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from Lesson 6d:

Symbolic CTL 
model checking



The problem is to find three functions such that:

check(EX f)=checkEX(check(f))

check(E[f U g]) = checkEU(check(f ), Check(g))

check(EG f ) = checkEG(check(f ))

Observe that the parameter of check is a CTL formula 𝜑, its
result is an OBDD representing the set of states satisfying 𝜑. 

The parameters of checkEX, checkEU, and checkEG are OBDDs.  

CTL model checking



❖ checkEX(f(v)) is strighforward. The OBDD result is
equivalent to ∃v’.f(v’)∧R(v,v’).

❖ checkEU(f1(v), f2(v)) is based on the characterization of EU as
the least fixpoint of the predicate transformer 𝜇Z. f2(v) ∨(f1(v) 
∧EX Z)

It is computed a converging sequence of states Q1, …, Qi , …
Having the OBDD for Qi and those for f1(v) and f2(v) one can 
easily compute those for Qi+1. Observe that checking Qi= Qi+1 is
straighforward (due to OBDD canonical forms). 

❖ checkEG(f(v)) is based on the characterization of EG as the 
greatest fixpoint of the predicate transformer 𝜐Z. f1(v) ∧ EX Z

CTL model checking



In the previous slide, we used formulas such as:∃v’.f(v’)∧R(v,v’)

They are quantified boolean formulas: they are equivalent to 
propositional formulas, but they allow a more succint
representation.

Semantics (𝜎 is a variable assignment and 𝜎⟨v←0⟩ means that
variable v is assigned to 0):

They can be represented as OBDD using restriction:

Quantified Boolean Formulas



Lesson 7a:

Symbolic Model Checking
with 

Fairness Constraints



The goal is to define a procedure CheckFair that checks a CTL 
formula under a set of fairness constraints F = {P1, …, Pk} (here
we consider only unconditional fairness).

This function depends on functions CheckFairEX, CheckFairEU, 
CheckFairEG, fair versions of those already seen. 

Symbolic model checking for formulas EX f and E [f1 U f2] are 
similar to the explicit case. More precisely, let:

fair(v)=checkFairEG(EG True)

Then:

checkFairEX(f(v)) = checkEX(f(v)∧fair(v))

checkFairEX(f(v), g(v)) = checkEX(f(v), g(v)∧fair(v))

Therefore the problem is again to deal with the problem of 
computing EG f. In symbolic model checking, it is again
convenient to model such formula with fixpoints.

Fairness in Symbolic CTL MC



The set Z of states that satisfies EG f given fairness constraints
F = {P1, …, Pn} is the largest set satisfying the following
properties: 

1. all states in Z satisfy f and

2. for all Pk ∊ F and all states s ∊ Z there exists a path of states
in Z starting at s satisfying Pk.

Therefore, Z must satisfy the following formula:

EG f = 𝜐Z. f ⋀ ∧i=1, …, n EX E[f U (Z ⋀ Pi)]

This is not a CTL formula, since it uses both CTL operators and 
fixpoints (by contrast, it’s a 𝜇-calculus formula, see later).

First, we show correctness of this formula, by showing that EG
f is the maximum fixpoint of the equation: 

Z = f ⋀ ∧i=1, …, n EX E[f U (Z ⋀ Pi)]   (1)

EG f under Fairness Constraints



Lemma: The fair version of EG f is a fixpoint of Eq. (1).

Proof: If s ∊ EG f, there exists a fair path starting in s all of 
whose states satisfy f. Let si ≠ s such that si ∊Pi. Also si is the start 
of a fair path satisfying EG f. By repeatedly apply this
argument, it follows that forall i, s ⊨ f∧ EX E[f U (EG f∧ Pi)] 
and hence s ⊨ f ⋀ ∧i=1, …, n EX E[f U (Z ⋀ Pi)].

If s satisfies Eq. (1), there exists a finite path to s’, such that
s’ ⊨ EG f∧ Pi. Along this path, each state satisfies f and s’ is the 
beginning of a fair path satisfying EG f. ☐

Lemma: The greatest fixpoint of Eq. (1) is included in the fair 
version of EG f.

