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Basic idea: Having to check M ⊨𝜑, find a (hopefully) smaller 
system M’, such that M ⊨𝜑 if and only if M’ ⊨𝜑. 

This idea is related to the definition of some equivalence ≅
among transition systems or Kripke structures, so that M ≅M’.

The equivalence ≅ should be invariant for the logic at hand. 

As a matter of fact, depending also on the property 𝜑 (and the 
temporal logic at hand), many behaviours of M can be 
irrelevant to the satisfaction of M ⊨𝜑.

For example, stuttering equivalence is invariant for LTL-X

Ideally:

• M’ should be much smaller than M.

• The computation of M’ should be much faster than checking 
M ⊨𝜑 . 

Equivalences, Reloaded



Lesson 9a:

Simulation and 
Bisimulation



Bisimulation plays a central role in the Theory of 
Concurrency (usually in an action-oriented version).

It has been introduced in the framework of Process
Algebras (and of course, Labeled Transition Systems).

Bisimulation usually is defined as the maximum 
equivalence satisfying certain properties (see Definition 
in the next slide), so it is usually defined as a maximum 
fixpoint.

Bisimulation



Definition: Let M=(S, R, L, I, AP) and M’=(S’, R’, L’, I’, AP) be 
two Kripke structures with the same set of atomic propositions. 

A relation B ⊆ S × S’ is a bisimulation relation iff
for all (s, s’) ∊ B we have:

1. L(s) = L(s’)
2. For all t such that R(s, t) there exists t’ such that R’(s’, t’) and 

B(t, t’)
3. For all t’ such that R’(s’, t’) there exists t such that R(s, t) and 

B(t, t’)

Two Kripke structures are bisimulation equivalent if there
exists a bisimulation B such that for each initial state s ∊ I in M
there exists an initial state s’ ∊ I’ in M’ such that B(s, s’) and for 
each initial state s’ ∊ I’ in M’ there exists an initial state s ∊ I in M
such that B(s, s’).

Bisimulation



Bisimulation preserves some operations like unwinding (a): 

and duplication (b) of sub-structures:

Bisimulation: Examples

✘ ✘

(a)

(b)



Bisimulation takes a branching-time perspective.
These systems are not bisimilar, because M’ defers a decision to 
go in c or d. They are trace equivalent (same linear properties).
M’ is “stronger” than M: M’ simulates M in the sense it can reply
to any action of M (not viceversa, bisimulation game) 

Bisimulation: Examples

cannot reply to d

cannot reply to c



Definition: Two paths 𝜋 = s0s1…si … in M and 𝜋’ =
s0’s1’…si’ … in M‘ correspond iff for all i, we have B(si, si’).

Lemma: Let s, s’ be such that B(s, s’). Then, for every path
starting from s, there exists a corresponding path starting
from s’ and viceversa.

Proof: Let 𝜋 = s0s1…si … in M with s = s0. We prove the 
statement by induction on i. Clearly, we put s’0=s’. 
Let us now assume that B(si, si’) holds. Because B(si, si’) and 
R(si, si+1) there exists a state si” such that R’(si’, si”) and 
B(si+1, si”) and clearly we choose si” as s’i+1.
Symmetrically, given a path 𝜋’ in M‘ we can construct a 
corresponding path in M. ☐

Corresponding paths



Lemma: Let f be a CTL* formula and let s, s’ be such that B(s, s’) 
and 𝜋, 𝜋’ be corresponding path starting from (resp.) s, s’. Then:
• If f is a state formula, M, s ⊨ f⇔M’, s’ ⊨ f
• If f is a path formula, M, 𝜋 ⊨ f⇔M’, 𝜋’ ⊨ f

Proof: (Easy induction on the structure of f ). 
f ≡ p ∊ AP. Let f be an atomic proposition p. We know that if
B(s, s’) then L(s)=L’(s’) and hence M, s ⊨ p⇔M’, s’ ⊨ p.
Let f ≡ ¬g be a state or a path formula. M, s ⊨ ¬g ⇔def of ¬ M, s ⊭ g 
⇔ (IND) M’,s’ ⊭ g⇔def M’,s’ ⊨ ¬g. 

