Formal Methods in Software Development Resume of the 02/12/2020 and 09/12/2020lessons

Igor Melatti

1 Symbolic Model Checkers: NuSMV

- SMV (Symbolic Model Verifier): McMillan implementation of the ideas in the famous paper "Symbolic model checking: 10²⁰ states and beyond"
 - note that McMillan PhD dissertation, which describes SMV and how it works, is one of the most important dissertations in Computer Science
- SMV has been then re-written and standardized by the research group in Trento (also Genova and CMU collaborated), thus becoming NuSMV
 - the engine is still McMillan's work
 - code has been nearly entirely commented, and made more readable
 - some features has been added: interactive mode, bounded model checking
 - OBDDs are handled via the CUDD library (by F. Somenzi at Colorado University)
- First of all, we again start with the *input language*, which does not have a name
- To better illustrate such an input language, we begin with a small example

```
MODULE main
VAR
  request : {Tr, Fa}; -- same as saying boolean (stand for True and False)
  state : {ready, busy};
ASSIGN
  init(state) := ready;
  next(state) := case
        state = ready & (request = Tr): busy;
        1 : {ready,busy};
```

SPEC

 $AG((request = Tr) \rightarrow AF state = busy)$

esac;

- taken from examples/smv-dist/short.smv
- one *module*, there may be more, but one of them must be named main
- module variables are those declared with VAR
- base types are like Murphi ones: enumerations and integer subranges, plus the word type (i.e., an array of bits)
- arrays are possible, but can be indexed only with constants
- structures are modeled through modules
 - * that is, each module has its variables (fields of a structure) and may be instantiated many times
- ASSIGN section specifies (indirectly; it is also possible to it directly, as we will see) the set S_0 (via init) and the relation R (via next)
 - $\ast\,$ as in Murphi, there expressions which are essentially guard/action
 - * differently from Murphi, each action deals with *one variable only* the guard may be defined on any other variable (and it is typically the case)
 - * if something is not specified, then it is understood to be nondeterministic
 - * e.g., in short.smv initial states are those in which state is ready and request may be either Tr or Fa
 - * thus, there are 2 initial states $I = \{ \langle ready, Tr \rangle, \langle ready, Fa \rangle \}$, which may be represented with $\langle ready, \bot \rangle$
 - * also next(request) is not specified; before analyzing what does this mean, let us see next(state)
 - * the case expression works as follows: the first condition C which is evaluated to true is fired, other true guards possibly following C are ignored
 - $\ast\,$ this allows to put 1 (i.e., true) as the last guard, representing the "default" case
 - * NuSMV also checks if a case expression is exhaustive in its conditions, as this allows it to assume that T is total
 - * note that the last condition on **state** leads to a non-deterministic transition: if the first guard is false, then **state** may take any value between **ready** e **busy**, that is any value in its domain
 - * in general, any subset of the variabe domain may be used
 - * request is completely non-deterministic, as it does not occur in any next

2

Figure 1: short.smv: R and S_0

Figure 2: short.smv: OBDD for R; variables are only shown with their first letter

- * i.e., if other rules tells that the system may go from s to t and $(\texttt{request} = \texttt{Fa}) \in L(t)$, then there exists a transition from s to t' with $(\texttt{request} = \texttt{Tr}) \in L(t')$ and $L(t) \setminus \{(\texttt{request} = \texttt{Fa})\} = L(t') \setminus \{(\texttt{request} = \texttt{Tr})\}$
- * simply stated, if the system may go from s to t and request has a value v in t, then the system may also go from s to t' s.t. t and t' only differ in the value of request, which is different from v
- $\ast\,$ by combining all non-determinism in this example, the Kripke structure defined here excludes just one transition: see Figure 1
- * OBDD for this example are in Figures 2, 3, 4 and 5
- Examples from NuSMV.tutorial.pdf: binary counter (see Figure 6)
 - 2 modules, main and counter_cell
 - main *instantiates* the module counter_cell for 3 times

Figure 3: short.soloready.smv: OBDD for R

Figure 4: short.soloready.req_const.smv: OBDD for R

Figure 5: short.soloready.req_const.smv: OBDD for reachable states

Figure 6: counter.smv

Figure 7: inverter.smv

- this is an hardware-like instantiation: the main module contains 3 equal copies of the counter_cell module, the only difference being the lines in input
- note that this means the module main will have 3 copies of variable value
- note that carry_out (being inside a DEFINE section) is not a variable, as it is only a shortcut for the expression it defines
 - * i.e., there will not be a corresponding variable in the OBDD
 - * and indeed, it is not declared as a variable...
- hence, bit0 will always sum 1 to its internal variable, and bit1 will sum 1 only if bit0 will generate a carry
- the main module defines a counter from 0 to 7
- Examples in NuSMV.tutorial.pdf: inverter ring (see Figure 7)
 - in the previous examples, all variables were evolving at the same time
 - there is a global clock as in a synchronous digital circuit: given the current value for all variables in the current clock tick, in the next clock tick all variables may change their variables at the same time (synchronously: hardware parallel execution)
 - in this example, instead, instantations are processes
 - i.e., just one variable at a time may change; other variables are forced to stay fixed

