Formal Methods
 in Software Development

Counteracting State Explosion Problem III: Bisimulation Ivano Salvo

Computer Science Department

$\underset{\text { UNIVERIITA DI ROMA }}{\text { SAPI }}$

Lesson 10, December 7 ${ }^{\text {th }}, 2020$

Lesson 10a:

Data Abstraction

Data Structures

The most famous 'abstraction mechanism' in checking correctness is the 'casting out nine' method to verify multiplication: it is based on properties of congruence modulo 9 :

- when it works, the multiplication is not guaranteed to be correct!
- You are sure that the multiplication is wrong when it doesn't work. ©

When systems contain data structures, they often becomes "infinite" state or huge.

Abstraction is achieved by means of a map from a concrete domain D to an abstract domain A. This induces an abstraction notion among systems (e.g., Kripke structures).

Goal: generate directly abstract systems, possibly combining abstraction process with compilation.

Example of abstraction - I

Let x be a variable ranging over integers and that the property we are interested in involves just the sign of x. We can consider the abstract domain $A_{x}=\left\{a_{0}, a_{+}, a_{-}\right\}$and the mapping:

$$
h_{x}(d)= \begin{cases}a_{0} & \text { if } d=0 \\ a_{+} & \text {if } d>0 \\ a_{-} & \text {if } d<0\end{cases}
$$

The abstract value of x is expressed by using just 3 atomic propositions: ' $\underline{x}=a_{0}{ }^{\prime},{ }^{\prime} \underline{x}=a_{+}{ }^{\prime}$, and ' $\underline{x}=a_{-}^{\prime}$ where \underline{x} is the abstract value/variable. We can no longer express properties on the exact value of x, but if abstract values are enough for the problem at hand, then we obtain a considerable state space reduction.

Spurios behaviour can be introduced: the sum of a negative and positive could be either positive or negative.
Abstract values induce a new Kripke structure (also the set of initial states and the transition relation are abstracted):

Reduced Kripke structures

Definition: Let $\mathcal{M}=(S, I, R, L)$ and suppose, w.l.o.g. that $S=D^{n}$, for some domain D. Let $h: D \rightarrow A$ the abstraction function and consider the set of atomic propositions $\underline{x}_{i}=a$ for some $a \in A$. We define the reduced system $\mathcal{M}_{R}=\left(S_{R}, I_{R}, R_{R}, L_{R}\right)$ as follows:

- $S_{R}=\{L(s) \mid s \in S\}$, i.e., te set of all labeling
- $I_{R}=\{L(s) \mid s \in I\}$
- $L_{R}(s)=s$, since states themselves are the set of atomic propostions they satisfy
- $R_{R}(\underline{s}, \underline{t})$ iff $\exists s, t \in S, R(s, t)$ and $\underline{s}=L(s)$ and $\underline{t}=L(t)$
\mathcal{M}_{R} is the abstract version of \mathcal{M} and it is completely determined by the choice of abstract values and the mapping function h from D to A.

It easy to see that $H=\{(s, \underline{s}) \mid s \in S\}$ is a simulation relation. ACTL* properties proved for for \mathcal{M}_{R} are valid for \mathcal{M}.

Example of abstraction - II

A simple traffic light with values $D=\{$ yellow, red, green $\}$
and the abstract domain $A=\{$ go, stop $\}$ with the abstraction function h defined by: $h($ yellow $)=h($ red $)=$ stop and h (green) $=$ go.

The reduced model is:

Observe that in the abstraction there is a spurious behavior: the loop in state stop. There is no loop red \rightarrow yellow \rightarrow red \rightarrow...

Structure M_r \rightarrow yellow \rightarrow red \rightarrow... in the original structure.

Approximations - I

\mathcal{M}_{R} can be still too large to fit in memory and/ or to be checked in reasonable time. A further idea is to build an approximation $\mathcal{M}_{R} \leqslant \mathcal{M}_{A}$ close enough to \mathcal{M}_{R} to verify interesting properties.