Proof: Let Z be a fixpoint of Eq. (1), then Z⊆EG f. Again, we
can build a path s1, …, sn in Z such that all states satisfy f and 
s1∊P1, …, sn∊Pn. The last state is in Z and hence there exists a 
path back to some state in P1 etc. So, Z⊆EG f and hence EG f is
the greatest fixpoint. ☐

EG f under Fairness Constraints



From the previous characterization of the fair version of EG f, 
the procedure checkFairEG(f(v)) can compute the set of states
Sat(EG f ) as:

𝜐Z(v). f(v) ⋀ ∧k=1, …, n EX E[f(v) U (Z(v) ⋀ Pk)]

Observe that this implies to compute several nested fixpoint
computations inside EU.

Computing fair EG f



Lesson 7b:

Counterexamples
and 

witnesses



We remind that the falsification of a formula of the form AG f is
a path in which at some point ¬f holds (counterexample).

Dually, the proof of a formula of the form EF f, is a path in 
which at some point, the formula f holds (witness).  

The counterexample for a universally quantified formula is the 
witness for the dual existentially quantified formula.

As usual, we restrict our attention to find witnesses for the 
three basic CTL opearators EX, EG, and EU.

A counterexample of a formula AX f is a path of length 1 s, s’
such that R(s, s’) and M, s ⊭ f. The witness of a formula EX f is a 
path of length 1 s, s’ such that R(s, s’) and M, s ⊨ f. They can be 
found by inspecting immediate successors of initial states.

A witness of a formula E [f U g] is a path of length k, s1, s2, … sk
such that M, sk ⊨ g and for all 0 ≤ j < k M, sj ⊨ f. It can be found
by a backward reachability from Sat(g), therefore during a 
model checking verification process.

Counterexamples and Witnesses



A counter-example of a formula A [f U g] can be either:

v an infinite path 𝜋 ≡ s1, s2, … sk … such that for all k, M, sk
⊭ f∧¬g, that is M, 𝜋 ⊨ G f∧¬g, hence M, s ⊨ EG f∧¬g,
(witness of EG f∧¬g).

v a finite path 𝜋 ≡ s1, s2, … sk such that for all 0 ≤ j < k M, sj ⊨
f∧¬g and M, sk ⊨ ¬ f∧¬g (witness of E [f∧¬g U ¬f∧¬g ). 

We are left to deal with witnesses of EG f.

Again, for EG we will consider the compressed graph of 
Strongly Connected Components of the transition graph of the 
Kripke structure: this graph does not contain any proper cycle
and each infinite path must have a suffix entirely contained in 
some strongly connected component.

Counterexamples and Witnesses



Remeber that:
(✻) EG f = 𝜐Z. f ⋀ ∧i=1, …, n EX E [f U (Z ⋀ Pi)]

We build a sequence of prefixes of a path 𝜋, such that 𝜋 ⊨ EG f, 
until a cycle is found. At each step, we must guarantee that the 
current prefix can be extended to a fair path satisfying EG f.

In the evaluation of (✻), we compute a sequence of fixpoints
of the formula E [f U (Z ⋀ Pi)]. For each constraint P, we obtain
a sequence of sets of states Q0

P⊆ Q1
P⊆ Q2

P⊆… such that Qk
P is

a the set of states in Z∧P reachable in i or fewer steps. 
Therefore we have for each k and Pi the sequence Qi

Pi.

Let s ∊ EG f . To minimise the length of the counterexample, we
look for the first fairness constraint that can be reached from 
s, looking in Q0

Pi for all Pi in F, then in Q1
Pi and so on. 

Since s ⊨ EG f, we must eventually find a state t and t has a 
path of length l to a state u in EG f∧P and hence it is in EG f. 
We eliminate P and continue from u…

Witnesses for EG f



At the end we come up with a state s’. We need a path from s’
to t to complete a cycle, along states that satisfies f. We need a 
witness of the formula {s’}∧ EX E [f U {t}]. If it is true, we are 
done (see picture).

Witnesses for EG f



Otherwise, we restart the 
procedure with fairness
constraints F starting from s’. 
Since {s’}∧ EX E [f U {t}] is
false, s’ is not in the SCC of t. 
However, s’∊ EG f and we can 
continue the process.

Observe that we descend in 
the compressed acyclic graph! 

So the process must terminate!

Witnesses for EG f



Example: Mutual Exclusion

Let us consider the formula: A [(n1∧n2) ⋁ w2 U c2] that states
that the process P2 acquires the critical section once it has
started to waiting for it. 