Let f ≡ g∨h be a state or a path formula. M, s ⊨ g∨h⇔def M, s ⊨ g
or M, s ⊨ h ⇔ (IND) M’, s’ ⊨ g or M’, s’ ⊨ h ⇔def of ∨M’, s’ ⊨ g∨h ≡ f. 

Let f ≡ E g. If M, s ⊨ E g then there exists a path 𝜋 starting in s such
that 𝜋 ⊨ g. Then there exists a corresponding path 𝜋’ in M’ 
starting in s’, and by (IND) 𝜋’ ⊨ g ⇔ 𝜋 ⊨ g. This implies that M, s’ ⊨
E g. The converse is the same. 

➭cntnd.

CTL* and bisimulation



Let f ≡ X g: M, 𝜋 ⊨ X g ⇔def of X M, 𝜋1 ⊨ g.  Since by hypothesis
we have a corresponding path 𝜋’, we have also that 𝜋1 

corresponds to 𝜋’1 and hence, by (IND), M, 𝜋’1 ⊨ g⇔def of X M, 𝜋’
⊨ X g. The same argument works for the converse.

Let f ≡ g U h: by definition of U, there exists k such that M, 𝜋k ⊨
h  and M, 𝜋j ⊨ g for all 0 ≤ j < k. Since 𝜋’ corresponds to 𝜋, we
have, by (IND) M’, 𝜋’k ⊨ h  and M’, 𝜋’j ⊨ g for all 0 ≤ j < k, that is
(by def. of U) M’, 𝜋’ ⊨ g U h. The converse is the same.

The case f ≡ g R h is similar to f ≡ g U h, the case f ≡ A g is
similar to f ≡ E g, and the case f ≡ g∧ h is similar to f ≡ g∨ h.☐

Theorem: Let f be a CTL* formula and B(s, s’). Then
M, s ⊨ f⇔M’, s ⊨ f.

Theorem: Let f be a CTL* formula and B(M, M’). Then
M ⊨ f⇔M’ ⊨ f.

CTL* and bisimulation (cntd) 



Interestingly, the above theorems holds also for CTL! 
Therefore, if two structures can be distinguished by a CTL* 
formula, they can be distinguished also by a CTL formula.

This does not mean that CTL and CTL* have the same
expressive power.

CTL* and CTL would be equivalent if for each CTL* formula it
would exist a CTL formula with the same set of models (Kripke
structures). But this is known to be false! 

Here, we are just saying that, for each model there exists a CTL 
formula that is true in that model but false in any inequivalent
model (with respect to bisimulation – remember that LTL is
sensible to stuttering equivalence).

The definition of corresponding path and bisimulation can be 
extended to the case of fairness constraints (just to limit to 
fairness paths), obtaining similar results.

Bisimulation: CTL versus CTL*



Often, it is interesting to consider an abstraction A of a system
M with the property that all behaviors of M are also behaviours
of A (but not necessarily the converse). 

The abstraction A may have some spurious behaviour. 

Definition: Let M=(S, R, L, I, AP) and M’=(S’, R’, L’, I’, AP’)  be 
two Kripke structures with AP’⊆AP. 
A relation H ⊆ S × S’ is a simulation iff for all (s, s’) ∊ H:
1. L(s) ⋂ AP’= L(s’)
2. For all t such that R(s, t) there exists t’ such that R’(s’, t’) and 

H(t, t’)

M’ simulates M (notation M ≼M’) if for each state s ∊ I in M
there exists an initial state s’ ∊ I’ in M’ such that H(s, s’).

Proposition: ≼ is a preorder on the set of Kripke structures.

Abstraction: simulation



If we consider the relation H = { (s, s’) |L(s) = L(s’) } it is easy to 
see that M ≼M’. As a simulation game, M’ can always `reply’ to 
any move of M. 

Simulation: Examples



ACTL(*) is the restriction of CTL(*) that considers only the 
universal path quantifier A and negations only on atomic
proposition (otherwise, implicit existentials would be present).

Lemma: Let s, s’ be such that H(s, s’). Then, for every path starting
from s, there exists a corresponding (with respect to H) path
starting from s’.
Theorem: If M ≼M’ then∀f ∊ACTL*, M’ ⊨ f implies M ⊨ f.