We are given a Kripke structure $\mathcal{M}=(S, I, R, L)$ with $S=D^{n}$ and a surjective abstraction function $h: D \rightarrow A, I$ and R are first order formula over variables x_{1}, \ldots, x_{n} ranging over D.
Let $s=\left(d_{1}, \ldots, d_{n}\right)$, that is in s, each x_{i} has value d_{i}. Let $a_{i}=h\left(d_{i}\right)$. An atomic proposition of the form ${ }^{`} \underline{x}_{i}=a_{i}$ ` denotes that the variable \(x_{i}\) has (abstract) value \(a_{i} . L(s)=\left\{\underline{x}_{1}=a_{1}{ }^{`}, ···,{ }^{`} \underline{x}_{n}=a_{n}{ }^{`}\right\}\).

We define \mathcal{M}_{R} over the abstract states $A \times \ldots \times A$ over variables $\underline{x}_{1}, \ldots, \underline{x}_{n}, \underline{x}_{1}^{\prime}, \ldots, \underline{x}_{n}^{\prime}$.
$\underline{I}=\exists x_{1}, \ldots, x_{n}\left(h\left(x_{1}\right)=\underline{x}_{1} \wedge \ldots \wedge h\left(x_{n}\right)=\underline{x}_{n} \wedge I\left(x_{1}, \ldots, x_{n}\right)\right)$ $\underline{R}=\exists x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\left(h\left(x_{1}\right)=\underline{x}_{1} \wedge \ldots \wedge h\left(x_{n}\right)=\underline{x}_{n} \wedge\right.$ $\left.\wedge h\left(x_{1}^{\prime}\right)=\underline{x}_{1}^{\prime} \wedge \ldots \wedge h\left(x_{n}^{\prime}\right)=\underline{x}_{n}^{\prime} \wedge R\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\right)$
free variables of \underline{I} and \underline{R} are abstract variables!

Approximations- II

We use the notation [•] as a shorthand for the existential abstraction:

$$
\left.[\phi]\left(\underline{x}_{1}, \ldots, \underline{x}_{n}\right)=\exists x_{1}, \ldots, x_{n} \cdot \wedge_{i} h\left(x_{i}\right)=\underline{x}_{i} \wedge \phi\left(x_{1}, \ldots, x_{n}\right)\right)
$$

For example, $\underline{R}=[R]$ and $\underline{I}=[I]$.
Apply the transformation $[R]$ and $[I]$ may be computationally expensive. It is better to apply to simplified formulas. We define:
$\mathcal{A}\left(P\left(x_{1}, \ldots, x_{m}\right)\right)=[P]\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right) \mathcal{A}\left(\neg P\left(x_{1}, \ldots, x_{m}\right)\right)=[\neg P]\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right)$
$\mathcal{A}\left(\phi_{1} \wedge \phi_{2}\right)=\mathcal{A}\left(\phi_{1}\right) \wedge \mathcal{A}\left(\phi_{2}\right) \quad \mathcal{A}\left(\phi_{1} \vee \phi_{2}\right)=\mathcal{A}\left(\phi_{1}\right) \vee \mathcal{A}\left(\phi_{2}\right)$
$\mathcal{A}(\exists x \phi)=\exists \underline{x} \mathcal{A}(\phi) \quad \mathcal{A}(\forall x \phi)=\forall \underline{x} \mathcal{A}(\phi)$
\mathcal{A} pushes existential quantification inward, so that [\cdot] is applied to the innermost level.

Be careful: $[\phi]$ implies $\mathcal{A}(\phi)$ but it is not equivalent.

Approximations - III

Theorem: $[\phi] \Rightarrow \mathcal{A}(\phi)$. In particular $[I] \Rightarrow \mathcal{A}(I)$ and $[R] \Rightarrow \mathcal{A}(R)$.
Proof: Induction on ϕ.

