
Formal Methods
in Software Development 

Lesson 10, December 7th, 2020

Counteracting State Explosion Problem III:
Bisimulation
Ivano Salvo

Computer Science Department



Lesson 10a:

Data Abstraction



The most famous `abstraction mechanism’ in checking
correctness is the `casting out nine’ method to verify
multiplication: it is based on properties of congruence modulo 9:
• when it works, the multiplication is not guaranteed to be 
correct!
• You are sure that the  multiplication is wrong when it
doesn’t work. J

When systems contain data structures, they often becomes
“infinite” state or huge.

Abstraction is achieved by means of a map from a concrete 
domain D to an abstract domain A. This induces an abstraction
notion among systems (e.g., Kripke structures).

Goal: generate directly abstract systems, possibly combining 
abstraction process with compilation.

Data Structures



Let x be a variable ranging over integers and that the property
we are interested in involves just the sign of x. We can consider
the abstract domain Ax={a0, a+, a-} and the mapping: 

hx(d) = !
𝑎#					if	𝑑 = 0
𝑎*				if	𝑑 > 0
𝑎,				if	𝑑 < 0

	

The abstract value of x is expressed by using just 3 atomic
propositions: ‘x= a0’, ‘x= a+’, and ‘x= a-‘ where x is the abstract
value/variable. We can no longer express properties on the exact
value of x, but if abstract values are enough for the problem at
hand, then we obtain a considerable state space reduction. 

Spurios behaviour can be introduced: the sum of a negative and 
positive could be either positive or negative. 

Abstract values induce a new Kripke structure (also the set of 
initial states and the transition relation are abstracted): 

Example of abstraction - I



Definition: Let M=(S, I, R, L) and suppose, w.l.o.g. that S=Dn, for 
some domain D. Let h : D→A the abstraction function and 
consider the set of atomic propositions xi=a for some a ∊ A. We
define the reduced system MR=(SR, IR, RR, LR) as follows:
• SR = { L(s) | s ∊ S }, i.e., te set of all labeling
• IR = { L(s) | s ∊ I }
• LR(s) = s, since states themselves are the set of atomic
propostions they satisfy
• RR(s, t) iff∃s, t ∊ S, R(s, t) and s = L(s) and t = L(t)

MR is the abstract version of M and it is completely determined
by the choice of abstract values and the mapping function h from 
D to A.

It easy to see that H = { (s, s) | s ∊ S} is a simulation relation. 
ACTL* properties proved for for MR are valid for M.

Reduced Kripke structures



A simple traffic light with values D = {yellow, red, green}

and the abstract domain A = {go, stop} 
with the abstraction function h defined by:
h(yellow)=h(red)=stop and h(green)=go.

The reduced model is:

Observe that in the abstraction there is a
spurious behavior: the loop in state stop. 
There is no loop red→yellow→red→…
→yellow→red→ … in the original structure.

Example of abstraction - II



MR can be still too large to fit in memory and/or to be checked
in reasonable time. A further idea is to build an approximation
MR ≼MA close enough to MR to verify interesting properties.

We are given a Kripke structure M = (S, I, R, L) with S = Dn and 
a surjective abstraction function h : D→ A, I and R are  first 
order formula over variables x1, …, xn ranging over D. 

Let s = (d1, …, dn), that is in s, each xi has value di. Let ai = h(di). 
An atomic proposition of the form `xi=ai` denotes that the 
variable xi has (abstract) value ai. L(s)={`x1=a1`, …, `xn=an`}.

We define MR over the abstract states A×…×A over variables
x1, …, xn, x’1, …, x’n. 

I =∃x1, …, xn (h(x1)= x1∧…∧ h(xn)= xn∧ I(x1, …, xn))

R =∃x1, …, xn, x’1, …, x’n (h(x1)= x1∧…∧ h(xn)= xn∧
∧ h(x’1)= x’1∧…∧ h(x’n)= x’n∧R(x1, …, xn, x’1, …, x’n))

free variables of I and R are abstract variables!

Approximations - I



We use the  notation [・] as a shorthand for the existential
abstraction: 

[𝜙](x1, …, xn) =∃x1, …, xn.∧i h(xi)= xi ⋀ 𝜙(x1, …, xn))

For example, R =[R] and I = [I]. 

