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Probabilistic Systems

Real systems are often dependent on phenomena of a stochastic
nature. Here, we address verification of probabilistic systems.

By contrast, probabilistic verification means no complete
coverage (“there is no error with a probability of 90%").

* Randomized algorithms: several algorithms (distributed)
such leader election use tossing coins to break symmetries.

* Modelling unreliable or unpredictable behaviours (ex:
message loss, system failures): modelling that with
nondeterminism can be too coarse. In late stage of model
design, probabilistic valuation can take place of nondet.

* Performance evaluation: distribution of inputs, messages, etc.
are importat to evaluate quantitative aspects such as waiting
time, queue length, expected time between failures.



Verifying Probabilistic Systems

We will see:

* Markov chains as generalisation of Kripke structures: in this
view we will have a “state based” approach to Markov chains;

* A logic for defining probabilistic properties (here probabilities
are in the syntax): PCTL.

Quantitative properties: “The probability for delivering a
message in the next t time units is 98%”

Qualitative properties: A desired event happens almost surely
(i.e. with probability 1) or a bad event occurs almost never (i. e.
with probability 0): reachability, persistency, repeated
reachability.
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Markov Chains



Markov Chains: definition

Definition: A (discrete time) Markov chain is a tuple
M = (S, P, 1, AP, L) where:

S, AP, L as usual are states, atomic propositions and labelling

P : S x 5—[0,1] is the transition probability function, such that
foralls€S, ) ,csP(s t) =1

t : S—[0,1] is the initial distribution, such that ) . ¢i(s) =1

‘M is finite if S and AP are finite, and the size of ‘M is:
| M|=|S| + |{(s,t) €S:P(s, t) >0} |
(it is the size of the underlying digraph)

We will identify P with the matrix of probability [P(s, t)]; ;s
where the row P(s, *) contains probability to reach successors
of s, and the column P( -, s) contains probability to enter state s
from its predecessors.

States such that ((s)>0 are initial states and it is the probability
that system evolution starts in s.



Markov Chains: Example

Let us consider an error prone communication protocol, that
with probability 10% can loose a message. The message is sent
until it is eventually delivered.

delivered

Probability matrix and initial states (start, try, lost, delivered):

0O 1 0 0 1
00 i 5 0

_ 10 10 R
P O 1 O O [/nut 0
1 0 0 0 0



Markov Chains: Example

Observe that in the underline Kripke structure (without
probabilities) we can check LTL or CTL properties, like:

G X190 delivered and EG~—delivered

Both these two properties does not hold, even though with
very low probability.

In particular, the second has probability 0!

Probabilistic model checking allow quantitative properties to
be checked.

Qualitative properties are a special case, when we ask for an
event to have probability 0 or 1.



Markov Chains: terminology

Paths(M) denotes the set of paths, Paths;; (M) finite paths. When
‘M is clear from the context, and s is a state, we can use Paths(s)
and Paths;, (s) to denote paths starting at s.

Direct successors of a state s are denoted by Post(s). Post*(s) is
the set of states reachable from s.

Similarly, direct predecessors of s are denoted by Pre(s). Pre*(s)
is the set of states backward reachable from s.

These notions are naturally extended to sets.

A state s of a Markov Chain ‘M is said absorbing if Post*(s)={s},
that is P(s, s)=1 and P(s, )=0 when s # ¢.



A taste of probability: o-algebras

Definition: A g-algebra is a pair (O, &) where O is a nonempty
set (outcomes) and 6 S P(0O) is the set of events and it contains
the empty set and it is closed under complementation and
countable unions. More formally:

s JEE,
o IfE€é&then ONE € §,
« IfE,E,...€&then U,,, E,€6.

Observations: O € 6 as the complement of 2. & is closed under
countable intersections, since N ;5; E;= O\ U 5, (O\E)).

P(0) is always a g-algebra and also 6={2, O}.

Definition: A probability measure on (O, &) is a function
Pr: & — [0,1] such that Pr(O)=1, and for a family of pairwise
disjoint sets: Pr(U ;1 E;) =) s Pr(E)).

A probability space is the triple (O, &, Pr).



Probability spaces: properties

When O is countable, fixing a function u : O — [0,1], such that
Y .co #(e) =1 defines a probability measure on (O, P(0)),
defined by Pr(E)= ), g u(e).