* If $\phi \equiv P\left(x_{1}, \ldots, x_{m}\right),[\phi]=\mathcal{A}(\phi)$ and the statement holds.
$*$ If $\phi \equiv \phi_{1} \wedge \phi_{2}$ then [$\phi_{1} \wedge \phi_{2}$] is identical to the formula $\exists x_{1}, \ldots, x_{n}\left(\wedge_{i} h\left(x_{1}\right)=\underline{x}_{1} \wedge \phi_{1} \wedge \phi_{2}\right)$.
This formula implies (but not equivalent to) $\exists x_{1}, \ldots, x_{n}\left(\wedge_{i} h\left(x_{1}\right)=\right.$ $\left.\underline{x}_{1} \wedge \phi_{1}\right) \wedge \exists x_{1}, \ldots, x_{n}\left(\wedge_{i} h\left(x_{1}\right)=\underline{x}_{1} \wedge \phi_{2}\right)$ [it is easier to find two witness for $\exists]$.
Moreover, by (IND) we have that $\left[\phi_{1}\right] \Rightarrow \mathcal{A}\left(\phi_{1}\right)$ and $\left[\phi_{2}\right] \Rightarrow \mathcal{A}\left(\phi_{2}\right)$ and. Therefore $\left[\phi_{1} \wedge \phi_{2}\right]$ implies $\mathcal{A}\left(\phi_{1} \wedge \phi_{2}\right)$.
* If $\phi \equiv \forall x \phi^{\prime}$ then [$\forall x \phi^{\prime}$] is (we can assume \forall i. $x \neq x_{i}$)
$\exists x_{1}, \ldots, x_{n}\left(\wedge_{i} h\left(x_{i}\right)=\underline{x}_{i} \wedge \forall x \phi^{\prime}\left(x, x_{1}, \ldots, x_{n}\right)\right) \equiv$
$\left(x \neq x_{i}\right) \equiv \exists x_{1}, \ldots, x_{n} \forall x\left(\bigwedge_{i} h\left(x_{i}\right)=\underline{x}_{i} \wedge \phi^{\prime}\left(x, x_{1}, \ldots, x_{n}\right)\right) \Rightarrow$
$\Rightarrow\left(\right.$ this is not eq.) $\forall x \exists x_{1}, \ldots, x_{n}\left(\bigwedge_{i} h\left(x_{i}\right)=\underline{x}_{i} \wedge \phi^{\prime}\left(x, x_{1}, \ldots, x_{n}\right)\right) \equiv$ $(h \mathrm{srj}) \equiv \forall \underline{x} \exists x\left[\exists x_{1}, \ldots, x_{n}\left(h(x)=\underline{x} \wedge_{i} h\left(x_{i}\right)=\underline{x}_{i} \wedge \phi^{\prime}\left(x, x_{1}, \ldots, x_{n}\right)\right)\right]$ $\equiv \forall \underline{x}\left[\phi^{\prime}\right]$. By IND $\left[\phi^{\prime}\right] \Rightarrow \mathcal{A}\left(\phi^{\prime}\right)$ and hence $\forall \underline{x}\left[\phi^{\prime}\right] \Rightarrow \forall \underline{x} \mathcal{A}\left(\phi^{\prime}\right)$ $\phi \equiv \phi_{1} \vee \phi_{2}$ and $\phi \equiv \exists x \phi^{\prime}$ are similar.

Approximations -IV

Theorem: $\mathcal{M} \leqslant \mathcal{M}_{A}$
Proof: Let $s=\left(d_{1}, \ldots, d_{n}\right)$ and $s_{a}=\left(a_{1}, \ldots, a_{n}\right)$. We define $H\left(s, s_{a}\right)$ iff for all i we have $a_{n}=h\left(d_{i}\right)$. In this way, s and s_{a} have the same labelling.

Assume $R(s, t)$ with $t=\left(e_{1}, \ldots, e_{n}\right)$. Define $t_{a}=\left(h\left(e_{1}\right), \ldots, h\left(a_{n}\right)\right)$. We have to show that $R_{A}\left(s_{a \prime} t_{a}\right)$. The transition (s, t) corresponds to a valuation satisfying R. We show that $[R]\left(s_{a \prime} t_{a}\right)$.

By def of [$\cdot],[R]\left(s_{a \prime} t_{a}\right)$ holds iff:
$\exists x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\left(h\left(x_{1}\right)=h\left(d_{1}\right) \wedge \ldots \wedge h\left(x_{n}\right)=h\left(d_{n}\right)\right.$

$$
\left.\wedge h\left(x_{1}^{\prime}\right)=h\left(e_{1}\right) \wedge \ldots \wedge h\left(x_{n}^{\prime}\right)=h\left(e_{n}\right) \wedge R\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\right)
$$

$R(s, t)$ holds by taking d_{i} as witness for x_{i} and e_{i} as witness for x_{i}^{\prime} and hence $[R]\left(s_{a \prime} t_{a}\right)$. By the previous theorem, this implies that $\mathcal{A}(R)\left(s_{a} t_{a}\right)$ is true and $\mathcal{A}(R)$ defines \mathcal{M}_{A}. Thus H is a simulation between \mathcal{M} and \mathcal{M}_{A}.