Example: Mutual Exclusion

Build the graph for which holds (n1∧n2) ⋁ w2 and ¬ c2. 
Let 𝜋 ≡ ⟨n1, n2, y=1⟩ and 𝜋’≡ ⟨n1, w2, y=1⟩→ ⟨w1, w2, y=1⟩→ ⟨c1, 
w2, y=0⟩→ ⟨c1, w2, y=0⟩. Then 𝜋 𝜋’𝜔 is a counterexample. 
Also ⟨n1, n2, y=1⟩→ ⟨w1, w2, y=1⟩ because ¬ n1 and ¬w2



Lesson 7c:

The 𝜇-calculus



Widespread use of OBDDs has made fixpoint-based
algorithms appealing for many applications.

The 𝜇-calculus explicitely considers fixpoints in its sintax.

Model-checking procedures follow a bottom-up approach
starting from sub-formulas. Fixpoints are computed by using
iteration and convergence of ascending chains of sets of states.

A naïve approach requires a complexity 𝒪(nk) to evaluate a 𝜇-
calculus formula, where n is the number of states and k is the 
nesting of fixpoint to be evaluated.   

More sophisticated algorithms are 𝒪(nd) where d is the number
of alternation greatest/leatest fixpoint.

The 𝜇-calculus



Formulas of the 𝜇-calculus are relative to a transition system. 

Here we consider a transition system of the form M=(S, T, L), 
similar to Kripke structures, but where the transition relation T 
is partioned into a family of actions 𝛼⊆ S×S.

Let us consider a set of relational variables, Vars={Q, Q1, Q2, …}

• p ∊ AP then p is a formula;

• a relational variable Q ∊ Vars is a formula;

• if f and g are formulas then f∨g, f∧g, and ¬f are formulas.

• If f is a formula, 𝛼 ∊ T then [𝛼] f and ⟨𝛼⟩ f are formulas.

• If Q ∊ Vars and f is a formula then 𝜇Q. f and 𝜐Q. f are formulas

Syntax of the 𝜇-calculus



A formula f is interpreted as the set of states in which f is true.

We write such set ⟦ f ⟧M, e in the transition system M and in the 
environment e, where e is a map from variables to subsets of S.

⟦ p ⟧M, e= { s | p ∊ L(s)} ⟦ Q ⟧M, e= e(Q)

⟦ ¬f ⟧M, e= S ∖ ⟦ f ⟧M, e

⟦ f∨g ⟧M, e= ⟦ f ⟧M, e∪ ⟦ g ⟧M, e ⟦ f∧g ⟧M, e= ⟦ f ⟧M, e ⋂ ⟦ g ⟧M, e

⟦ [𝛼] f ⟧M, e= {s|∀t. (s, t) ∊ 𝛼 and t ∊ ⟦ f ⟧M, e}

⟦ ⟨𝛼⟩ f ⟧M, e= {s|∃t. (s, t) ∊ 𝛼 and t ∊ ⟦ f ⟧M, e}

⟦ 𝜇Q. f ⟧M, e= lfp 𝜏, where 𝜏(Z)=⟦ f ⟧M, e [Q← Z]

⟦ 𝜐Q. f ⟧M, e= gfp 𝜏, where 𝜏(Z)=⟦ f ⟧M, e [Q← Z]

Semantics of the 𝜇-calculus



All logical operators, except negation, are monotonic: f→f’ 
implies f∨g → f’∨g, f∧g→ f’ ∧g, [𝛼] f→[𝛼] f’, and ⟨𝛼⟩ f→⟨𝛼⟩ f’.

Negation must be restricted to atomic propositions.

Using deMorgan’s laws and duality, we can always push
negation to atomic propositions: 

¬[𝛼] f ≡ ⟨𝛼⟩¬f, ¬⟨𝛼⟩ f ≡ [𝛼]¬f, 
¬𝜇Q. f ≡ 𝜐Q. ¬f(¬Q), ¬𝜐Q. f ≡ 𝜇Q. ¬f(¬Q). 

Observe that if bound variables are under a even number of 
negations, they will be negation free at the end of this process.