Since EU (O\E)=0 and E N (O\E)= 2, we have Pr(O\E)=1- Pr(E).
In particular, Pr(2)=1 — Pr(O)=0.

Probability measures are monotonic: if ES F, then
Pr(F) = Pr(E) + Pr(F\E) = Pr(E).

For each set P< P(0), there exists a smallest o-algebra &, that

contains P. &, is called the g-algebra generated by P, and P is
the basis.

Example: Let us consider the experiment of tossing a fair coin
once. The set O of outcomes is {head, tail}. The singletons {head},
{tail} can be the set of events. The smallest o-algebra containg
such events is P({head, tail}) with:

Pr(2)=0, Pr({head})=Pr({tail})=1/2, and Pr({head,tail})=1.



o-algebras and Markov chains

Definition: The cylinder set of a finite path m = 5ys;...5,,is
Cyl(m) ={n’ | n’=nn"}.

The o-algebra 8,, associated with a Markov chain ‘M is
generated by all Cyl(m), for any m finite path in M.

Pr(Cyl(s¢s1---8,)) = USo) | lo<i<n P(Sir Six1)

Notation: We will use LTL-like syntax to denote events in the
probability space (Pathy, 84, Pr).

For example, if BE S, “F B” is the set of paths that reach the set
B after a finite number of steps.

“GF B” is the event of visiting B infinitely often.

Sometimes we will write  F ¢ for m € ¢ and we denote with

Pr(s F @) the probability of ¢ to hold in the state s,
that is Pr({m € Path(s) | m = ¢}.



Reachability problems

As for classical Model Checking, one of the basic problems is
reachability: here, the problem is to compute the probability
of reaching a given set of states B< S.

Path(F B)=Pathg, (M) N (S\B)'B is the set of path that reach B.
Pr(F B) =} ¢ pathr 5 CYH(T)
Example [COMMUNICATION PROTOCOL]: The probability of
reaching the state delivered depends on the cylinder of:
m = start try (lost try)” delivered

from which we derive:
Pr(F delivered)=) , 5, (1/10)"9/10 =1

Intuition: any message will be eventually delivered. If we put a
bound on retransmissions, say 3, we have:

Pr(F delivered)=9/10+1/10*9/10 +1/100 *9/10 = 0.999



Computing probabilities

Lex x,= Pr(s = F B). For s € B, x,= 1. For s € S\B, we have:
reach B in one step

Xs= Qresp P(S £) © X+ Dep PS, 1) (%)
This is a sort of “probabilistic expansion law”. By considering
only states in S’=Pre*(B)\B, (*¢) x = (x,).cs becomes: x = A x + b,
where A is (P(s, t)), ;e y and b is the probability of reaching 5" in
one step which can be rewritten as (I - A) x = b, where I is the
identity matrix of size |S"| x| S’|.

Example [ COMMUNICATION PROTOCOL]: let B = {delivered} and
S'={start, try, lost}. We can easily obtain the following equations:

Xstart — xtry xtry = 1/10 xlost+ 9/10 Xlost — xtry

that correspond to the system (the solution is 1 for all states):

1 —1 0 0
0O 1 1 X = 0
10/~ \10

0 -1 1 0



Algorithm

First compute the set S”. This can be done simply by a
backward visit starting from B.

Then generate the matrix A and the vector b and solve the
linear system (I - A)x = b.

Problem: This system can have more than one solutions when
I - A is singular. We are interested is the least solution in [0,1].

Solution: apply an iterative method (instead of direct methods)

for a more general problem constrained reachability (property
of the form C U B).




Iterative constrained reachability

Let B, C &S. We consider the problem of reaching B via a finite
path fragment in C, that is C U B. For n 20, the event C U*" B is
as C U B, but it is required that B is reached in at most 1 steps.

We partition S as follows:

« S\(CUB)& §,&{s€eS | PrskCUB)=0}
« BE S5, &{s€eS | Pr(skCU B)=1}

« 5,=5\ (5 USy)

Theorem: Let (x,), c g, be the least fixed point of the operator Y :
[0,1]"— [0,1]" defined by: Y(y) = Ay + b, where n is the
cardinality of S,, A is the probability transition restricted on
states in S,, and b is the vector of probability of enter B in one
step. Then, if x¥ is 0 and x"*1= Y (x"), we have:

« x/"=Pr(sFCU"S,),
e yO0<yl<y?
XS SXSTSXSES

ooy

e x=Iim xn

n—a0



Iterative Algorithm

The previous theorem suggests an iterative algorithm to
compute x,. x’ = 0 and x**!1 = Y(x"). Since this sequence
converges, we can stop when |x"*1- x"| < g, for some small
tolerance «.