Apply the transformation [R] and [I] may be computationally
expensive. It is better to apply to simplified formulas. We define:

𝒜(P(x1,…, xm)) = [P](x1, …, xm) 𝒜(¬P(x1, …, xm)) = [¬P](x1,…, xm) 

𝒜(𝜙1∧𝜙2) = 𝒜(𝜙1)∧𝒜(𝜙2) 𝒜(𝜙1∨𝜙2) = 𝒜(𝜙1)∨𝒜(𝜙2) 

𝒜(∃x 𝜙) = ∃x𝒜(𝜙) 𝒜(∀x 𝜙) = ∀x𝒜(𝜙)

𝒜 pushes existential quantification inward, so that [・] is applied
to the innermost level.

Be careful: [𝜙] implies 𝒜(𝜙) but it is not equivalent.

Approximations- II



Theorem: [𝜙] ⇒𝒜(𝜙). In particular [I] ⇒𝒜(I) and [R] ⇒ 𝒜(R).
Proof: Induction on 𝜙.
❖ If 𝜙 ≡ P(x1, …, xm), [𝜙]=𝒜(𝜙) and the statement holds.
❖If 𝜙 ≡ 𝜙1∧𝜙2 then [𝜙1 ⋀ 𝜙2] is identical to the formula 
∃x1, …, xn(∧i h(x1)= x1 ⋀ 𝜙1 ⋀ 𝜙2). 
This formula implies (but not equivalent to) ∃x1, …, xn(∧i h(x1)=
x1 ⋀ 𝜙1)∧∃x1, …, xn(∧i h(x1)= x1 ⋀ 𝜙2) [it is easier to find two
witness for ∃]. 
Moreover, by (IND) we have that [𝜙1] ⇒𝒜(𝜙1) and [𝜙2] ⇒𝒜(𝜙2) 
and. Therefore [𝜙1 ⋀ 𝜙2] implies 𝒜(𝜙1 ⋀ 𝜙2).
❖ If 𝜙 ≡∀x 𝜙’ then [∀x 𝜙’] is (we can assume ∀i. x ≠ xi) 
∃x1, …, xn(∧i h(xi)= xi ∧∀x 𝜙’(x, x1, …, xn)) ≡ 
(x ≠ xi ) ≡ ∃x1, …, xn∀x (∧i h(xi)= xi ∧𝜙’(x, x1, …, xn))⇒
⇒ (this is not eq.)∀x∃x1, …, xn (∧i h(xi)= xi ∧𝜙’(x, x1, …, xn)) ≡
(h srj) ≡∀x∃x [∃x1, …, xn(h(x)= x∧i h(xi)= xi ∧𝜙’(x, x1, …, xn))]
≡ ∀x [𝜙’]. By IND [𝜙’]⇒𝒜(𝜙’) and hence∀x [𝜙’] ⇒∀x𝒜(𝜙’)

𝜙 ≡ 𝜙1∨𝜙2  and 𝜙 ≡ ∃x 𝜙’ are similar. ☐

Approximations - III



Theorem: M ≼MA

Proof: Let s = (d1, …, dn) and sa = (a1, …, an). We define H(s, sa) iff
for all i we have an= h(di). In this way, s and sa have the same
labelling. 

Assume R(s, t) with t = (e1, …, en). Define ta=(h(e1), …, h(an)). 
We have to show that RA(sa, ta). The transition (s, t) corresponds
to a valuation satisfying R. We show that [R](sa, ta). 

By def of [・], [R](sa, ta) holds iff:

∃x1, …, xn, x’1, …, x’n (h(x1)= h(d1)∧…∧ h(xn)= h(dn)∧
∧ h(x’1)= h(e1)∧…∧ h(x’n)= h(en)∧R(x1, …, xn, x’1, …, x’n))

R(s, t) holds by taking di as witness for xi and ei as witness for x’i
and hence [R](sa, ta). By the previous theorem, this implies that
𝒜(R)(sa, ta) is true and 𝒜(R) defines MA. Thus H is a simulation
between M and MA. 

