Formal Methods in Software Development

More on Symbolic Model Checking The μ-calculus Ivano Salvo

Computer Science Department

Lesson 7, November 16 th, 2020

from Lesson 6d:

Symbolic CTL model checking

CTL model checking

The problem is to find three functions such that:

$$
\begin{gathered}
\operatorname{check}(\mathbf{E X} f)=\operatorname{checkEX}(\operatorname{check}(f)) \\
\operatorname{check}(\mathbf{E}[f \mathbf{U} g])=\operatorname{checkEU}(\operatorname{check}(f), \operatorname{Check}(g)) \\
\operatorname{check}(\mathbf{E G} f)=\operatorname{check} E G(\operatorname{check}(f))
\end{gathered}
$$

Observe that the parameter of check is a CTL formula φ, its result is an OBDD representing the set of states satisfying φ.

The parameters of checkEX, checkEU, and checkEG are OBDDs.

CTL model checking

* checkEX(f(v)) is strighforward. The OBDD result is equivalent to $\exists v^{\prime} . f\left(v^{\prime}\right) \wedge R\left(v, v^{\prime}\right)$.
* checkEU($\left.f_{1}(v), f_{2}(v)\right)$ is based on the characterization of EU as the least fixpoint of the predicate transformer $\mu \mathrm{Z}$. $f_{2}(v) \vee\left(f_{1}(v)\right.$ \wedge EX Z)

It is computed a converging sequence of states $Q_{1}, \ldots, Q_{i}, \ldots$ Having the OBDD for Q_{i} and those for $f_{1}(v)$ and $f_{2}(v)$ one can easily compute those for Q_{i+1}. Observe that checking $Q_{i}=Q_{i+1}$ is straighforward (due to OBDD canonical forms).

* checkEG(f(v)) is based on the characterization of EG as the greatest fixpoint of the predicate transformer $v Z . f_{1}(v) \wedge$ EX Z

Quantified Boolean Formulas

In the previous slide, we used formulas such as: $\exists v^{\prime} . f\left(v^{\prime}\right) \wedge R\left(v, v^{\prime}\right)$
They are quantified boolean formulas: they are equivalent to propositional formulas, but they allow a more succint representation.

Semantics (σ is a variable assignment and $\sigma\langle v \leftarrow 0\rangle$ means that variable v is assigned to 0):

- $\sigma \models \exists v f$ iff $\sigma\langle v \leftarrow 0\rangle \vDash f$ or $\sigma\langle v \leftarrow 1\rangle \vDash f$, and
- $\sigma \models \forall v f$ iff $\sigma\langle v \leftarrow 0\rangle \models f$ and $\sigma\langle v \leftarrow 1\rangle \models f$.

They can be represented as OBDD using restriction:

- $\exists x f=\left.\left.f\right|_{x \leftarrow 0} \vee f\right|_{x \leftarrow 1}$
- $\forall x f=\left.\left.f\right|_{x \leftarrow 0} \wedge f\right|_{x \leftarrow 1}$

Lesson 7a:

Symbolic Model Checking with
 Fairness Constraints

Fairness in Symbolic CTL MC

The goal is to define a procedure CheckFair that checks a CTL formula under a set of fairness constraints $F=\left\{P_{1}, \ldots, P_{k}\right\}$ (here we consider only unconditional fairness).

This function depends on functions CheckFairEX, CheckFairEU, CheckFairEG, fair versions of those already seen.

Symbolic model checking for formulas $\mathbf{E X} f$ and $\mathbf{E}\left[f_{1} \mathbf{U} f_{2}\right]$ are similar to the explicit case. More precisely, let:

$$
\text { fair }(v)=\operatorname{checkFairEG(EG~True)~}
$$

Then:

$$
\begin{aligned}
\text { checkFairEX }(f(v)) & =\operatorname{checkEX}(f(v) \wedge \text { fair }(v)) \\
\text { checkFairEX }(f(v), g(v)) & =\operatorname{checkEX(f(v),g(v)\wedge \operatorname {fair}(v))}
\end{aligned}
$$

Therefore the problem is again to deal with the problem of computing EG f. In symbolic model checking, it is again convenient to model such formula with fixpoints.