Remember that in this finite world:

⟦ 𝜇Q. f ⟧M, e=∪i 𝜏i(false) and ⟦ 𝜐Q. f ⟧M, e=⋂i 𝜏i(true)

Monotonicity



The 𝜇-calculus is expressive enough to embody CTL.

We can easily translate any CTL formula into the 𝜇-calculus , by 
using fixpoint characterization of CTL operators EG and EU.

𝒯(p) = p 𝒯(¬f ) = ¬𝒯(f )

𝒯(f∧g) = 𝒯(f )∧ 𝒯(g) 𝒯(EX f ) = ⟨𝛼⟩ 𝒯(f )

𝒯(E [f U g]) = 𝜇Z. 𝒯(g)∨(𝒯(f ) ∧⟨𝛼⟩ Z)

𝒯(EG f ) = 𝜐Z. 𝒯(f )∧⟨𝛼⟩ Z

Example: The CTL formula EG (E [p U q]) is translated into the 
𝜇-calculus expression 𝜐Y. (𝜇Z. (q∨(p∧⟨𝛼⟩ Z)) ∧ ⟨𝛼⟩ Y).

Theorem: Let M=(S, R, L) be a Kripke structure and 𝛼 be the 
transition relation R. Let f be a CTL formula. Then, for all s ∊ S:

M, s ⊨ f ⇔ s ∊ ⟦𝒯(f )⟧M

Expressivity: CTL and 𝜇-calculus



There is a naïve recursive algorithm to compute the set of states
⟦ f ⟧M, e recursively on the syntactic structure of f: 

Evaluating fixpoint formulas

def eval(f, e):
if f ≡ p then return { s | p ∊ L(s) }
if f ≡ Q then return e(Q);
if f ≡ g1∧g2 then

return eval(g1, e) ⋂ eval(g2, e);
if f ≡ g1 ⋁ g2 then

return eval(g1, e)∪eval(g2, e);
if f ≡ ⟨𝛼⟩g then

return { s |∃t [s→𝛼 t and t ∊ eval(g, e)] };
if f ≡ [𝛼] g then

return { s |∀t [s→𝛼 t and t ∊ eval(g, e)] };
…

Recursive calls



Evaluating fixpoint formulas
…

if f ≡ 𝜇Q.g(Q) then
Qval = FALSE
repeat

Qold = Qval
Qval = eval(g, e[Q=Qval]);

until Qold = Qval
return Qval;

fi
…

Least fixpoint
computation

…
if f ≡ 𝜐Q.g(Q) then

Qval = TRUE
repeat

Qold = Qval
Qval = eval(g, e[Q=Qval]);

until Qold = Qval
return Qval;

fi
end

Can trigger nested
fixpoint computations
with different values for
variables! 𝒪(nk), n number
of states, k nesting

Greatest fixpoint
computation



States are represented by a vector x of boolean variables. As
usual, there exists an OBDD, Op(x) for each atomic proposition
p ∊ AP. Each transition relation 𝛼 is an OBBD O𝛼(x, x’).

The function assoc[Qi] plays the role of environments in OBDD 
representation and return the OBDD corresponding to the set 
of states associated to the relational variable Qi.

We define a function ℬ(f, assoc) that taking a 𝜇-calculus formula 
f and an association list assoc that assign an OBDD to each free 
relational variables of f, returns an OBDD corresponding to the 
semantics of f, that is ⟦ f ⟧M, e

Repr. 𝜇-calculus with OBDDs



ℬ(p, assoc) = Op(x) ℬ(Qi, assoc) = assoc(Qi) 

ℬ(¬f, assoc) = ¬ ℬ(f, assoc) 

ℬ(f∧g, assoc) = ℬ(f, assoc) ∧ ℬ(g, assoc)

ℬ(f∨g, assoc) = ℬ(f, assoc) ∨ ℬ(g, assoc)

ℬ(⟨𝛼⟩ f, assoc) = ∃x’ [O𝛼(x, x’)∧ ℬ(f, assoc)(x’)]

ℬ([𝛼] f, assoc) = ∀x’ [O𝛼(x, x’)∧ ℬ(f, assoc)(x’)]

where O(x’) is the OBDD in which occurrence of each
variable xi is substituted by its primed version x’i.

