Formal Methods in Software Development
Resume of the 02/12/2020 and 09/12/2020
lessons

Igor Melatti

1 Symbolic Model Checkers: NuSMV

e SMV (Symbolic Model Verifier): McMillan implementation of the ideas in
the famous paper “Symbolic model checking: 10%° states and beyond”

— note that McMillan PhD dissertation, which describes SMV and how
it works, is one of the most important dissertations in Computer
Science

e SMV has been then re-written and standardized by the research group in
Trento (also Genova and CMU collaborated), thus becoming NuSMV
— the engine is still McMillan’s work
— code has been nearly entirely commented, and made more readable

— some features has been added: interactive mode, bounded model
checking

— OBDDs are handled via the CUDD library (by F. Somenzi at Col-
orado University)

e First of all, we again start with the input language, which does not have
a name

e To better illustrate such an input language, we begin with a small example

MODULE main

VAR
request : {Tr, Fa}; -- same as saying boolean (stand for True and False)
state : {ready, busy};

ASSIGN
init(state) := ready;

next (state) case
state = ready & (request = Tr): busy;

1 : {ready,busy};

SPEC

esac;

AG((request = Tr) -> AF state = busy)

taken from examples/smv-dist/short.smv

one module, there may be more, but one of them must be named
main

module variables are those declared with VAR

base types are like Murphi ones: enumerations and integer subranges,
plus the word type (i.e., an array of bits)

arrays are possible, but can be indexed only with constants
structures are modeled through modules

x that is, each module has its variables (fields of a structure) and
may be instantiated many times

ASSIGN section specifies (indirectly; it is also possible to it directly,
as we will see) the set Sy (via init) and the relation R (via next)

* as in Murphi, there expressions which are essentially guard/ac-
tion

* differently from Murphi, each action deals with one variable only

- the guard may be defined on any other variable (and it is
typically the case)

* if something is not specified, then it is understood to be non-
deterministic

* e.g., in short.smv initial states are those in which state is ready
and request may be either Tr or Fa

* thus, there are 2 initial states I = {(ready, Tr), (ready,Fa)},
which may be represented with (ready, L)

* also next (request) is not specified; before analyzing what does
this mean, let us see next (state)

* the case expression works as follows: the first condition C' which
is evaluated to true is fired, other true guards possibly following
C are ignored

* this allows to put 1 (i.e., true) as the last guard, representing the
“default” case

* NuSMYV also checks if a case expression is exhaustive in its con-
ditions, as this allows it to assume that T is total

* note that the last condition on state leads to a non-deterministic
transition: if the first guard is false, then state may take any
value between ready e busy, that is any value in its domain

* in general, any subset of the variabe domain may be used

* request is completely non-deterministic, as it does not occur in
any next

ShE e

Cbs, Tr bs, Fa :)

Figure 1: short.smv: R and Sy

T

false y

S

ready
busy

>

S

bus;
/ w

1 0

Figure 2: short.smv: OBDD for R; variables are only shown with their first
letter

% 1.e., if other rules tells that the system may go from s to ¢ and
(request = Fa) € L(t), then there exists a transition from s to
t' with (request = Tr) € L(¥') and L(¢) \ {(request = Fa)} =
L(t') \ {(request = Tr)}

* simply stated, if the system may go from s to ¢ and request has
a value v in ¢, then the system may also go from s to ¢’ s.t. ¢ and
t’ only differ in the value of request, which is different from v

* by combining all non-determinism in this example, the Kripke
structure defined here excludes just one transition: see Figure 1

* OBDD for this example are in Figures 2, 3, 4 and 5

e Examples from NuSMV.tutorial.pdf: binary counter (see Figure 6)

— 2 modules, main and counter_cell

— main instantiates the module counter_cell for 3 times

Figure 4: short.soloready.req-const.smv: OBDD for R

true

busy

Figure 5: short.soloready.req_const.smv: OBDD for reachable states

COUNTER COUNTER COUNTER

Figure 6: counter.smv

>

Figure 7: inverter.smv

this is an hardware-like instantiation: the main module contains 3
equal copies of the counter_cell module, the only difference being
the lines in input

note that this means the module main will have 3 copies of variable
value

note that carry_out (being inside a DEFINE section) is not a variable,
as it is only a shortcut for the expression it defines

% 1.e., there will not be a corresponding variable in the OBDD
x and indeed, it is not declared as a variable...

hence, bit0 will always sum 1 to its internal variable, and bit1 will
sum 1 only if bit0 will generate a carry

the main module defines a counter from 0 to 7

e Examples in NuSMV.tutorial.pdf: inverter ring (see Figure 7)

in the previous examples, all variables were evolving at the same time

there is a global clock as in a synchronous digital circuit: given the
current value for all variables in the current clock tick, in the next
clock tick all variables may change their variables at the same time
(synchronously: hardware parallel execution)

in this example, instead, instantations are processes

i.e., just one variable at a time may change; other variables are forced
to stay fixed

— no dynamic process spawning as in SPIN: the number of processes is
known from the beginning

— synchronous vs. asynchronous systems

— in asynchronous systems, there is essentially one (implicit) additional
module, which acts as a scheduler