Remark: Sets Syand S; are not uniquely identified. For
example, S,= S \ (C U B) and S, = B suffices. However, the
largest Spand S;, the faster is the convergence (smaller matrices,
etc.). A reasonable choice is:

S50={s€S | PrskCUB)=0}and S;={s€S | Pr(s= CU B)=1}
Bounded Until Properties. Taking S5,=5S\ CU B and S, = B and
S,= C\ B we have that x"(s) = Pr(s = C U*" B).

Remark: The n* power of A contains probabilities to reach a
state in exactly n steps. More precisely, A"(s, t) is the sum of
probabilities of all paths of the form s=sgs;...s,=t.

In other words: A"(s, t)=Pr(s = S U™ t)
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Qualitative properties

Qualitative properties require some event to happen with
probability 1 or, dually, check if some event occurs with
probability 0.

Most of qualitative properties can be established just looking at
the underlying digraph, because in a finite Markov chain
almost surely paths eventually enter in a Bottom Strongly
Connected Component (BSCC).

Persistence Properties. The event GF B is measurable. This
event can be written as a countable intersections of countable
unions of cylinder sets (prove this equality is an easy exercise):

GFB=0N,,, U,,s, Cyl(“m+1" state is in B”)

Persistence properties of the form FG B are measurable as the
complement of GF B. As a matter of fact, FG B = S\ (GF S\B).



Probabilistic Choice & Fairness

In a Markov chain, if a state ¢ is visited infinitely often, then
almost surely all finite path fragments starting in t will be taken
infinitely often.

Here “almost surely” has to be read as conditional probability:

an event E holds almost surely under another event D, if Pr(D)

= Pr(EN D).

Theorem: Let ‘M be a finite Markov Chain, and s, t € S. Then:
PT’(S = GF t) - pr(/\NE PathFin(t) GF T[)

The above theorem implies that each transition (¢, ¢') such that
P(t, t') > 0 will be taken almost surely if ¢ is visited infinitely
often. In this sense, probabilistic choice is strongly fair.

Theorem: Let M be a MC, and s € S. Then:
Pr({m € Path(s) | inf(mr) € BSCC(M)} =1

In every MC, almost surely, a path ends in a BSCC of ‘M.



Almost sure reachability

The problem of almost sure reachability amounts to determine
the set of states that reach a given set of goal states B almost
surely.

Theorem: Let M be a finite MC, s € S, and BE S. Then the
following statements are equivalent:

1. Pr(skFB)=1

2. Post*(t) N B # @ for each t € Post*(s)

3. s€S\ Pre*(S\ Pre*(B))

This theorem gives a purely graph-theoretic characterisation
(condition (3)) of almost-sure reachability. Observe that from s
such that Pr(s = F B) =1 we cannot go outside Pre*(B).

Algorithm: Build the MC ‘M; where all states in B are made
absorbing. Then use two backward reachability on M to
compute the set of states S \ Pre*(S \ Pre*(B)) [the first from B
and the second from S \ Pre*(B) ]



Qualit. constrained reachability

The problem of qualitative constrained reachability amounts
to determine the sets of states Sy and S; such that:
So={s€S | PrskCUB)=0}and S;={s€S | Pr(s= CU B)=1}.

S, corresponds to the set of states satistying ~E (C U B) and can
be computed by a backward reachability from B.

As for S;, we reduce the problem to an almost sure reachablity
in a slightly modified Markov chain ‘M’. We make absorbing all

states in B and in S\ (C U B).

* Pry(sFCUB)=Pry(s=FB)forallsc C\B

* Pry(sFCUB)=Pry(s=FB)=1foralls€B

* Pry(sFCUB)=Pry(s=FB)=0foralls€ S\ (C\ B)

This give a polynomial algorithm (the transformation from M
to M’ is clearly linear in the size of ‘M).



Qualitative repeated reachability

Corollary: Let M be a finite MC, s € S, and BE S. Then the
following are equivalent:

* PrseGFB)=1
e TN B#9for each BSCC T reachable from s.
« s AGEFB.