Similar for initial states.

Exact Approximations

$\mathcal{M} \leqslant \mathcal{M}_{A}$ implies that every ACTL* formula satisfied by \mathcal{M}_{A} also holds in \mathcal{M}. Here we sketch properties ensuring that $\mathcal{M} \cong \mathcal{M}_{A}$.

An abstraction $h: D \rightarrow A$ induces an equivalence on D defined by $d \sim d^{\prime}$ iff $h(d)=h\left(d^{\prime}\right)$.
Definition: An equivalence \sim is a congruence w.r.t. a primitive relation P iff $\forall d_{1}, \ldots, d_{v} e_{1}, \ldots, e_{n} . \wedge_{i} d_{i} \Rightarrow e_{i} \rightarrow P\left(d_{1}, \ldots, d_{m}\right) \Leftrightarrow$ $P\left(e_{1}, \ldots, e_{m}\right)$

Theorem: If \sim is a congruence wrt to primitive relations in ϕ, then $[\phi] \Leftrightarrow \mathcal{A}(\phi)$. In particular, $[R] \Leftrightarrow \mathcal{A}(R)$ and $[I] \Leftrightarrow \mathcal{A}(I)$.

Theorem: If \sim is a congruence wrt to primitive relations in \mathcal{M}, then $\mathcal{M} \cong \mathcal{M}_{A}$.

Lesson 10b:

> Examples of
> "useful"
> Data Abstractions

A simple language

We present some examples, modeled in a simple language for synchronous digital circuits as finite state Moore automata.

The compiler has some built-in abstraction and build an OBDD representation of the defined system.

The compiler generates directly the abstract system.
We will write abstraction by using some syntactic sugar: for example "even (x) instead of ' $\underline{x}=a_{\text {even }}$ '

A simple language

Congruence modulo m

This is a common useful abstraction for systems involving arithmetic. $h(i)=i \bmod m$. This abstraction is a congruence:

$$
\begin{aligned}
(i \bmod m)+(j \bmod m) & =i+j(\bmod m) \\
(i \bmod m)-(j \bmod m) & =i-j(\bmod m) \\
(i \bmod m)(j \bmod m) & =i j(\bmod m)
\end{aligned}
$$

The value modulo m depends on values modulo m of operands.

Theorem [Chinese Remainder Theorem]: Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers. Let $m=m_{1} m_{2} \ldots m_{n}$ and let $b, i_{1}, i_{2}, \ldots, i_{n}$ be integers. Then there is a unique i such that: $b \leq i<b+m$ and $i \equiv i_{j}\left(\bmod m_{j}\right)$ for all $1 \leq j<n$.

This theorem essentially says that we can infer the value of i by considering equivalence classes of $\left(\bmod m_{j}\right)$ for all $1 \leq j<n$, provided that i is known to belong to an interval of width m.

Verification of a multiplier

Verifying a 16-bit multiplier could be impractical (see code next slide). The program (circuit) has 3 input: req (that is a request signal starting the execution), in1 and in2 (factors to operate be multiplied).

The multiplier performs a sequence of shift and add steps until factor 1 is 0 or an overflow has been generated.

The specifications is a series of formulas that checks congruence modulo m of the product result, according to the abstraction:

AG (waiting \wedge req $\wedge(i n 1 \bmod m=i) \wedge(i n 2 \bmod m=j)$

$$
\rightarrow \mathbf{A}(\neg \text { ack } \mathbf{U} \text { ack } \wedge(\text { overflow } \vee \text { output } \bmod m=i j \bmod m)
$$

Verification of a multiplier

In the verification, factor1, in1, in2, and output are abstracted modulo m. We can perform verification with $m=5,7,11,32$ whose product is 110880 that is enough for a 16-bit multiplier.