This theorem holds intuitively because ACTL* formulas quantify
over all behaviours of a Kripke structures M and if a formula 
holds for all behaviour of M’ then it holds for all behaviour of M.

On the other hand, if M’ ⊭ f, nothing can be deduced for M. We
have to check if the counterexample is spurious or it works also
for M. The counterexample may drive the consideration of 
another structure M’’ with M ≼M’’ ≼M’ and try M’’ ⊨ f
(counterexample guided refinement)

The logic ACTL* and simulation



In this example, M ≼M’ and M’ ≼M but M and M’ are not
bisimilar. State 1 of M simulates both states 3 and 4 of M’. 
Similarly, state 3 of M’ simulates both states 1 and 2 of M.
They are not bisimilar because no state in M can be associated
to state 4 in M’. No state in M’ to state 2 in M’.
Using logic characterisation of bisimulation, M ⊨ AG (b → EX c)
but M’ ⊭ AG (b → EX c)

Simulation: Examples



Compute a sequence of relations B0, B1 , B2 … in S × S’ as follows:

B0(s, s’) iff L(s) = L(s’)

Bn+1(s, s’) iff
Bn(s, s’) and 
∀t [R(s, t) ⇒[∃t’ R(s’,t’) ∧ Bn(t, t’)]] and 
∀t’ [R(s’, t’) ⇒[∃t R(s, t) ∧ Bn(t, t’)]]

Note that Bn⊇Bn+1 for all n. Therefore, we are computing a 
greatest fixpoint! We know that there exists n such that
Bn+1=Bn.We can define B* = ⋂n Bn.

Proposition: B* is the largest bisimulation between M and M’.

Proof: We show that for any bisimulation B, B ⊆ B*. Induction on 
n. Clearly, B⊆ B0 (cond. 1 in def. of bisim.). Assume B⊆ Bn and 
B(s, s’). If R(s, t) then R’(s’, t’) and B(t, t’) and the symmetric case. 
This implies Bn+1(s, s’) and hence B⊆ Bn+1. ☐

Checking (bi)simulation



Lesson 9b:

Yet Another
Tableau Construction



We present here a tableau construction for the logic ACTL. 

We remind that ACTL considers only the universal path
quantifier A and to avoid implicit existential path quantifier, 
negation are allowed only on atomic propositions.

To maintain expressive power, both∧ and ∨are in the logic, as
well as both U and R (F and G can be derived from U and R).

For any ACTL formula f, the tableau Tf is a maximal model for 
f with respect to ≼F (we use this property in abstractions, next
topic). That is the goal is that M ⊨ f iff M ≼FTf .

Fairness: eventualities (formula of the shape A [g U h]) are 
satisfied by means of fair paths. States that are not at the 
beginning of fair paths will be characterized by formula of the 
shape AX false. 

Checking ACTL formulas



The Kripke structure Tf is on the set of atomic proposition APf
of atomic propositions occurring as sub-formulas of f.

Each state s ∊ ST = 𝒫 (el(f )) is a set of elementary propositions. 

The labeling LT(s) is defined so each state is labeled with the set 
of atomic propositions contained in the state. 

Elementary Formulas



To define the transition relation, we need to define the set of 
states that satisfies a given formula in el(f ) as follows (observe
why we don’t need to add negations in el(f ) ):

Differently from LTL, we want to define RT in such a way that
Tf has all behaviours that satisfies f. As usual, AX is the key.

Building the transition relation

Pay attention!



Similarly to LTL tableau, eventually properties are fullfilled
along fair paths. A state can be in sat(AX A[g U h]) without
satisfying AX A[g U h] only if there exists a path starting from s
in sat(AX A[g U h]) ⋂ (ST ∖ sat(h)). 

Therefore, we impose fairness constraints containing the 
complement of these sets (path must visit sat(h)):

FT = {ST ∖ sat(AX A[g U h])∪sat(h) |AX A[g U h] ∊ el(f ) }

Lemma: For all sub-formulas g of f, if s ∊ sat(g) then s ⊨ g.

By putting the set of initial states S0
T = sat(f ), we have that Tf ⊨f. 