EG f under Fairness Constraints

The set Z of states that satisfies EG f given fairness constraints $F=\left\{P_{1}, \ldots, P_{n}\right\}$ is the largest set satisfying the following properties:

1. all states in Z satisfy f and
2. for all $P_{k} \in F$ and all states $s \in Z$ there exists a path of states in Z starting at s satisfying P_{k}.

Therefore, Z must satisfy the following formula:

$$
\mathbf{E G} f=v \mathrm{Z} . f \wedge \wedge_{i=1, \ldots, n} \mathbf{E X} \mathbf{E}\left[f \mathbf{U}\left(\mathrm{Z} \wedge P_{i}\right)\right]
$$

This is not a CTL formula, since it uses both CTL operators and fixpoints (by contrast, it's a μ-calculus formula, see later).

First, we show correctness of this formula, by showing that EG f is the maximum fixpoint of the equation:

$$
\begin{equation*}
\mathbf{Z}=f \wedge \wedge_{i=1, \ldots, n} \mathbf{E X} \mathbf{E}\left[f \mathbf{U}\left(\mathrm{Z} \wedge P_{i}\right)\right] \tag{1}
\end{equation*}
$$

EG f under Fairness Constraints

Lemma: The fair version of EG f is a fixpoint of Eq. (1).
Proof: If $s \in E G f$, there exists a fair path starting in s all of whose states satisfy f. Let $s_{i} \neq s$ such that $s_{i} \in P_{i}$. Also s_{i} is the start of a fair path satisfying EG f. By repeatedly apply this argument, it follows that forall $\left.i, s \vDash f \wedge \mathbf{E X E} \mathbf{E} f \mathbf{U}\left(\mathbf{E G} f \wedge P_{i}\right)\right]$ and hence $s \vDash f \wedge \wedge_{i=1, \ldots, n} \mathbf{E X} \mathbf{E}\left[f \mathbf{U}\left(\mathrm{Z} \wedge P_{i}\right)\right]$.

If s satisfies Eq. (1), there exists a finite path to s^{\prime}, such that $s^{\prime} \vDash \operatorname{EG} f \wedge P_{i}$. Along this path, each state satisfies f and s^{\prime} is the beginning of a fair path satisfying EG f.

Lemma: The greatest fixpoint of Eq. (1) is included in the fair version of $\mathbf{E G} f$.

Proof: Let Z be a fixpoint of Eq. (1), then $Z \subseteq E G f$. Again, we can build a path s_{1}, \ldots, s_{n} in Z such that all states satisfy f and $s_{1} \in P_{1}, \ldots, s_{n} \in P_{n}$. The last state is in Z and hence there exists a path back to some state in P_{1} etc. So, $\mathrm{Z} \subseteq \mathbf{E G} f$ and hence $\mathbf{E G} f$ is the greatest fixpoint.

Computing fair EG f

From the previous characterization of the fair version of $\mathbf{E G} f$, the procedure checkFairEG(f(v)) can compute the set of states Sat(EG f) as:

$$
v \mathrm{Z}(v) . f(v) \wedge \wedge_{k=1, \ldots, n} \mathbf{E X} \mathbf{E}\left[f(v) \mathbf{U}\left(Z(v) \wedge P_{k}\right)\right]
$$

Observe that this implies to compute several nested fixpoint computations inside EU.

Lesson 7b:

Counterexamples and
 witnesses

Counterexamples and Witnesses

We remind that the falsification of a formula of the form $\mathbf{A G} f$ is a path in which at some point $\neg f$ holds (counterexample).

Dually, the proof of a formula of the form $\operatorname{EF} f$, is a path in which at some point, the formula f holds (witness).

The counterexample for a universally quantified formula is the witness for the dual existentially quantified formula.

As usual, we restrict our attention to find witnesses for the three basic CTL opearators EX, EG, and EU.