AG (waiting \wedge req $\wedge(i n 1 \bmod m=i) \wedge(i n 2 \bmod m=j)$ $\rightarrow \mathbf{A}(\neg$ ack \mathbf{U} ack \wedge (overflow \vee output $\bmod m=i j \bmod m)$

Observe that the specification admits the possibility that the multiplier outputs always an overflow.

Correctness of the overflow bit can be checked separetely using a different abstraction.

Logarithmic representation

When only the order of magnitude is important, it is useful to represent a quantity by its logarithm. Define: $\lg \mathrm{i}=\left\lceil\log _{2}(i+1)\right\rceil$, that is the smallest number of digits needed to represent $i>0$.
Let us consider again the 16-bit multiplier. A circuit that always return overflow satisfies the specification we considered.
Observe that if $\lg i+\lg j \leq 16$ then $\lg i j \leq 16$ and the multiplication should not overflow. Conversely, if $\lg i+\lg j \geq 18$ then $\lg i j \geq 17$ and the multiplication will overflow.
If $\lg i+\lg j=17$, this test is inconclusive.
Specification can be strenghten checking overflow by abstracting all 16 bit variables with their logarithms:
$\mathbf{A G}(w \operatorname{tg} \wedge r e q \wedge(\lg$ in $1+\lg$ in $2 \leq 16) \rightarrow \mathbf{A}(\neg a c k \mathbf{U}$ ack $\wedge \neg$ ovflw $)$
$\mathbf{A G}(w t g \wedge r e q \wedge(\lg$ in1 $1+\lg$ in $2 \geq 18) \rightarrow \mathbf{A}(\neg a c k \mathbf{U}$ ack \wedge ovflw $)$

Single bit E Product Abstractions

When bitwise logical operations are involved in a system, the following abstraction may be useful: $h(i)=j^{\text {th }}$ bit of i.

Moreover, if h_{1} and h_{2} are two abstractions, then also $h(i)=\left(h_{1}(i), h_{2}(i)\right)$ is an abstraction.

As in the case of multiplier, two abstractions can make possible to verify properties that are not verifiable using just one abstraction.

The program in the next slide computes the parity of a 16-bit input. It should meet the following properties (let $\# i$ to be true if the parity of i is odd):

- The value assigned to b has the same parity of the input $i n$
- \#b \oplus parity is invariant

Single bit \mathcal{E} Product Abstractions

The above properties can be expressed by the following CTL formula:
$\neg \#$ in $\wedge \mathbf{A X}(\neg \# b \wedge \mathbf{A G} \neg(\# b \oplus$ parity) $)$
$\vee \#$ in $\wedge \mathbf{A X}(\# b \wedge \mathbf{A G}(\# b \oplus$ parity $))$
This property can be verified by using a combined abstraction on variables in and b.

Values of these variables can be grouped both by the value of their low-order bit and their parity.

Using these abstractions, verification takes few seconds only.

$$
\begin{aligned}
& \text { \# variable declaration } \\
& \text { input in: } 16 \text {; } \\
& \text { output parity }: 1=0 \text {; } \\
& \text { output } b: 16=0 ; \\
& \text { output done }: 1=0 ; \\
& b=i n ; \\
& \text { wait; } \\
& \text { while } b \neq 0 \text { do } \\
& \quad \text { parity }=\text { parity } \oplus l s b(b) \text {; } \\
& \quad b=b » 1 \text {; } \\
& \quad \text { wait; } \\
& \text { done }=1 \text {; }
\end{aligned}
$$

Symbolic Abstractions

The use of OBDDs makes it possible to use abstractions that depend on symbolic values.

As a simple example, consider the program on the right: The next state of b is always equal to the current state of a. We state this property for a fix value, say 42.
input a : 8;
output $b: 8=0$;
loop
$b=a ;$
wait;

To verifiy the property AG $(a=42 \rightarrow \mathbf{A X} b=42)$ we can use the following abstraction:

$$
h(d)= \begin{cases}0 & \text { if } d=42 \\ 1 & \text { otherwise }\end{cases}
$$

The above property becomes AG $(a=0 \rightarrow \mathbf{A X} b=0)$ and can be easily checked using 1 digit variables. Of course, we do not want to repeat the verification for each integer value!