Let M ⊨ f, we define: H={(s’, s) | s = {g ∊ el( f ) |s’ ⊨ g}  }. Then:

Lemma: H(s, s’) then s ⊨ g implies s’ ⊨ g.

Lemma: H is a fair simulation between M and Tf .

All this implies that if M ⊨F f if and only if M ≼FTf .

Fairness constraints



Lesson 9c:

Compositional
Reasoning



Many complex systems consist of several sub-systems. 

Remember that the parallel composition of two systems result
in a combinatorial explosion of the number of states with 
respect to sub-components.

It would be desirable to deduce global properties from local
properties of sub-systems (compositionality). 

Let us consider a system M=M1|M2: the behavior of M1 
depends on M2: one can specify assumptions that must be 
satisfied by M2 in order to guarantee the correctness of M1.

At the same time, the behavior of M2 depends on M1: one can 
specify assumptions that must be satisfied by M1 in order to 
guarantee the correctness of M2.

Idea: By combining the set of assumed and guaranteed
properties by M1 and M2 it is possible establish correctness of 
the whole system M1|M2.

Assume-Guarantee paradigm



A formula is a triple of the shape ⟨f ⟩ M ⟨g⟩ where f and g are 
temporal logic formulas and M a Kripke structure: the intended
meaning is that whenever M is a component of a system
satisfying an assumption g, then the system must also
guarantee the porperty f.

We can express system properties as inference rules:

𝑡𝑟𝑢𝑒 M* 𝑔 							 𝑔 M- 𝑓
𝑡𝑟𝑢𝑒 M*|M- 𝑓

Be careful to avoid circularity in inference rules. Some 
deductions that seems reasonable are wrong! For example, the 
following inference rule is unsound:

𝑔 M* 𝑓 							 𝑓 M- 𝑔
M*|M- ⊨ 𝑓 ∧ 𝑔

For example, let M1=wait(y=1); x=1; and M2=wait(x=1); y=1; 
and g =AF (y=1) and f =AF (x=1): the premises of the rule holds, 
but not the conclusions! 

Formulas and Inference Rules



Definition: Let M1=(S1, I1, AP1, L1, R1, F1) and M2=(S2, I2, AP2, 
L2, R2, F2) be two fair Kripke structures. We define the parallel
composition M1|M2 = (S, I, AP, L, R, F) of M1 and M2 as:

• S = { (s1, s2) | L(s1) ⋂ AP2=L(s2) ⋂ AP1 }

• I = (I1× I2) ⋂ S

• AP = AP1 ∪ AP2

• L (s1, s2) = L(s1)∪ L(s2)

• R((s1, s2), (t1, t2)) iff R1(s1, t1) and R2(s2, t2)

• F = { (P × S2) | P ∊ F1 }∪ { (S1 × P) | P ∊ F2 }

Observation: The definition of F is such that a path in M1|M2 is
fair if and only if both its restrictions to states of M1 and M2 are  
fair too. 

Composition of structures



Proposition: Parallel composition is associative and 
commutative (up to isomorphism).
Proof: Easy, but tedious. ☐

Lemma: For all M1 and M2, M1|M2 ≼F M1, and M1|M2 ≼F M2.
Proof: Just define H as {((s1, s2), s1)|(s1, s2) ∊ S(M1|M2)}. If (s1, s2)
∊ I(M1|M2) then s1 ∊ I1. L(s1, s2)=L(s1)∪ L(s2) with L(s1) ⋂ AP1= 
L(s2) ⋂ AP1= L(s1). Properties of fair paths end the proof.      ☐

Lemma: If M1 ≼F M2 then for all M, we have M|M1 ≼F M|M2.
Proof: Having H1,2 simulation of M1 with M2 we can define H’ 
as the set {((s, s1), (s, s2))| H1,2(s1, s2) }. ☐

Lemma: For all M, we have M ≼F M|M.
Proof: For each state s of M, (s, s) is a state of M|M. It is easy to 
show that H defined by {(s, (s, s))| s ∊ S }. ☐

Some (technical) theorems



Example: Proof of soundness of the rule:

𝑡𝑟𝑢𝑒 M* 𝐴 							 𝐴 M- 𝑔 							 𝑔 M* 𝑓
𝑡𝑟𝑢𝑒 M*|M- 𝑓

That is equivalent (using ACTL* satisfiability) to:

M* ≼ 𝐴							A	|M- ⊨ 𝑔							𝒯6	|	M* ⊨ 𝑓
M*|M- ⊨ 𝑓

1. M*|M- ≼ A	|M- (hypoth. M* ≼ 𝐴	+ Theorem)
2. A	|M- ≼ 𝒯6 (hypoth. A	|M- ⊨ 𝑔 + Theorem)
3. M*|M- ≼ 𝒯6 (line 1, 2 and transitivity of ≼)
4. M* M* M- ≼ 𝒯6|M* (line 3 + Theorem)
5. M* M* M- ⊨ 𝑓 (lines 4 + hypoth. 	𝒯6	|	M*⊨ 𝑓 + Theor.)
6. M* ≼ M* M* (Theorem)
7. M*|M- ≼ M* M* M-(line 6 + Theorem)
8. M*|M- ⊨ 𝑓 (line 5, 7 + Theorem) ☐

Justifiying Assume-Guarantee Proofs



Lesson 9d:

Cone of Influence
Reduction



We consider the problem of checking synchrounous circuits, 
that can be described by (V is the set of variables):

v’i = fi(V) for each vi ∊ V
where fi are boolean functions.
Let us assume that the property of interest depends on a set of 
variables V’⊆V. Obviously, variables in V’ can depend on the 
value of variables in V.
Definition: The cone of influence of V’ is the minimal set of 
variables C ⊆V such that: 
• V’⊆C
• if for some vi ∊ C its fi depends on vj, then vj ∊ C.

Idea: remove all equations whose left-hand side are variables
that do not belong to C.

Checking circuits



Example: Let us consider a counter modulo 8: 
v’0 = ¬ v0 v’1 = v0 ⊕ v1 v’2 = (v0∧ v1) ⊕ v2 

If V’={v0}, then C={v0} since f0 depends on v0 only.

If V’={v1}, then C={v0, v1} since f1 depends on boht v0  and v1.

If V’={v2}, then C={v0, v1, v2} since f2 depends on all variables.

Checking circuits: Example



Let V = {v1, …, vn} be a set of variables and let M=(S, I, R, L) be 
the model of a synchronous circuit.
• S = {0, 1}n, the set of valuations of variables in V and I⊆S.
• R = ∧i ≤ n v’i = fi(V)
• L(s) = {vi | s(vi)=1, 1 ≤ i ≤ n }

Let C = {v1, …, vk} be the cone of influence of M. The reduced
model M = (S, I, R, L) is defined by:
• S = {0, 1}k, the set of valuations of variables in C and I⊆S.
• R = ∧i ≤ k v’i = fi(V)
• L(s) = {vi | s(vi)=1, 1 ≤ i ≤ k }
• I(s) = {(d1, …, dk)|∃(d1, …, dn) ∊ I, d1= d1, …, dk= dk }

Reduced Model



Let B ⊆S × S’ defined by: 
((d1, …, dn), (d1, …, dk)) ∊ B  ⇔ di = di for all 1 ≤ i ≤ k 

Theorem: B is a bisimulation between M and M.
Proof: First, we notice that for each initial state of M, there is a 
corresponding initial state of M. 
Let us now consider (s, s) ∊ B. Then di = di for all 1 ≤ i ≤ k. Their
labelings restricted to C agree and hence L(s) ⋂ C = L(s).  
Let R(s, t) and let t=(e1, …, en). The definition of R is such that
v’i = fi(V), 1 ≤ i ≤ n. By def. of COI, v’i = fi(C), 1 ≤ i ≤ k, that is
variables in C depends only on C. B(s, s) implies∧1 ≤ i ≤ k di = di 
and hence ei=fi(d1, …, dn)=fi(d1, …, dk). If we choose t = (e1, …, ek), 
then R(s, t) and B(t, t). 
The converse is similar, starting from a t such that R(s, t)☐

Properties of the Reduced Model



That’s all Folks!

Thanks for your attention…
…Questions?