— this is indeed what the verification algorithm does

— each process is automatically provided with an additional variable
running which is true iff that process is currently running

e Examples in NuSMV.tutorial.pdf: mutual exclusion and direct specifi-
cation

— with direct specification it is possible to define non-total transition
relations or empty initial states set

e NuSMYV is provided with an interactive shell, as there are many tasks it
may accomplish (simulation, many verification options); see user maual
from chapter 3, especially Figure 3.1 at page 87

e NuSMYV verification algorithm: it is exactly the fixed point computation

— here we cover some interesting details about some preprocessing that
NuSMV needs before starting the verification algorithm

— executing a non-interactive verification in NuSMV is the same as
giving the following list of interactive commands:

read_model it reads and stores the syntactic structure of the input
model

* no OBDDs here: tree-like structure, but representing the
syntactic structure of the input (abstract syntax tree)

flatten_hierarchy (recursively) bring inside main all modules in-
stantiated by main

* very similar to the unfolding we mentioned for Murphi and
SPIN: for such explicit model checkers, this was only needed
for theoretical purposes, in order to define the Kriepke struc-
ture of an input model

* here, it must be actually performed in the source code of
NuSMV, in order to then be able to encode R and Sy as
OBDDs

* to this aim, there must be only one module, the main, con-
taining all variables coming from the modules it instantiates
(to be applied recursively)

* note that, again, this resembles digital circuits, where such
a flattening is a natural operation

* this could entail adding a scheduler module if processes are
used

encode_variables for each variable z with domain D s.t. |D| >
2, NuSMV defines z7...,2,, boolean variables with m =
[logy |D|] + 1; it also defines the encoding for constants used
in the input models

build_flat_model combines the result of the preceding operations to
obtain the flattenized and boolenized syntactic structure which
represents the Kriepke structure defined by the input model

build_model from the syntactic structure to OBDDs for R ed Sy
(plus other ones)

check_ctlspec (or check_1tlspec, or both, depending on what you
have to verify); it starts the actual verification

* generic algorithm for CTL model checking, based on the
property structure

* however, for AGp (i.e., safety properties) the fixed point
algorithm computing the reachable states set is used, without
using “EG—p

% that is, first the least fixpoint for wpZAz.I(z) V
Jy(Z(y)R(y,x)) is computed (reachable states set)

* then it is checked if 3.7 (x) A—p(x); if it is the case, a failing
reachable state has been found

* note that printing the counterexample is not trivial as it
somewhat is in Murphi and SPIN (where the DFS stack
already holds the counterexample): another OBDD-based
computation is needed

— differently from explicit model checkers, no need to give separate
commands to generate a file to be compiled and executed: all is
represented as OBDDs, you only have to use them properly

e From a NuSMV model M (defined with the ASSIGN section) to the corre-
sponding Kriepke structure M = (S, Sy, R, L)

— V = {(vy,...,vy,) is the set of variables defined inside the main module
of M, with domains (Dy,...,Dy)

note that each D; may be the instantiation of other modules

*

*

in which case, again, all variables must be considered as unfolded

x that is, if a variable v is the instantiation of a module with k
variables, then v counts as k variables instead of one

x if one of such k variables is another instantiation, this procedure
must be recursively repeated

* NuSMYV calls this operation hierarchy flattening
* essentially, it is the same as for records in Murphi

* simple types are the recursion base step
— S=D; x...x D, (as in Murphi)
— 5 is defined by looking at init predicates
x s €5y iff, for all variables v € V, s(v) € init(v)
- note that, by NuSMV syntax, each init(v) is actually a set
(possibly a singleton)
* if init(v) is not specified in M, then any value for v is ok: in
this case, formally, if s € Sy, then also s’ € Sy being §'(v') =
s(V' # v
— R is defined by looking at next predicates
* we assume all next predicates to be defined by the case construct

(if not, simply assume it is the case construct with just one TRUE
condition)

* for each (flattened) variable v, we name ¢, (v), ... gk, (v) the con-
ditions (guards) of the case for next(v), and a1 (v),...ax, (v)
the resulting values (actions) of the case for next (v)

* note that, by NuSMV syntax, each a;(v) is actually a set (possi-
bly a singleton)

* (s,8") € Riff, for all variables v € V, if g;(s(v)) AVj < img,;(s(v))
then s'(v) € a;(v)

* that is, s may go in s’ iff, for all variables v, if the values of v
in s satisfy the guard g; (and none of the preceding guards for
the same variable), then the value of v in s’ is one of the values
specified by the case for guard g;

* note that, in doing this, you also have to resolve inputs for mod-
ules

% e.g., in the example with inverters (pag. 7 of the NuSMV tu-
torial), in defining next (gatel.output), gatel.input must be
relaced with gate3.output

e AP={(v=d)|v=v;€ VAdEe D}
e (v=d) € L(s) iff variable v has value d in s
e If instead, the NuSMV model M is defined with the TRANS section, then

— V = (vy,...,vy,) is the set of variables as above and S = Dy x...x D,
— Sy is defined by looking at INIT section
x s € Sy iff, for all variables v € V and for all INIT sections I,
I(s(v)) holds
— R is defined by looking at TRANS section

x (s,8') € R iff, for all variables v € V and TRANS sections T,
T(s(v), s'(v)) holds