Symbolic Abstractions

We can consider the parametrized abstraction, that leads to a parametrized transition relation:

$$
h_{c}(d)=\left\{\begin{array}{lr}
0 \quad \text { if } d=c \\
1 & \text { otherwise }
\end{array}\right.
$$

We can perform symbolic model checking as follows:

1. Use an OBDD to represent h_{c} (supplied by the user);
2. Compile with h_{c} to get an OBDD representing $R_{c}\left(\underline{a}, \underline{a^{\prime}}, \underline{b}, \underline{b^{\prime}}, c\right)$
3. Generate the parametrized state set: the model checker views c just as a state component that does not change.
4. Possibly, to generate a counterexample choose a specific c.

There is a slightly more complicated example on the Clarke book.

Lesson 10c:

Symmetry

Symmetry

Systems exhibit considerable symmetry: circuits, bus protocols, and in general systems with replicated structures as subsystems.

The existence of symmetries implies the existence of non-trivial permutation groups that can be used to define equivalence relations that preserve both state labeling and transitions.

The quotient model is bisimilar to the original model (equivalent with respect to checking a CTL* property) and can be significantly smaller.

Groups

We recall basic definitions about groups.

Definition: A group (G, \cdot) is a set with a binary operation
$\cdot: G \times G \rightarrow G$, such that:

1. • is associative, that is $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
2. there is an identity $e \in G$, that is $a \cdot e=e \cdot a=a$
3. Each $a \in G$ has an inverse a^{-1}, such that $a \cdot a^{-1}=a^{-1} \cdot a=e$

Definition: Given a set of elements $\left\{g_{1}, \ldots, g_{k}\right\} \subseteq G$, we indicate with $\left\langle g_{1}, \ldots, g_{k}\right\rangle$ the smallest subgroup H of G containing g_{1}, \ldots, g_{k} that are called generators of H.
H is the minimum set closed under • and inverse.

Groups of permutations

Definition: A permutation σ on a finite set A is a bijection $\sigma: A \rightarrow A$. We call dom $\sigma=\{a \in A \mid \sigma(a) \neq a\}$.

Two permutations σ_{1} and σ_{2} are disjoint if dom $\sigma_{1} \cap \operatorname{dom} \sigma_{2}=\varnothing$.
The set of all permutations on a set A is the permutation group Sym A, where the operation is function composition. Identity function is the identity and the inverse function is the inverse.

A permutation that maps $x=x_{1} \rightarrow x_{2} \rightarrow \ldots \rightarrow x_{n}=x$ is called a cycle, denoted by $\left(x_{1} x_{2} \ldots x_{n}\right)$.
A cycle of length 2 is called transposition.
Each permutation can be written as the composition of disjoint cycles or as the composition of transposition (not disjoint).

Example of permutations

Example: Let us consider $A=\{1,2,3,4,5\}$ and σ defined by $\{(1,3),(2,4),(3,1),(4,5),(5,2)\}$.

Then $\sigma=(13){ }^{\circ}(245)$ and $\sigma=(13) \circ(25) \circ(24)$.
The subgroup generated by the two permutations (13) and (2 4 5) is the group $\left\{e,(13),(245),(13) \circ(245),(254),(13) \circ{ }^{\circ}(25\right.$ 4) .

Observe that (2 54$)=(245)^{\circ}(245)$

Automorphism of Kripke struct.

Definition: Let $\mathcal{M}=(S, R, L)$ be a Kripke structure and let G be a permutation group on the state space S. $\sigma \in G$ is an automorphism iff it preserves R, that is:

$$
\begin{equation*}
\forall s, t \in S . R(s, t) \Rightarrow R(\sigma(s), \sigma(t)) \tag{*}
\end{equation*}
$$

If for all $\sigma \in \mathrm{G}, \sigma$ is an automorphism, G is called an automorphism group of \mathcal{M}. Since automorphisms have inverse in $\mathrm{G},(\boldsymbol{*})$ is equivalent to: $\forall \mathrm{s}, t \in S . R(s, t) \Leftrightarrow R(\sigma(s), \sigma(t))$.

If we take a set of automorphisms as generators, the generated subgroup is an automorphism group (easy, as the composition of two atomorphisms and the inverse are automorphisms).

