
Formal Methods in Software Development

Resume of the 02/12/2020 and 09/12/2020

lessons

Igor Melatti

1 Symbolic Model Checkers: NuSMV

� SMV (Symbolic Model Verifier): McMillan implementation of the ideas in
the famous paper “Symbolic model checking: 1020 states and beyond”

– note that McMillan PhD dissertation, which describes SMV and how
it works, is one of the most important dissertations in Computer
Science

� SMV has been then re-written and standardized by the research group in
Trento (also Genova and CMU collaborated), thus becoming NuSMV

– the engine is still McMillan’s work

– code has been nearly entirely commented, and made more readable

– some features has been added: interactive mode, bounded model
checking

– OBDDs are handled via the CUDD library (by F. Somenzi at Col-
orado University)

� First of all, we again start with the input language, which does not have
a name

� To better illustrate such an input language, we begin with a small example

MODULE main

VAR

request : {Tr, Fa}; -- same as saying boolean (stand for True and False)

state : {ready, busy};

ASSIGN

init(state) := ready;

next(state) := case

state = ready & (request = Tr): busy;

1 : {ready,busy};

1

esac;

SPEC

AG((request = Tr) -> AF state = busy)

– taken from examples/smv-dist/short.smv

– one module, there may be more, but one of them must be named
main

– module variables are those declared with VAR

– base types are like Murphi ones: enumerations and integer subranges,
plus the word type (i.e., an array of bits)

– arrays are possible, but can be indexed only with constants

– structures are modeled through modules

* that is, each module has its variables (fields of a structure) and
may be instantiated many times

– ASSIGN section specifies (indirectly; it is also possible to it directly,
as we will see) the set S0 (via init) and the relation R (via next)

* as in Murphi, there expressions which are essentially guard/ac-
tion

* differently from Murphi, each action deals with one variable only

· the guard may be defined on any other variable (and it is
typically the case)

* if something is not specified, then it is understood to be non-
deterministic

* e.g., in short.smv initial states are those in which state is ready
and request may be either Tr or Fa

* thus, there are 2 initial states I = {〈ready, Tr〉, 〈ready, Fa〉},
which may be represented with 〈ready,⊥〉

* also next(request) is not specified; before analyzing what does
this mean, let us see next(state)

* the case expression works as follows: the first condition C which
is evaluated to true is fired, other true guards possibly following
C are ignored

* this allows to put 1 (i.e., true) as the last guard, representing the
“default” case

* NuSMV also checks if a case expression is exhaustive in its con-
ditions, as this allows it to assume that T is total

* note that the last condition on state leads to a non-deterministic
transition: if the first guard is false, then state may take any
value between ready e busy, that is any value in its domain

* in general, any subset of the variabe domain may be used

* request is completely non-deterministic, as it does not occur in
any next

2

bs, Tr

rd, Tr

bs, Fa

rd, Fa

Figure 1: short.smv: R and S0

s

s’

r

01

false true

ready

busy

ready
busy

Figure 2: short.smv: OBDD for R; variables are only shown with their first
letter

* i.e., if other rules tells that the system may go from s to t and
(request = Fa) ∈ L(t), then there exists a transition from s to
t′ with (request = Tr) ∈ L(t′) and L(t) \ {(request = Fa)} =
L(t′) \ {(request = Tr)}

* simply stated, if the system may go from s to t and request has
a value v in t, then the system may also go from s to t′ s.t. t and
t′ only differ in the value of request, which is different from v

* by combining all non-determinism in this example, the Kripke
structure defined here excludes just one transition: see Figure 1

* OBDD for this example are in Figures 2, 3, 4 and 5

� Examples from NuSMV.tutorial.pdf: binary counter (see Figure 6)

– 2 modules, main and counter cell

– main instantiates the module counter cell for 3 times

3

s

s’

r

01

false true

ready

ready
busy

s’
busy

busy

ready

Figure 3: short.soloready.smv: OBDD for R

s

s’

01

ready

ready
busy

s’

r

r’ r’

truetrue false

busy

false

false true

ready

busy

Figure 4: short.soloready.req const.smv: OBDD for R

r

true

s

false

0

1
busy

ready

Figure 5: short.soloready.req const.smv: OBDD for reachable states

4

1

COUNTER COUNTER COUNTER

Figure 6: counter.smv

Figure 7: inverter.smv

– this is an hardware-like instantiation: the main module contains 3
equal copies of the counter cell module, the only difference being
the lines in input

– note that this means the module main will have 3 copies of variable
value

– note that carry out (being inside a DEFINE section) is not a variable,
as it is only a shortcut for the expression it defines

* i.e., there will not be a corresponding variable in the OBDD

* and indeed, it is not declared as a variable...