Corollary: Let M be a finite MC, s € S, and BE S and let V be the
union of all BSCC T of ‘M such that TN B # 2. Then:

Pr(s= GF B) =Pr(sFF V)
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Probabilistic CTL

Probabilistic CTL (PCTL) extends the syntax of CTL with a

probabilistic operator P, ,(¢) whose intended semantics is
that the probability of ¢ is in the interval [a, b] (0 <a<b<1).

In PCTL we can define quantitative properties to be checked
in a Markov chain.

The interpretation of formula is boolean. P, ;,(¢) is the
probabilistic counterpart of the path quantifiers E and A.

Example: In the communication protocol, the PCTL formula:

P_,(F delivered) A P_,(G (try — P o9 (F=* delivered)))

asserts that almost surely some message will be delivered and
that almost surely, for any attempt to send a message, with
probability at least 99% the message will be sent within 3 steps.



Probabilistic CTL: Syntax

State formulae:

Y ou=true | a [ Y AP, | Y | Pie)

where a € AP, ¢ is a path formula, and J< [0,1] is an interval
with rational bounds.

Path formulae:
¢ ==Xy | YUY, | P, U9,
where Y, Y, are state formulae and # is a natural number.

As in CTL, temporal operators X and U are required to be
preceded by P. Intervals can be abbreviated: P, 5 means Py 5,
P_, means P, 1}, and P, means Py, etc.

Semantics is similar to CTL. Step bounded until y; U 3,
requires that 1, holds after at most n steps.



Probabilistic CTL: semantics

The semantics is the same as that of CTL, except for P;(¢) and
bounded until. We have:

s = Py(o) iff Pr(s = @) €]
mEY, Uy iff 30<j<n. m=P,N(VO<k<j m*Fy,)

Formally, we need to check whether events specified by PCTL
path formulae are measurable.

Theorem: For each PCTL path formula ¢ and state s of a
Markov chain, Path(s, ¢) = { = € Path(s) | @ = ¢} is measurable.

Proof: Induction on ¢. If ¢ = X ¢’, then Path(s, ¢) is the union of
Path(t, ¢”), such that t = ¢’. If ¢ = 1), Us" 1,, then Path(s, ¢) is
the union of all cylinder sets Cyl(sys;...s,), where k <n, s, F ¢,
and s;= Y, for 0 <1<k If ¢ =1, Uy,, then Path(s, ¢) can be
written as U, . {m € Path(s) | =y, U ,}. []



Probabilistic CTL: equivalences

As usual, other operators, such as F and R as well as other
boolean connectives can be derived using duality.
For example: F¥" 1) = true Us" 1.

We have that P (¢)= P, ,(T¢) and Py, ;)(¢) = ~P< () P5y(9).

Be careful to the duality between lower and upper bounds!
Therefore we could limit to consider only upper-bounds and
one between P_; and P_, for qualitative properties.

If an event E holds with probability at most p, then the
complementary event E holds with probability at least 1-p.

For example:

P, (G ¢)=P,1 ,(F ) and Py, 1(G*" @)=P1, 1 ,(F" ~9).



PCTL: proving equivalences

Let us consider the equivalence:

Po(X P>o(F 1))=Pyo(F P>o(X 1))

(=) Let s be such that s = P,((X P.y(F 1)), then there exists ¢,
such that P(s, t)>0 and t = P, (F ¥) and therefore there exists a
finite path fyt;...t, where t=t, and t, = . Therefore ¢, ; F X .
Since s tyt;.. .t is a path fragment starting in s with positive
probability, we have s = P.((F P,o(X 9)).

(&) Conversely, if s = P,((F P,((X ¢)) then there exists a path
fragment s;s;...s, with s=s, and s, = P, (X ¥), but this means that
s; has a successor t such that ¢+ 1. This means that the path
fragment s;...s,t is a witness for s, F P.,(F 1) and hence

5= Poy(X Pso(F ).



PCTL model checking

The problem is to verify in a Markov chain if s F ¢, where @ is a
PCTL formula. As for CTL, the idea is to compute set of states
Sat(y) for all subformulae y of ¢. For propositional sub-
formulae, the problem is essentially the same as in CTL, so the
interesting case is to determine Sat(P; ) ={s€ S | Pr(sFy) €] }.