Observation: Since L does not come into play, we essentially define graph automorphisms.

Example of Kripke automorphism

Let us consider a token ring algorithm with a process Q and many processes P_{i}. Q and P_{i} have the same structure: three states: \mathbf{n} (non-critical), \mathbf{t} (has the token) and c (critical). There are two visible actions: r (receive token) and s (send token).
Initially, Q is in state t and P_{i} are in state n . Composition must syncrhonise on visible actions r and s.

Composition $P \mid Q$

Example of Kripke automorphism

Let us consider the permutation σ on states of $P \mid Q$ defined by $\sigma(\mathrm{n}, \mathrm{t})=(\mathrm{t}, \mathrm{n}), \sigma(\mathrm{t}, \mathrm{n})=(\mathrm{n}, \mathrm{t}), \sigma(\mathrm{n}, \mathrm{c})=(\mathrm{c}, \mathrm{n})$, and $\sigma(\mathrm{c}, \mathrm{n})=(\mathrm{n}, \mathrm{c})$.
Examining transitions, it easy to see that σ is an automorphism.
For semplicity, we can consider $S=D^{n}$, defined by n variables. For example, $Q\left|P^{i}=Q\right| P|\ldots| P$ can be represented by $i+1$ variables over the domain $D=\{\mathrm{n}, \mathrm{t}, \mathrm{c}\}$ of process states. It is usually to define auotorphisms as permutations of state variable indices. For example, the above automorphism is the transposition (12).

A permutation σ on $\{1,2, \ldots, n\}$ defines a permutation σ^{\prime} on S , defined by $\sigma^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$. To see that σ^{\prime} is indeed a permutation, just observe that $x \neq y$ implies $\sigma^{\prime}(x) \neq \sigma^{\prime}(y)$.

Quotient Models

Definition: Let G be a permutation group on S and let $s \in S$. The orbit of s is $\theta(s)=\{t \mid \exists \sigma \in G . \sigma(s)=t\}$. From each orbit $\theta(s)$ we can choose a representative $\operatorname{rep}(\theta(s))$.

Definition: Let $\mathcal{M}=(S, R, L)$ be a Kripke structure and let G be an automorphism group acting on S. G is an invariance group for an atomic proposition p iff

$$
(\forall \sigma \in G)(\forall s \in S) p \in \mathrm{~L}(s) \Leftrightarrow p \in L(\sigma(s))
$$

Definition: Let $\mathcal{M}=(S, R, L)$ be a Kripke structure and let G be an invariance group acting on S. The quotient structure $\mathcal{M}_{G}=$ (S_{G}, R_{G}, L_{G}) is defined by:

- $S_{G}=\{\theta(s) \mid s \in S\}$
- $R_{G}=\left\{\left(\theta(s), \theta\left(s^{\prime}\right)\right) \mid\left(s, s^{\prime}\right) \in R\right\}$
- $L_{G}(\theta(s))=L(\operatorname{rep}(\theta(s)))$

Back to the token ring example

Let us consider again the token ring example and the permutation group $G=\langle(12)\rangle$ on the states of $Q \mid P$. Orbits induced by G are $\{(\mathrm{t}, \mathrm{n}),(\mathrm{n}, \mathrm{t})\}$ and $\{(\mathrm{c}, \mathrm{n}),(\mathrm{n}, \mathrm{c})\}$. The resulting quotient model in the picture.

Interestingly, if we consider $Q \mid P^{i}$, the Kripke structure has $2(i+1)$ reachable states. Taking $G=\langle(123 \ldots i+1)\rangle$ induces only two orbits: $\left\{\left(\mathrm{t}, \mathrm{n}^{i}\right),\left(\mathrm{n}, \mathrm{t}, \mathrm{n}^{i-1}\right), \ldots,\left(\mathrm{n}^{i}, \mathrm{t}\right)\right\}$ and $\left\{\left(\mathrm{c}, \mathrm{n}^{i}\right),\left(\mathrm{n}, \mathrm{c}, \mathrm{n}^{i-1}\right), \ldots\right.$, $\left.\left(\mathrm{n}^{i}, \mathrm{c}\right)\right\}$ and thus the quotient of $Q \mid P^{i}$ is identical to that of $Q \mid P$.