– hence, bit0 will always sum 1 to its internal variable, and bit1 will
sum 1 only if bit0 will generate a carry

– the main module defines a counter from 0 to 7

� Examples in NuSMV.tutorial.pdf: inverter ring (see Figure 7)

– in the previous examples, all variables were evolving at the same time

– there is a global clock as in a synchronous digital circuit: given the
current value for all variables in the current clock tick, in the next
clock tick all variables may change their variables at the same time
(synchronously: hardware parallel execution)

– in this example, instead, instantations are processes

– i.e., just one variable at a time may change; other variables are forced
to stay fixed

5

– no dynamic process spawning as in SPIN: the number of processes is
known from the beginning

– synchronous vs. asynchronous systems

– in asynchronous systems, there is essentially one (implicit) additional
module, which acts as a scheduler

– this is indeed what the verification algorithm does

– each process is automatically provided with an additional variable
running which is true iff that process is currently running

� Examples in NuSMV.tutorial.pdf: mutual exclusion and direct specifi-
cation

– with direct specification it is possible to define non-total transition
relations or empty initial states set

� NuSMV is provided with an interactive shell, as there are many tasks it
may accomplish (simulation, many verification options); see user maual
from chapter 3, especially Figure 3.1 at page 87

� NuSMV verification algorithm: it is exactly the fixed point computation

– here we cover some interesting details about some preprocessing that
NuSMV needs before starting the verification algorithm

– executing a non-interactive verification in NuSMV is the same as
giving the following list of interactive commands:

read model it reads and stores the syntactic structure of the input
model

* no OBDDs here: tree-like structure, but representing the
syntactic structure of the input (abstract syntax tree)

flatten hierarchy (recursively) bring inside main all modules in-
stantiated by main

* very similar to the unfolding we mentioned for Murphi and
SPIN: for such explicit model checkers, this was only needed
for theoretical purposes, in order to define the Kriepke struc-
ture of an input model

* here, it must be actually performed in the source code of
NuSMV, in order to then be able to encode R and S0 as
OBDDs

* to this aim, there must be only one module, the main, con-
taining all variables coming from the modules it instantiates
(to be applied recursively)

* note that, again, this resembles digital circuits, where such
a flattening is a natural operation

6

* this could entail adding a scheduler module if processes are
used

encode variables for each variable x with domain D s.t. |D| >
2, NuSMV defines x1 . . . , xm boolean variables with m =
blog2 |D|c + 1; it also defines the encoding for constants used
in the input models

build flat model combines the result of the preceding operations to
obtain the flattenized and boolenized syntactic structure which
represents the Kriepke structure defined by the input model

build model from the syntactic structure to OBDDs for R ed S0

(plus other ones)

check ctlspec (or check ltlspec, or both, depending on what you
have to verify); it starts the actual verification

* generic algorithm for CTL model checking, based on the
property structure

* however, for AGp (i.e., safety properties) the fixed point
algorithm computing the reachable states set is used, without
using ¬EG¬p

* that is, first the least fixpoint for µZλx.I(x) ∨
∃y(Z(y)R(y, x)) is computed (reachable states set)

* then it is checked if ∃x.Z(x)∧¬p(x); if it is the case, a failing
reachable state has been found

* note that printing the counterexample is not trivial as it
somewhat is in Murphi and SPIN (where the DFS stack
already holds the counterexample): another OBDD-based
computation is needed

– differently from explicit model checkers, no need to give separate
commands to generate a file to be compiled and executed: all is
represented as OBDDs, you only have to use them properly

� From a NuSMV modelM (defined with the ASSIGN section) to the corre-
sponding Kriepke structure M = (S, S0, R, L)

– V = 〈v1, . . . , vn〉 is the set of variables defined inside the main module
of M, with domains 〈D1, . . . , Dn〉

* note that each Di may be the instantiation of other modules

* in which case, again, all variables must be considered as unfolded

* that is, if a variable v is the instantiation of a module with k
variables, then v counts as k variables instead of one

* if one of such k variables is another instantiation, this procedure
must be recursively repeated

* NuSMV calls this operation hierarchy flattening

* essentially, it is the same as for records in Murphi

7

* simple types are the recursion base step

– S = D1 × . . .×Dn (as in Murphi)

– S0 is defined by looking at init predicates

* s ∈ S0 iff, for all variables v ∈ V , s(v) ∈ init(v)

· note that, by NuSMV syntax, each init(v) is actually a set
(possibly a singleton)

* if init(v) is not specified in M, then any value for v is ok: in
this case, formally, if s ∈ S0, then also s′ ∈ S0 being s′(v′) =
s(v′)∀v′ 6= v

– R is defined by looking at next predicates

* we assume all next predicates to be defined by the case construct
(if not, simply assume it is the case construct with just one TRUE
condition)

* for each (flattened) variable v, we name g1(v), . . . gkv
(v) the con-

ditions (guards) of the case for next(v), and a1(v), . . . akv (v)
the resulting values (actions) of the case for next(v)

* note that, by NuSMV syntax, each ai(v) is actually a set (possi-
bly a singleton)

* (s, s′) ∈ R iff, for all variables v ∈ V , if gi(s(v))∧∀j < i¬gj(s(v))
then s′(v) ∈ ai(v)

* that is, s may go in s′ iff, for all variables v, if the values of v
in s satisfy the guard gi (and none of the preceding guards for
the same variable), then the value of v in s′ is one of the values
specified by the case for guard gi

* note that, in doing this, you also have to resolve inputs for mod-
ules

* e.g., in the example with inverters (pag. 7 of the NuSMV tu-
torial), in defining next(gate1.output), gate1.input must be
relaced with gate3.output

� AP = {(v = d) | v = vi ∈ V ∧ d ∈ Di}

� (v = d) ∈ L(s) iff variable v has value d in s

� If, instead, the NuSMV model M is defined with the TRANS section, then

– V = 〈v1, . . . , vn〉 is the set of variables as above and S = D1×. . .×Dn

– S0 is defined by looking at INIT section

* s ∈ S0 iff, for all variables v ∈ V and for all INIT sections I,
I(s(v)) holds

– R is defined by looking at TRANS section

* (s, s′) ∈ R iff, for all variables v ∈ V and TRANS sections T ,
T (s(v), s′(v)) holds

8

