
Formal Methods in Software Development

Resume of the 25/11/2020 lesson

Igor Melatti and Ivano Salvo

1 SPIN Verification Algorithm (PAN): Opti-
mizations

� States compression

� Byte masking

– similar to Murphi bit compression

– in PAN, the current state vector now is essentially a concatenation of
C structures, each representing a processes

– byte masking works by aligning each of such structures to each byte,
instead of each 4 bytes (word) as it would be by default with C
compiler

– this is really simple, PAN does this by default (to disable it, you have
to compile PAN with -DNOCOMP)

– not very effective

� Collapse compression

– not present in Murphi, as it is closely related to processes; requires
compilation of PAN with -DCOLLAPSE

– it exploits the Promela models structure

– the idea is to separately storing:

* processes state (program counter + local variables)

· each process separated from the others, but if you compile
PAN with -DJOINPROCS then they will be put together

* channels state

· all together, but you could store them separately by compling
PAN with -DSEPQS

* global variables values

– for each of such fragments, an index is generated

1

NO COLLAPSE

P1 P2 P3 C1 G

 1 2 1 1 1

P1=P3

P2

C1

G

COLLAPSE

P1 P2 P3 C1 G

Figure 1: Collapse example, assuming P1 and P3 are an instance of the same
proctype and are at the same program counter

– finally, a PAN (complete) state is stored as a vector of indices, which
tells how the fragments above must be combined to obtain the com-
plete state

– of course, this works well if there are many combinations of few frag-
ments

* e.g., this may happen if there are n instances of the same proc-
type

– in order to check if a (complete) state is already visited or not, PAN
does the following

1. split s in fragments

* there will be p+ q + g fragments

* note that p = 1 with -DJOINPROCS, q = 1 by default unless
-DSEPQS, and g = 1 (global variables are always together)

2. for each fragment f , PAN checks if f is in the hash table

3. if not, the state is of course not already visited; a new unique
identifier for f is generated and stored together with f

* simply a counter: the i-th generated fragment (within the
same fragment category) has identifier i− 1

4. otherwise, the unique identifier is returned

5. finally, s is stored as the list of unique identifiers previously col-
lected (see Fig. 1)

� Hash compaction

2

– as in Murphi

– compile PAN with -DHCn for n-bytes signatures; default is 2 bytes

� Minimized Automaton

– kind of hybrid technique between explicit and implicit model checking

– that is, it is explicit model checking with some ideas from implicit
one

– with this technique, no hash table is required

– it is replaced by a minimized automaton which recognizes visited
states

– of course, states are viewed as sequences of bits

– in fact, you can always write the set of visited states as a regular
expression on their single bits

* at the worst, as an OR of visited states, each of whom is the
AND of its bits

* this would probably result in a memory occupation which is
higher that the standard hash table

* however, usually this worst case does not occur, and a reduction
in the RAM requirements is achieved by simplifying the regu-
lar expression with the recognizing automaton, using standard
formal language techniques

– hence, if the regular expression is “regular” enough, the minimized
automaton requires less RAM than the hash table

– generally speaking, in order to perform explicit model checking, the
following operations must be allowed:

1. return 1 if a given state s has already been visited, and 0 other-
wise

2. insert a new state in the old set of visited states, and return the
new set of visited states

– this was straightforward with the hash table

– with the automaton, operation 1 is still straightforward, operation 2
is not

* it is necessary to modify the current automaton, by adding
and/or deleting nodes and/or edges

– to this aim, SPIN uses an ad-hoc structure representing a limited

regular expression (recall that states are finite) and implementing
sufficiently well operations 1 and 2

– that is, a deterministic automaton with k levels is used, being k the
maximum length of a state representation

3

* such an automaton does not have cycles

– see spin minaut.pdf

– the minimized automaton may be well combined with collapse com-
pression

– in this case, an hash table is brought back, but only to contain states
fragments

– identifiers vectors are stored with the minimized automaton

� PAN also efficiently implements the DFS stack through the stack cycling

technique

– the DFS stack is only accessed sequentially; no random access

– thus, it is ok to store the stack on disk

– a finite-length M portion is kept in RAM, holding the currently
needed stack

– that is, once push and pop operations require to access to a stack
portion which is outside RAM, that part is fetched from a file on
disk

– the block taken from the file has size M

2
, in order to avoid going back

and forth on the disk due to sequences pop-push-pop-push...