- no dynamic process spawning as in SPIN: the number of processes is known from the beginning
- synchronous vs. asynchronous systems
- in asynchronous systems, there is essentially one (implicit) additional module, which acts as a scheduler
- this is indeed what the verification algorithm does
- each process is automatically provided with an additional variable running which is true iff that process is currently running
- Examples in NuSMV.tutorial.pdf: mutual exclusion and direct specification
 - with direct specification it is possible to define non-total transition relations or empty initial states set
- NuSMV is provided with an interactive shell, as there are many tasks it may accomplish (simulation, many verification options); see user maual from chapter 3, especially Figure 3.1 at page 87
- NuSMV verification algorithm: it is exactly the fixed point computation
 - here we cover some interesting details about some preprocessing that NuSMV needs before starting the verification algorithm
 - executing a non-interactive verification in NuSMV is the same as giving the following list of interactive commands:
 - ${\bf read_model}$ it reads and stores the syntactic structure of the input model
 - * no OBDDs here: tree-like structure, but representing the syntactic structure of the input (abstract syntax tree)
 - flatten_hierarchy (recursively) bring inside main all modules instantiated by main
 - * very similar to the unfolding we mentioned for Murphi and SPIN: for such explicit model checkers, this was only needed for theoretical purposes, in order to define the Kriepke structure of an input model
 - * here, it must be actually performed in the source code of NuSMV, in order to then be able to encode R and S_0 as OBDDs
 - * to this aim, there must be only one module, the main, containing all variables coming from the modules it instantiates (to be applied recursively)
 - * note that, again, this resembles digital circuits, where such a flattening is a natural operation

- * this could entail adding a scheduler module if processes are used
- **encode_variables** for each variable x with domain D s.t. |D| > 2, NuSMV defines $x_1 \ldots, x_m$ boolean variables with $m = \lfloor \log_2 |D| \rfloor + 1$; it also defines the encoding for constants used in the input models
- **build_flat_model** combines the result of the preceding operations to obtain the flattenized and boolenized syntactic structure which represents the Kriepke structure defined by the input model
- **build_model** from the syntactic structure to OBDDs for R ed S_0 (plus other ones)
- check_ctlspec (or check_ltlspec, or both, depending on what you
 have to verify); it starts the actual verification
 - * generic algorithm for CTL model checking, based on the property structure
 - * however, for $\mathbf{AG}p$ (i.e., safety properties) the fixed point algorithm computing the reachable states set is used, without using $\neg \mathbf{EG} \neg p$
 - * that is, first the least fixpoint for $\mu Z \lambda x.I(x) \vee \exists y(Z(y)R(y,x))$ is computed (reachable states set)
 - * then it is checked if $\exists x. Z(x) \land \neg p(x)$; if it is the case, a failing reachable state has been found
 - * note that printing the counterexample is not trivial as it somewhat is in Murphi and SPIN (where the DFS stack already holds the counterexample): another OBDD-based computation is needed
- differently from explicit model checkers, no need to give separate commands to generate a file to be compiled and executed: all is represented as OBDDs, you only have to use them properly
- From a NuSMV model \mathcal{M} (defined with the ASSIGN section) to the corresponding Kriepke structure $M = (S, S_0, R, L)$
 - $-V = \langle v_1, \ldots, v_n \rangle$ is the set of variables defined inside the main module of \mathcal{M} , with domains $\langle D_1, \ldots, D_n \rangle$
 - * note that each D_i may be the instantiation of other modules
 - * in which case, again, all variables must be considered as unfolded
 - * that is, if a variable v is the instantiation of a module with k variables, then v counts as k variables instead of one
 - $\ast\,$ if one of such k variables is another instantiation, this procedure must be recursively repeated
 - * NuSMV calls this operation *hierarchy flattening*
 - * essentially, it is the same as for records in Murphi

- * simple types are the recursion base step
- $-S = D_1 \times \ldots \times D_n$ (as in Murphi)
- $-S_0$ is defined by looking at init predicates
 - * $s \in S_0$ iff, for all variables $v \in V$, $s(v) \in init(v)$
 - note that, by NuSMV syntax, each init(v) is actually a set (possibly a singleton)
 - * if $\operatorname{init}(v)$ is not specified in \mathcal{M} , then any value for v is ok: in this case, formally, if $s \in S_0$, then also $s' \in S_0$ being $s'(v') = s(v') \forall v' \neq v$
- R is defined by looking at **next** predicates
 - * we assume all **next** predicates to be defined by the **case** construct (if not, simply assume it is the **case** construct with just one **TRUE** condition)
 - * for each (flattened) variable v, we name $g_1(v), \ldots g_{k_v}(v)$ the conditions (guards) of the case for next(v), and $a_1(v), \ldots a_{k_v}(v)$ the resulting values (actions) of the case for next(v)
 - * note that, by NuSMV syntax, each $a_i(v)$ is actually a set (possibly a singleton)
 - * $(s, s') \in R$ iff, for all variables $v \in V$, if $g_i(s(v)) \land \forall j < i \neg g_j(s(v))$ then $s'(v) \in a_i(v)$
 - * that is, s may go in s' iff, for all variables v, if the values of v in s satisfy the guard g_i (and none of the preceding guards for the same variable), then the value of v in s' is one of the values specified by the case for guard g_i
 - $\ast\,$ note that, in doing this, you also have to resolve inputs for modules
 - * e.g., in the example with inverters (pag. 7 of the NuSMV tutorial), in defining next(gate1.output), gate1.input must be relaced with gate3.output
- $AP = \{(v = d) \mid v = v_i \in V \land d \in D_i\}$
- $(v = d) \in L(s)$ iff variable v has value d in s
- If, instead, the NuSMV model \mathcal{M} is defined with the TRANS section, then
 - $-V = \langle v_1, \ldots, v_n \rangle$ is the set of variables as above and $S = D_1 \times \ldots \times D_n$
 - $-S_0$ is defined by looking at INIT section
 - * $s \in S_0$ iff, for all variables $v \in V$ and for all INIT sections I, I(s(v)) holds
 - -R is defined by looking at TRANS section
 - * $(s,s') \in R$ iff, for all variables $v \in V$ and TRANS sections T, T(s(v), s'(v)) holds