Similar for initial states. ☐

Approximations -IV



M ≼MA implies that every ACTL* formula satisfied by MA also
holds in M. Here we sketch properties ensuring that M ≅MA.

An abstraction h : D→ A induces an equivalence on D defined
by d ~ d’ iff h(d) = h(d’).
Definition: An equivalence ~ is a congruence w.r.t. a primitive 
relation P iff∀d1,…, dn, e1, …, en.∧i di ⇒ ei→ P(d1, …, dm)⇔
P(e1, …, em)

Theorem: If ~ is a congruence wrt to primitive relations in 𝜙, 
then [𝜙]⇔𝒜(𝜙). In particular, [R]⇔𝒜(R) and [I]⇔𝒜(I).

Theorem: If ~ is a congruence wrt to primitive relations in M, 
then M ≅MA.

Exact Approximations



Lesson 10b:

Examples of
“useful” 

Data Abstractions



We present some examples, modeled in a simple language for 
synchronous digital circuits as finite state Moore automata.

The compiler has some built-in abstraction and build an OBDD 
representation of the defined system. 

The compiler generates directly the abstract system. 

We will write abstraction by using some syntactic sugar: for 
example “even(x) instead of ‘x = aeven’

A simple language



A simple language

input set : 1;
input start : 8;
output count : 8 = 0;
input alarm : 1 = 1;

loop
if set == 1

then count = start;
else if count > 0 then count = count -1;

if count == 0 then alarm = 1;
else alarm = 0;

wait;
end loop;

input/output variables
length in number of bits

synchronization: outputs
become visible, get inputs

and a new step can take place

Settable Countdown Timer



This is a common useful abstraction for systems involving
arithmetic. h(i) = i mod m. This abstraction is a congruence:

(i mod m) + (j mod m) = i + j (mod m)
(i mod m) - (j mod m) = i - j (mod m)

(i mod m)(j mod m) = i j (mod m)
The value modulo m depends on values modulo m of operands.

Theorem [CHINESE REMAINDER THEOREM]: Let m1, m2, …, mn be 
pairwise relatively prime positive integers. Let m= m1m2 …mn
and let b, i1, i2, …, in be integers. Then there is a unique i such
that: b ≤ i <b+m and i ≡ ij (mod mj) for all 1 ≤ j < n.

This theorem essentially says that we can infer the value of i
by considering equivalence classes of (mod mj) for all 1 ≤ j < n, 
provided that i is known to belong to an interval of width m. 

Congruence modulo m



Verifying a 16-bit multiplier could be impractical (see code next
slide). The program (circuit) has 3 input: req (that is a request
signal starting the execution), in1 and in2 (factors to operate be 
multiplied).

The multiplier performs a sequence of shift and add steps until
factor1 is 0 or an overflow has been generated.

The specifications is a series of formulas that checks congruence
modulo m of the product result, according to the abstraction:

AG (waiting∧ req∧(in1 mod m = i)∧(in2 mod m = j) 
→A(¬ack U ack∧ (overflow∨ output mod m = i j mod m)

Verification of a multiplier



loop
waitfor(req)
factor1 = in1;
factor2 = in2;
output = 0;
overflow = 0;
wait;
loop #main multiplication loop

if (factor1==0 ∨overflow == 1) then break;
if (lsb(factor1)== 1) then

(overflow, output)=(output: 17)+factor2;
factor1 = factor1 » 1; # right shift
wait;
if (factor1==0 ∨overflow == 1) then break;
(overflow, factor2)=(factor2: 17) « 1; # left shift
wait; # syncrhonization

ack=1;
wait;
waitfor(req);
ack = 0;

def waitfor(e)
while ¬e

wait;

# variable declarations
input in1: 16;
input in2: 16;
input req: 1;
output factor1 : 16;
output factor2 : 16;
output output : 16;
output overflow : 1;
output ack : 1;



In the verification, factor1, in1, in2, and output are abstracted
modulo m. We can perform verification with m = 5, 7, 11, 32 
whose product is 110880 that is enough for a 16-bit multiplier.

AG (waiting∧ req∧(in1 mod m = i) ∧(in2 mod m = j) 
→A(¬ack U ack∧ (overflow∨ output mod m = i j mod m)

Observe that the specification admits the possibility that the 
multiplier outputs always an overflow.  