– see Figure 2, and suppose pushes are towards the top (from 0 to
M − 1), whilest pops are towards the bottom

– if a push over k − 1 is made, more memory is required, and such
(clean) memory is fetched from the file

– in order to do this, the part labelled b is stored in some file zone (e.g.,
that highlighted with an asterisk in Figure 2)

– then, b may be overwritten by copying a in it

– of course, also the file is kept as a stack, thus further memory re-
quirements are fulfilled by copying right after b

– on the other end, now a is free, and push may be executed starting
from k

2

– for pops, the idea is symmetric; this time, fetching a disk zone does
not bring a cleared memory buffer, but a part of stack which was
stored in the disk previously (as a consequence of former too many
pushes)

– of course, PAN first copies b into a (this overwrites a, why is this
fine?) and the overwrites b (again, why is this fine?) using a block
from the file

� All this techniques allow to save memory, when storing the same set of
visited states

4

k−−
2

RAM

DISK

a

b

*

0

k−1

Figure 2: Stack cycling

5

� It is difficult to tell which method is good for a given Promela model; you
can only go for trial and errors

– i.e., if a method exhaust all available RAM, you try with the following
one

� SPIN and PAN also implement a strategy which reduces the number of
visited states themselves: the partial order reduction (POR)

– similar to Murphi symmetry reduction, in the sense that the goal is
the same

– however, in Murphi symmetry reduction the modeler is aware of such
technique (some variables types such as multiset have to be used)

– in SPIN, POR is applied to nearly all Promela models automatically,
with very few execptions

– the idea for POR is that not all possible interleavings of currently
running processes in Promela have to be considered in order to verify
the given property

– this allows to lower down the number of states to be visited

– some conditions which guarantee actions independence are in
spin por.pdf, pages 2 and 3

– note that recently (2019) a paper was published showing that there
are cases in which POR and on-the-fly model checking do not give
the correct answer

– POR is always active in PAN, unless you compile with -DNOREDUCE

* in some cases it is not applicable, e.g., when both fairness and
synchronous channels are used

2 SPIN and LTL

� How to use SPIN to verify LTL formulas

– not very user-friendly, not even with the graphical user interface

– it is necessary to first generate the Büchi automaton (as a never

claim) for the desired LTL formula and then manually attach to the
Promela file

– a never claim is a special proctype containing the Promela description
of the Büchi automaton corresponding to the negation of the desired
LTL formula

* SPIN will try to find a path satisfying such negation, and such
a path, if it exists, will be the counterexample...

6

– moreover, atomic propositions in LTL formulas must be defined using
define macros beginning with a capital letter

– may be generated also from the command line with option -f (re-
quiring the actual formula, enclosed in single apexes) or -F (requiring
the name of a file containing the actual formula, in one line only)

* see exp.script; both log files contain an error!

* this notwithstanding I am verifying a formula ϕ first, and then
¬ϕ

* this may be happen in LTL!

* in fact, as LTL model checking problem requires, PAN checks
that all paths satisfy the given formula

* among all possible paths in a Kriepke structure, there may be
two paths s.t. π1 6= π2 and π1 |= ϕ and π2 6|= ϕ ≡ π2 |= ¬ϕ

* thus:

· ∃π π 6|= ϕ, hence M 6|= ϕ

· ∃π π 6|= ¬ϕ, hence M 6|= ¬ϕ

* of course, if M |= ϕ, then M 6|= ¬ϕ

* for a visual representation see slide 3 of timo5.pdf

– in order to verify ϕ from the command line, it is necessary to generate
¬ϕ and append it to the Promela description

– it is sufficient to prefix a ! enclosing the whole ϕ

– using the GUI, the formula may be created with buttons, and defines
may be not put in the file

– it is also possible to specify either the desired or the undesired be-
havior

– in the first case, the negation of the given formula will be generated

– in order to check the generated never claim also writes as a comment
the formula used

– example: ϕ ≡ G(p U q)

– with spin -f ’!([] (p U q))’ Figure 3 is obtained

– the corresponding Büchi automaton is in Figure 4

* the last transition in the rightmost state is automatically in-
serted, as it is not present in the neverclaim

* automaton in Figure 4 encodes all possible counterexamples to
given ϕ

* in fact, if the verification finds a path satisfying a neverclaim, it
returns it as a counterexample

* in particular, all paths that eventually satisfy ¬p ∧ ¬q are sent
in accepting states

7

never { /* !([] (p U q)) */

T0_init:

if

:: (! ((q))) -> goto accept_S4

:: (! ((p)) && ! ((q))) -> goto accept_all

:: (1) -> goto T0_init

fi;

accept_S4:

if

:: (! ((q))) -> goto accept_S4

:: (! ((p)) && ! ((q))) -> goto accept_all

fi;

accept_all:

skip

}

Figure 3: Neverclaim generated by SPIN for LTL formula ϕ ≡ G(p U q)

!q

!p && !q

1 !q

!p && !q 1

1

Figure 4: Büchi automaton from Figure 3

8

