf{U} \psi_{2}\right)$ or $\mathbf{P}_{>0}\left(\psi_{1} \mathbf{U} \psi_{2}\right)$ are solved by using graph-based algorithms [this avoids solving systems of linear equations].

A counterexample or witness in PCTL is a set of path fragments that show the refutation or satisfaction of a formula.

Counterexamples and witnesses

Example: If $s \notin \mathbf{P}_{\leq p}(\mathbf{F} \psi)$, then $\operatorname{Pr}(s \vDash \mathbf{F} \psi)>p$. A proof is a set Π of finite path fragments such that for all $\pi \in \Pi, \pi=s_{0} s_{1} \ldots s_{k}, s_{k} \vDash \psi$ and for $i<k, s_{i} \nLeftarrow \psi$ and $\sum_{\pi \in \Pi} \operatorname{Pr}(\pi)>p$.

If $s \nLeftarrow \mathbf{P}_{\geq p}(\mathbf{F} \psi)$, is obtained by a set Π of path that refute $\mathbf{F} \psi$. These paths have the shape $\pi=s_{0} s_{1} \ldots s_{k}$, for $i \leq k, s_{i} \nLeftarrow \psi s_{i}$, and s_{k} belongs to a BSCC C of \mathcal{M} such that $\mathrm{C} \cap \operatorname{Sat}(\psi)=\varnothing$. Moreover we must have that $\sum_{\pi \in \Pi} \operatorname{Pr}(\pi)>1-p$. The cylinder sets $\operatorname{Cyl}(\pi)$ satisfies $\mathbf{G} \neg \psi$ paths.

To compute $\operatorname{Pr}(s \vDash G \neg \psi)$ it is necessary to consider paths that reach a BSCC T of \mathcal{M} such that $\mathrm{C} \cap \operatorname{Sat}(\psi)=\varnothing$ through $\neg \psi$ states: we can collect all such paths (increasing k) until the probability is greater than $1-p$.

PCTL model checking: Example

Let us consider the MC below. Let us assume that we are checking the property $\mathbf{P}_{\leq 1 / 2}(\mathbf{F} b)$ and that s_{0} is the initial state.
$\mathcal{M} \nLeftarrow \mathbf{P}_{\leq 1 / 2}(\mathbf{F} b)$ is witnessed by three paths:

$$
\left\{s_{0} s_{1} t_{1}, s_{0} s_{1} s_{2} t_{1}, s_{0} s_{2} t_{1}\right\}
$$

whose probability is $0.2+0.2+0.15=0.55>0.5=1 / 2$.
Observe that the counterexample is not unique. There are other paths such as $s_{0} s_{1} s_{2} t_{2}$ and $s_{0} s_{2} t_{2}$.

Qualitative fragment of PCTL

The goal here is to compare the expressive power of PCTL wrt CTL. It is evident that quantitative properties cannot be expressed in CTL. But what about qualitative properties?

State formulae:

$$
\psi::=\operatorname{true}|a| \psi_{1} \wedge \psi_{2}|\neg \psi| \mathbb{P}_{>0}(\varphi) \mid \mathbb{P}_{=1}(\varphi)
$$

where $a \in A P, \varphi$ is a path formula.
Path formulae:

$$
\varphi::=\mathbf{X} \psi \mid \psi_{1} \mathbf{U} \psi_{2}
$$

where ψ_{1}, ψ_{2} are state formulae.

Observations: $\mathbf{P}_{=0}(\varphi)=\neg \mathbf{P}_{>0}(\varphi)$ and $\mathbf{P}_{<1}(\varphi)=\neg \mathbf{P}_{=1}(\varphi)$.
Definition: The PCTL formula φ is equivalent to the CTL formula ψ, notation $\varphi \equiv \psi$ iff $\operatorname{Sat}(\varphi)=\operatorname{Sat}(\psi)$ for all MC \mathcal{M}.

"Trivial" Equivalences

It is well-known that 'almost surely' differs from \mathbf{A}, because of some path with zero probability. In the MC below, we have $s \vDash \mathbf{P}_{=1}(\mathbf{F} a)$ but $s \nLeftarrow \mathbf{A} \mathbf{F} a$. The converse always holds.

For certain formulae, $\mathbf{P}_{=1}$ corresponds to \mathbf{A} and $\mathbf{P}_{>0}$ corresponds to E. For example: $s \vDash \mathbf{P}_{=1}(\mathbf{X} \varphi) \Leftrightarrow s \vDash \mathbf{A} \mathbf{X} \varphi$ and $s \vDash \mathbf{P}_{>0}(\mathbf{X} \varphi) \Leftrightarrow s \vDash \operatorname{EX} \varphi$.

We have also: $s \vDash \mathbf{P}_{>0}(\mathbf{F} \varphi) \Leftrightarrow s \vDash \operatorname{EF} \varphi$ and $s \vDash \mathbf{P}_{=1}(\mathbf{G} \varphi) \Leftrightarrow s \vDash \mathbf{A G} \varphi$

We show how to prove this statements:

Assuming $s \vDash \mathbf{P}_{>0}(\mathbf{F} \varphi)$, we have $\operatorname{Pr}(s \vDash \mathbf{F} \varphi)>0$ that implies that there exists a finite path fragment whose last state satisfies φ. But this path fragment is a witness of $s \vDash \mathbf{E} \mathbf{F} \varphi$ in CTL.

Conversely, assuming $s \vDash \mathbf{E F} \varphi$ we have that there exist a finite path fragment and its cylinder satisfies $s \vDash \mathbf{P}_{>0}(\mathbf{F} \varphi)$.
The other statement follows by duality.

PCTL and fairness

As we have seen, often a 0-probability loop makes the difference between a PCTL property $\mathbf{P}_{=1}(\boldsymbol{\varphi})$ and a CTL $\mathbf{A} \varphi$.

Let us define the following strong fairness constraints:

$$
\text { sfair }=\wedge_{s \in S} \wedge_{t \in \operatorname{post}(s)} \mathbf{G F} s \rightarrow \mathbf{G F} t
$$

Then we have the following equivalences:
$s \vDash \mathbf{P}_{=1}(\varphi \mathbf{U} \psi) \Leftrightarrow s \vDash_{\text {sfair }} \mathbf{A}(\varphi \mathbf{U} \psi)$ and $s \vDash \mathbf{P}_{>0}(\mathbf{G} \varphi) \Leftrightarrow s \vDash_{\text {sfair }} \mathbf{E ~ G ~} \varphi$

Therefore, qualitative PCTL is a sort of CTL plus strong fairness.

Lesson 11

That's all Folks...

... Questions?