Correctness of the overflow bit can be checked separetely using
a different abstraction.

Verification of a multiplier



When only the order of magnitude is important, it is useful to 
represent a quantity by its logarithm. Define: lg i = log3(𝑖 + 1) ,
that is the smallest number of digits needed to represent i > 0.
Let us consider again the 16-bit multiplier. A circuit that
always return overflow satisfies the specification we
considered.
Observe that if lg i + lg j ≤ 16 then lg i j ≤ 16 and the 
multiplication should not overflow. Conversely, if lg i + lg j ≥ 18 
then lg i j ≥ 17 and the multiplication will overflow. 
If lg i + lg j = 17, this test is inconclusive.
Specification can be strenghten checking overflow by 
abstracting all 16 bit variables with their logarithms:

AG (wtg∧req∧(lg in1+lg in2 ≤ 16)→A(¬ack U ack∧¬ ovflw)

AG (wtg∧req∧(lg in1+lg in2 ≥ 18)→A(¬ack U ack∧ ovflw)

Logarithmic representation



When bitwise logical operations are involved in a system, the 
following abstraction may be useful: h(i) = jth bit of i.

Moreover, if h1 and h2 are two abstractions, then also
h(i) = (h1(i), h2(i)) is an abstraction.

As in the case of multiplier, two abstractions can make possible
to verify properties that are not verifiable using just one
abstraction.

The program in the next slide computes the parity of a 16-bit 
input. It should meet the following properties (let #i to be true
if the parity of i is odd):

• The value assigned to b has the same parity of the input in

• #b ⊕ parity is invariant

Single bit & Product Abstractions



The above properties can be 
expressed by the following CTL 
formula:
¬#in ⋀ AX (¬#b ⋀ AG¬(#b ⊕ parity)) 
⋁ #in ⋀ AX (#b ⋀ AG (#b ⊕ parity))

This property can be verified by 
using a combined abstraction on 
variables in and b. 

Values of these variables can be 
grouped both by the value of their
low-order bit and their parity.

Using these abstractions, 
verification takes few seconds
only.

Single bit & Product Abstractions

# variable declaration
input in: 16;
output parity : 1 = 0;
output b : 16 = 0;
output done : 1 = 0;
b = in;
wait;
while b ≠ 0 do

parity = parity ⊕ lsb(b);
b = b » 1;
wait;

done = 1;



The use of OBDDs makes it possible to use 
abstractions that depend on symbolic values.

As a simple example, consider the program
on the right: The next state of b is always
equal to the current state of a. We state this
property for a fix value, say 42.

Symbolic Abstractions

To verifiy the property AG (a=42 → AX b=42) we can use the 
following abstraction:

h(d) =:0			if	𝑑 = 42
1	otherwise

The above property becomes AG (a=0 → AX b=0) and can be 
easily checked using 1 digit variables. Of course, we do not want
to repeat the verification for each integer value! 

input a: 8;
output b : 8 = 0;

loop
b = a;
wait;



We can consider the parametrized abstraction, that leads to a 
parametrized transition relation:

hc(d) =:0					if	𝑑 = 𝑐
1	otherwise

We can perform symbolic model checking as follows:

1. Use an OBDD to represent hc (supplied by the user);

2. Compile with hc to get an OBDD representing Rc(a, a’, b, b’, c)

3. Generate the parametrized state set: the model checker views
c just as a state component that does not change.

4. Possibly, to generate a counterexample choose a specific c.

There is a slightly more complicated example on the Clarke 
book.

Symbolic Abstractions



Lesson 10c:

Symmetry



Systems exhibit considerable symmetry: circuits, bus protocols, 
and in general systems with replicated structures as sub-
systems.

The existence of symmetries implies the existence of non-trivial
permutation groups that can be used to define equivalence
relations that preserve both state labeling and transitions.

The quotient model is bisimilar to the original model 
(equivalent with respect to checking a CTL* property) 
and can be significantly smaller.

Symmetry



We recall basic definitions about groups.