ℬ(𝜇Q. f, assoc) = fix(f, assoc, Ofalse, Q)

ℬ(𝜐Q. f, assoc) = fix(f, assoc, Otrue , Q)

where fix is the OBDD version of usual gfp/lfp
iterative computation (see next slide)

Repr. 𝜇-calculus with OBDDs



where assoc⟨Q:= Oold ⟩ creates a new variable Q and associate 
the OBDD Oold with Q.

Fix computation with OBDDs

def fixOBDD(f, assoc, ℬ, Q)
Ores = ℬ
repeat

Oold = Ores
Ores = ℬ (f, assoc⟨Q= Oold⟩);

until Oold = Ores
return Qval;



The overall complexity is 𝒪(|M|・|f|・|S|k), being 𝒪(|M|・
|f|) the cost of a single iteration and |S|k the maximum 
number of iteration due to nested fixpoint computations.

Observation: it is not necessary to reinitialize from FALSE (or 
TRUE) nested least (or greatest) fixpoint computations of the 
same type of its outermost fixpoint.

This works because of the following corollary of Knarster-Tarski
fixpoint theorem:
Corollary: 𝜏 monotonic and W⊆𝜇𝜏, then 𝜏i(W)⊆𝜇𝜏.

Definition: The alternation depth #f of f is 0 if f ≡ p ∊AP, 
max{#g, #h} if f ≡ g∨h, f ≡ g∧h, #g if f ≡ ¬g or f ≡ [𝛼]g or f ≡ ⟨𝛼⟩g.
The alternation depth of f ≡ 𝜇Q. g is the maximum between 1, #g
and 1+max{#h | h ≡ 𝜐Q. h’ is a top-level subformula of g}.
The alternation depth of f ≡ 𝜐Q. g is the maximum between 1, #g
and 1+max{#h | h ≡ 𝜇Q. h’ is a top-level subformula of g}. 

Optimizations



Let us consider the formula: 𝜇Q1.g1(Q1, 𝜇Q2.g2(Q1, Q2)): for each
iteration of the outermost fixpoint, we need to compute the inner
fixpoint of the predicate transformer 𝜏(Q1)=𝜇Q2.g2(Q1, Q2). 

When evaluating the outermost fixpoint, we start with Q1
0=

FALSE and then computing 𝜏(Q1
0): this requires iteration of the 

inner fixpoint, computing a sequence FALSE =Q2
0,0⊆ Q2

0,1⊆…
⊆Q2

0,𝜔 and so we get the first approximation Q1
1=g1(Q1

0, Q2
0,𝜔).

The next inner fixpoint computation of 𝜏(Q1
1), will start from 

Q2
1,0= Q2

0,𝜔 =𝜏(Q1
0) rather than Q2

1,0= FALSE. In general we start 
the inner fixpoint in the ith iteration of the outer fixpoint, from 
Q2

i,0= Q2
i-1,𝜔.

As a consequence, the computation of n nested leatest fixpoint
(or n nested greatest fixpoint) computations can be computed in 
a number of steps bounded by n・|S|, rather than in |S|n as in 
the naïve algorithm.

Optimizations: example



As a consequence, if the alternation depth of a formula f is d, the 
algorithm can compute fixpoint in 𝒪((|f|・n)d), because |f| is
an upperbound of the number of nested fixpoint of the same
kind.

The algorithm is similar to the naïve version, except that it
stores intermediate approximations in an array Fi  (see next
slide), whose size is the total number of fixpoint computations
(equivalently, the number of relational variables)

When Qj is bounded by 𝜇 (resp. 𝜐), Fj is initialised to FALSE (resp. 
TRUE) and reset to FALSE (resp. TRUE) only when starts an 
outermost greatest (resp. leatest) fixpoint computation.

Optimizations: implementation



Optimized fixpoint computation
…

if f ≡ 𝜇Qi.g(Qi) then
forall top-level gfp subf. 𝜐Qj.gj (Qj) do Fj=TRUE
repeat

Q = Fi
Fi = eval(g, e[Q = Fi]);

until Q = Fi
return Fi

fi
…

reset only greatest fixpoint computations 
inside the leatest fixpoint computation

…
if f ≡ 𝜐Qi.g(Qi) then

forall top-level gfp subf. 𝜇Qj.gj (Qj) do Fj=FALSE
repeat

Q = Fi
Fi = eval(g, e[Q = Fi]);

until Q = Fi
return Fi

fi

Least fixpoint
computation

Greatest fixpoint
computation

reset only leatest fixpoint computations 
inside the greatest fixpoint computation



The model checking problem for the 𝜇-calculus has been
proven to be in NP ⋂ co-NP. 