As for the operator X, it suffices to multiply the matrix P by the
characteristic vector of Sat(y):

Pr(s =X ) = Y s csaryy P (S, 8

If we have formulae of the form ¥, U*" ¢, or ¥, U ¢,, we can
just use technique we have seen for constrained reachability,
where C=Sat(i,) and B=Sat(,).

As for the bounded operator U=” we have to stop after n
iterations.



PCTL model checking

Theorem: Let ‘M be a finite MC and ¢ be a PCTL formula. The
model checking problem M F ¢ can be solved in time
O(poly(size(M)) * 1. * |@|) where n,, is the maximum step
bound that appears in formulae of the form 1, Us" v,.

For efficiency reasons, qualitative properties such as
P_,(y, U yY,) or P,y(y; U 9,) are solved by using graph-based
algorithms [this avoids solving systems of linear equations.

A counterexample or witness in PCTL is a set of path
fragments that show the refutation or satisfaction of a formula.



Counterexamples and witnesses

Example: If s © P (F ¢), then Pr(s = F 1)>p. A proof is a set II of
finite path fragments such that for all w € Il, m = 5y5;...5;, 5, F Y
and for i<k, s; ¢ and ) . ¢ ; Pr(m)>p.

If s ¥ P, (F 1), is obtained by a set IT of path that refute F 1.
These paths have the shape m = 5ys;...5;, fori <k, s; ¥ ¢ s;, and s
belongs to a BSCC C of M such that C 1 Sat(y) = @. Moreover
we must have that ) . ; Pr(m)>1-p. The cylinder sets Cyl(r)
satisfies G paths.

To compute Pr(s = G™) it is necessary to consider paths that
reach a BSCC T of M such that C N Sat(y) = @ through ~y states:
we can collect all such paths (increasing k) until the probability
is greater than 1-p.



PCTL model checking: Example

Let us consider the MC below. Let us assume that we are
checking the property P, ,,(F b) and that s, is the initial state.

‘M ¥ Py »(F ) is witnessed by three paths:
{S0S1t1, SoS152t1  SoSat1)
whose probability is 0.2+0.2+0.15=0.55>0.5=1/2.

Observe that the counterexample is not unique. There are other
paths such as 5ys;5,t, and sys,t,.




Qualitative fragment of PCTL

The goal here is to compare the expressive power of PCTL wrt
CTL. It is evident that quantitative properties cannot be
expressed in CTL. But what about qualitative properties?

State formulae:
Y ou=true | a | P Ay | TP | Pogle) | Poy(e)
where a € AP, ¢ is a path formula.
Path formulae:
¢ =Xy | P, U,

where Y, Y, are state formulae.

Observations: P_,(¢)="P.(¢) and P_,(p)="P_(¢p).

Definition: The PCTL formula ¢ is equivalent to the CTL
formula 1, notation =1 iff Sat(¢)=Sat(yp) for all MC M.



"Trivial” Equivalences

It is well-known that “almost surely’ differs from A, because of
some path with zero probability. In the MC below, we have
s =P_,(F a) but s ¥ A F a. The converse always holds.

For certain formulae, P_, corresponds to A and P, corresponds
to E. For example: s = P_;(X @) & sFA X ¢

and s =P, (X @) & s = EX ¢. 2 {a)}
N2
We have also: s = P.(F ¢) < s FEF ¢ —”M *@' 1

and sFP_1(G @) @ sFAG g ()

B[ =

We show how to prove this statements:

Assuming s = P, (F ¢), we have Pr(s = F ¢)>0 that implies that
there exists a finite path fragment whose last state satisfies ¢.
But this path fragment is a witness of s =E F ¢ in CTL.

Conversely, assuming s = E F ¢ we have that there exist a finite
path fragment and its cylinder satisfies s = P,y (F ¢).

The other statement follows by duality.



PCTL and fairness

As we have seen, often a 0-probability loop makes the difference
between a PCTL property P_,(¢) and a CTL A ¢.

Let us define the following strong fairness constraints:
sfair = /\SES /\tE post(s) GFs—> GFt
Then we have the following equivalences:

sEP_(pUY) & sFp A(p UY)and s FP.o(G @) & s EG ¢

sfair

Therefore, qualitative PCTL is a sort of CTL plus strong fairness.



Lesson 11
That’s all Folks...

... Questions?