Definition: A group (G, ・) is a set with a binary operation
・: G × G → G, such that:
1. ・ is associative, that is (a ・b)・c = a・(b・c)
2. there is an identity e ∊ G, that is a・e = e・a = a
3. Each a ∊ G has an inverse a-1, such that a・ a-1= a-1・a = e

Definition: Given a set of elements {g1, …, gk} ⊆G, we indicate 
with ⟨g1, …, gk⟩ the smallest subgroup H of G containing
g1, …, gk, that are called generators of H.
H is the minimum set closed under ・ and inverse.

Groups



Definition: A permutation 𝜎 on a finite set A is a bijection
𝜎 : A→ A. We call dom 𝜎 = { a ∊ A | 𝜎(a) ≠ a}. 

Two permutations 𝜎1 and 𝜎2 are disjoint if dom 𝜎1 ⋂ dom 𝜎2 = ∅. 

The set of all permutations on a set A is the permutation group
Sym A, where the operation is function composition. Identity
function is the identity and the inverse function is the inverse. 

A permutation that maps x = x1→x2→…→xn = x is called a 
cycle, denoted by (x1 x2 … xn). 

A cycle of length 2 is called transposition. 

Each permutation can be written as the composition of disjoint
cycles or as the composition of transposition (not disjoint).

Groups of permutations



Example: Let us consider A = {1, 2, 3, 4, 5} and 𝜎 defined by 
{(1,3), (2,4), (3,1), (4,5), (5,2)}. 

Then 𝜎 = (1 3)∘(2 4 5) and 𝜎 = (1 3)∘(2 5) ∘(2 4). 

The subgroup generated by the two permutations (1 3) and (2 4 
5) is the group {e, (1 3), (2 4 5), (1 3)∘ (2 4 5), (2 5 4), (1 3)∘ (2 5 
4)}. 

Observe that (2 5 4)=(2 4 5)∘(2 4 5)

Example of permutations



Definition: Let M = (S, R, L) be a Kripke structure and let G be 
a permutation group on the state space S. 𝜎 ∊ G is an 
automorphism iff it preserves R, that is: 

∀s, t ∊ S. R(s, t) ⇒ R(𝜎(s), 𝜎(t)) (✻)

If for all 𝜎 ∊ G, 𝜎 is an automorphism, G is called an 
automorphism group of M. Since automorphisms have inverse 
in G, (✻) is equivalent to: ∀s, t ∊ S. R(s, t) ⇔ R(𝜎(s), 𝜎(t)). 

If we take a set of automorphisms as generators, the generated
subgroup is an automorphism group (easy, as the composition
of two atomorphisms and the inverse are automorphisms).

Observation: Since L does not come into play, we essentially
define graph automorphisms.

Automorphism of Kripke struct.



Let us consider a token ring algorithm with a process Q and 
many processes Pi. Q and Pi have the same structure: three
states: n (non-critical), t (has the token) and c (critical). There
are two visible actions: r (receive token) and s (send token).
Initially, Q is in state t and Pi are in state n. Composition must 
syncrhonise on visible actions r and s. 

Example of Kripke automorphism

Processes Pi and Q

Composition P | Q



Let us consider the permutation 𝜎 on states of P|Q defined by 
𝜎(n, t)=(t, n), 𝜎(t, n)=(n, t), 𝜎(n, c)=(c, n), and 𝜎(c, n)=(n, c).
Examining transitions, it easy to see that 𝜎 is an automorphism. 

For semplicity, we can consider S = Dn, defined by n variables. 
For example, Q|Pi = Q|P|…|P can be represented by i+1 
variables over the domain D = {n, t, c} of process states. It is
usually to define auotorphisms as permutations of state 
variable indices. For example, the above automorphism is the 
transposition (1 2).

A permutation 𝜎 on {1, 2, …, n} defines a permutation 𝜎’ on S, 
defined by 𝜎’(x1, …, xn) = (x𝜎(1), …, x𝜎(n)). To see that 𝜎’ is indeed
a permutation, just observe that x ≠ y implies 𝜎’(x) ≠ 𝜎’(y).

Example of Kripke automorphism



Definition: Let G be a permutation group on S and let s ∊ S. 
The orbit of s is 𝜃(s) = {t |∃𝜎 ∊ G. 𝜎(s) = t }. From each orbit 𝜃(s) 
we can choose a representative rep(𝜃(s)).