Quotient model of both $Q \mid P$ and $Q \mid P^{i}$

Properties of quotient models

Lemma: Let $\mathcal{M}=(S, R, L)$ be a Kripke structure over $A P$. Let G be an invariance group for all $p \in A P$ and let \mathcal{M}_{G} be the quotient model. Then the relation $B=\{(s, \theta(s)) \mid s \in S\}$ is a bisimulation between \mathcal{M} and \mathcal{M}_{G}.

Proof: Since G is an invariant group for $A P, L(s)=L(\theta(s))$.
$R(s, t)$ implies $R_{G}(\theta(s), \theta(t))$ (def. of R_{G}) and $B(t, \theta(t))$ (def. of B).
Finally, $R_{G}(\theta(s), \vartheta)$: let $t=\operatorname{rep} \vartheta, \vartheta=\theta(t)$ and hence $R_{G}(\theta(s), \vartheta)$ can be rewritten as $R_{G}(\theta(s), \theta(t))$. This implies that there exist two states s^{\prime}, t^{\prime} such that $R\left(s^{\prime}, t^{\prime}\right)$ and $s^{\prime} \in \theta(s)$ and $t^{\prime} \in \theta(t)$. Since s and s^{\prime} (and t and t^{\prime}) belong to the same orbit, there exist $\sigma_{1}, \sigma_{2} \in G$ such that $\sigma_{1}\left(s^{\prime}\right)=s$ and $\sigma_{2}\left(t^{\prime}\right)=t$, that in turn implies $R\left(\sigma_{1}\left(s^{\prime}\right), \sigma_{2}\left(t^{\prime}\right)\right)$. \square
Corollary: Let \mathcal{M} be a Kripke structure over $A P$. Let G be an invariance group for $A P$. Then for every $s \in G$ and every CTL* formula f, we have: $\mathcal{M}, s \vDash f \Leftrightarrow \mathcal{M}_{G}, \theta(s) \vDash f$.

Model Checking with Simmetry

In the presence of symmetry only representative are considered. Here, we present an explicit algorithm for reachability, that assume the existence of a function $\xi(q)$ that associate to each state q, the unique representatitive of q.

```
reached := \emptyset;
unexplored:= \emptyset;
for all initial states }\boldsymbol{s}\mathrm{ do
    append }\xi(s)\mathrm{ to reach;
    append }\xi(s)\mathrm{ to unexplored;
end for all
while unexplored }\not=\emptyset\mathrm{ do
    remove a state s from unexplored;
    for all successor states q}\boldsymbol{q}\mathrm{ of }\boldsymbol{s}\mathrm{ do
        if }\xi(q)\mathrm{ is not in reached
                append }\xi(q)\mathrm{ to reached;
                append }\xi(q)\mathrm{ to unexplored;
        end if
    end for all
end while
```


Model Checking with Simmetry

If we have an OBDD for $R\left(v_{1}, \ldots, v_{k}, v_{1}{ }^{\prime}, \ldots, v_{k}{ }^{\prime}\right)$, and a permutation σ it is easy to check that σ is an automorphism, just checking if $R\left(v_{1}, \ldots, v_{k}, v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right)$ and $R\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}, v_{\sigma(1)}^{\prime}\right.$, $\left.\ldots, v^{\prime}{ }_{\sigma(k)}\right)$ are identical.

Having generators g_{1}, \ldots, g_{r}, the orbit relation $\Theta(x, y)=x \in \theta(y)$ can be computed as the minimum fixpoint of the equation:

$$
\mathrm{Y}(x, y)=\left(x=y \vee \exists z\left(\mathrm{Y}(x, z) \wedge \vee_{i} y=g_{i}(z)\right)\right)
$$

Having $\Theta, \xi: S \rightarrow S$ can be computed, for example, by choosing the state whose sequence of bit in its representation is the smallest in the lexicographic order.

Having ξ the transition relation R_{G} can be computed as:

$$
R_{G}(x, y)=\exists w z(\mathrm{R}(w, z) \wedge x=\xi(w) \wedge y=\xi(z))
$$

That's all Folks!

Thanks for your attention...

 ... Questions?