This essentially comes from the following facts: 

1. the problem is in NP because it is polynomial to check if a 
given guess for a fixpoint is indeed a fixpoint.

2. in the 𝜇-calculus we can easily negate formulas;

Clarke etal. conjecture that there exists no polynomial
algorithm… but it’s very difficult to prove this statement. 

In particular, if it would be NP-complete, then NP=co-NP 
which is unlikely to be true.

Complexity Considerations



Lesson 7c:

Symbolic LTL 
model checking



We sketch briefly how to adapt LTL model-checking to a 
symbolic procedure based again on a tableau construction.

The basic idea of LTL symbolic model checking is similar to 
that of on-the-fly LTL model checking. 

We check M, s ⊨ E f building a Kripke structure T=(ST, RT, LT) 
from the formula f, to represent all paths that satisfies f.

Then, we build the product Kripke structure M ⊗ T, and check
on M ⊗ T if there exists a state such that s ∊ Sat(f ).

Symbolic LTL MC: ideas



Given a set of atomic propositions Af occurring in f, the set of 
states ST of the Kripke structure T represents sets of subformulas
of f. 

Each state s ∊ ST = 𝒫(el( f )) is a set of elementary propositions. 

The labeling LT(s) is defined in such a way that each state is
labeled with the set of atomic propositions contained in the state. 

Elementary Formulas



To define the transition relation, we need to define the set of 
states that satisfies a given formula in el( f ) as follows (observe
why we don’t need to add negations in el( f ) ):

Again, we want to define RT in such a way that each formula 
elementary formula in s in satisfied in s. As usual, we must take 
care of X g and ¬X g.

Building the transition relation



g = ¬heat U close. (microwave oven example)

Example

There exists some 
paths that do not 
satisfy g: for 
example the path 
that loops forever 
in state 3, where 
close never holds.



Theorem. Let T be the tableau for the path formula f. Then, for 
every Kripke structure M and every path 𝜋’ of M, if M, 𝜋’ ⊨ f, 
then there is a path 𝜋 in T such that starts in a state of sat( f ) 
such that labels(𝜋’)|APf = labels(𝜋).

Proof: rather technical. Omitted (see Clarke etal.). ☐

Then, having T = (ST, RT, LT) and M = (SM, RM, LM), we build
the product P = (S, R, L) as follows: 

R may fail to be total: we remove states without successors.

P contains exactly those paths 𝜋’’=(si, si’) such that LT(si)=LM(si’)

Properties of T



Theorem. M, s’⊨ E f if and only if there exists s ∊ T such that
(s, s’) ∊ sat(f ) and P, (s, s’) ⊨ EG true under the fairness
constraints {sat (¬(g U h) ∨h |(g U h) occurs in f }.

Proof: rather technical. Omitted (see Clarke etal.). ☐

A path that satisfies the fairness constraint { sat (¬(g U h) ∨h 
|(g U h) occurs in f } has the property that no subformula of the 
form (g U h) holds almost always on a path while h remain
false. 

Formula EG true under fairness constraints can be checked by 
using CTL (symbolic) model checking.

Properties of T



Representation of T: associate to each formula g in el( f ) a boolean
variable vg. M and T can be defined over variables in APf and some 
additional variable for formulas in el( f ). 

States in M has the shape (p, q), with p boolean variables for atomic
proposition APf and q variables that are not mentioned in f. 

States in T has the shape (p, r) with r variables of non atomic
formulas in the tableau of f. 

As usual, transition relations are predicates over two copies, v and 
v’ of state variables. In particular, P = M ⊗ T, we have:

RP(p, q, r, p’, q’, r’)=RT(p, r, p’, r’)∧RM(p, q, p’, q’)

On this Kripke structure, we can use CTL model checking with 
fairness constraints to determine a set of states V=EG true holds. 
Moreover, we have that M , s ⊨ E f if and only if
s is represented by (p, q) and ∃r. (p, q, r) ∊ V and (p, r) ∊ sat( f ). 

LTL Symbolic Model Checking



That’s all Folks!

Thanks for your attention…
…Questions?