Definition: Let M = (S, R, L) be a Kripke structure and let G be 
an automorphism group acting on S. G is an invariance group
for an atomic proposition p iff

(∀𝜎 ∊ G) (∀s ∊ S) p ∊ L(s) ⇔ p ∊ L(𝜎(s)) 

Definition: Let M = (S, R, L) be a Kripke structure and let G be 
an invariance group acting on S. The quotient structure MG = 
(SG, RG, LG) is defined by:
• SG = { 𝜃(s) | s ∊ S }
• RG = { (𝜃(s), 𝜃(s’))| (s, s’) ∊ R }
• LG(𝜃(s)) = L(rep(𝜃(s))) 

Quotient Models



Let us consider again the token ring example and the 
permutation group G = ⟨(1 2)⟩ on the states of Q|P. Orbits
induced by G are {(t, n), (n, t)} and {(c, n), (n, c)}. The resulting
quotient model in the picture.

Interestingly, if we consider Q|Pi, the Kripke structure has
2(i+1) reachable states. Taking G = ⟨(1 2 3 … i+1)⟩ induces only
two orbits: {(t, ni), (n, t, ni-1), …, (ni, t)} and {(c, ni), (n, c, ni-1), …, 
(ni, c)} and thus the quotient of Q|Pi is identical to that of Q|P.

Back to the token ring example

Quotient model of both Q|P and Q|Pi



Lemma: Let M = (S, R, L) be a Kripke structure over AP. Let G
be an invariance group for all p ∊ AP and let MG be the quotient
model. Then the relation B = { (s, 𝜃(s)) | s ∊ S } is a bisimulation
between M and MG . 

Proof: Since G is an invariant group for AP, L(s)=L(𝜃(s)). 

R(s, t) implies RG(𝜃(s), 𝜃(t)) (def. of RG) and B(t, 𝜃(t)) (def. of B). 

Finally, RG(𝜃(s), 𝜗): let t = rep 𝜗, 𝜗=𝜃(t) and hence RG(𝜃(s), 𝜗) can 
be rewritten as RG(𝜃(s), 𝜃(t)). This implies that there exist two
states s’, t’ such that R(s’, t’) and s’∊ 𝜃(s) and t’ ∊ 𝜃(t). Since s and 
s’ (and t and t’) belong to the same orbit, there exist 𝜎1, 𝜎2 ∊ G 
such that 𝜎1(s’)=s and 𝜎2(t’)=t, that in turn implies
R(𝜎1(s’), 𝜎2(t’)).  ☐

Corollary: Let M be a Kripke structure over AP. Let G be an 
invariance group for AP. Then for every s ∊ G and every CTL* 
formula f, we have: M, s ⊨ f⇔MG, 𝜃(s) ⊨ f.

Properties of quotient models



In the presence of symmetry only representative are 
considered. Here, we present an explicit algorithm for 
reachability, that assume the existence of a function 𝜉(q) that
associate to each state q, the unique representatitive of q.

Model Checking with Simmetry

This simple reachability
algorithm can be extended
to full CTL model 
checking.

With OBDDs things are a 
bit more complex.



If we have an OBDD for R(v1, …, vk, v1’, …, vk’), and a 
permutation 𝜎 it is easy to check that 𝜎 is an automorphism, 
just checking if R(v1, …, vk, v1’, …, vk’) and R(v𝜎(1), …, v𝜎(k), v’𝜎(1), 
…, v’𝜎(k)) are identical. 

Having generators g1, …, gr, the orbit relation 𝛩(x, y) = x ∊ 𝜃(y) 
can be computed as the minimum fixpoint of the equation:

Y(x, y) = (x = y ⋁∃z ( Y(x, z) ⋀ ∨i y = gi(z)))

Having 𝛩, 𝜉 : S → S can be computed, for example, by choosing
the state whose sequence of bit in its representation is the 
smallest in the lexicographic order.

Having 𝜉 the transition relation RG can be computed as: 

RG(x, y) = ∃w z (R(w, z) ⋀ x = 𝜉(w) ⋀ y=𝜉(z))

Model Checking with Simmetry



That’s all Folks!

Thanks for your attention…
…Questions?