A counterexample of a formula $\mathbf{A X} f$ is a path of length $1 s, s^{\prime}$ such that $R\left(s, s^{\prime}\right)$ and $\mathcal{M}, s \nLeftarrow f$. The witness of a formula $\operatorname{EX} f$ is a path of length $1 s, s^{\prime}$ such that $R\left(s, s^{\prime}\right)$ and $\mathcal{M}, s \vDash f$. They can be found by inspecting immediate successors of initial states.
A witness of a formula $\mathbf{E}[f \mathbf{U} g]$ is a path of length $k, s_{1}, s_{2}, \ldots s_{k}$ such that $\mathcal{M}, s_{k} \vDash g$ and for all $0 \leq j<k \mathcal{M}, s_{j} \vDash f$. It can be found by a backward reachability from $\operatorname{Sat}(g)$, therefore during a model checking verification process.

Counterexamples and Witnesses

A counter-example of a formula $\mathbf{A}[f \mathbf{U} g]$ can be either:
$*$ an infinite path $\pi \equiv s_{1}, s_{2}, \ldots s_{k} \ldots$ such that for all k, \mathcal{M}, s_{k} $\nLeftarrow f \wedge \neg g$, that is $\mathcal{M}, \pi \vDash \mathbf{G} f \wedge \neg g$, hence $\mathcal{M}, s \vDash$ EG $f \wedge \neg g$, (witness of EG $f \wedge \neg g$).

* a finite path $\pi \equiv s_{1}, s_{2}, \ldots s_{k}$ such that for all $0 \leq j<k \mathcal{M}, s_{j} \vDash$ $f \wedge \neg g$ and $\mathcal{M}, s_{k} \vDash \neg f \wedge \neg g$ (witness of $\mathbf{E}[f \wedge \neg g \mathbf{U} \neg f \wedge \neg g$).

We are left to deal with witnesses of EG f.
Again, for EG we will consider the compressed graph of Strongly Connected Components of the transition graph of the Kripke structure: this graph does not contain any proper cycle and each infinite path must have a suffix entirely contained in some strongly connected component.

Witnesses for $E G f$

Remeber that:

$$
\text { (*) } \quad \mathbf{E G} f=v \mathrm{Z} . f \wedge \wedge_{i=1, \ldots, n} \mathbf{E X} \mathbf{E}\left[f \mathbf{U}\left(\mathrm{Z} \wedge P_{i}\right)\right]
$$

We build a sequence of prefixes of a path π, such that $\pi \vDash$ EG f, until a cycle is found. At each step, we must guarantee that the current prefix can be extended to a fair path satisfying EG f.

In the evaluation of $(*)$, we compute a sequence of fixpoints of the formula $\mathrm{E}\left[f \mathrm{U}\left(\mathrm{Z} \wedge P_{i}\right)\right]$. For each constraint P, we obtain a sequence of sets of states $Q_{0}{ }^{P} \subseteq Q_{1}{ }^{P} \subseteq Q_{2}{ }^{P} \subseteq \ldots$ such that $Q_{k}{ }^{P}$ is a the set of states in $\mathrm{Z} \backslash P$ reachable in i or fewer steps. Therefore we have for each k and P_{i} the sequence $Q_{i}{ }^{P i}$.

Let $s \in \operatorname{EG} f$. To minimise the length of the counterexample, we look for the first fairness constraint that can be reached from s, looking in $Q_{0}{ }^{P i}$ for all P_{i} in F, then in $Q_{1}{ }^{P i}$ and so on. Since $s \vDash$ EG f, we must eventually find a state t and t has a path of length l to a state u in EG $f \wedge P$ and hence it is in EG f. We eliminate P and continue from $u \ldots$

Witnesses for $E G f$

At the end we come up with a state s^{\prime}. We need a path from s^{\prime} to t to complete a cycle, along states that satisfies f. We need a witness of the formula $\left\{s^{\prime}\right\} \wedge \operatorname{EXE}[f \mathbf{U}\{t\}]$. If it is true, we are done (see picture).

Witnesses for $E G f$

Otherwise, we restart the procedure with fairness constraints F starting from s^{\prime}. Since $\left\{s^{\prime}\right\} \wedge \operatorname{EX} \operatorname{E}[f \mathbf{U}\{t\}]$ is false, s^{\prime} is not in the SCC of t. However, $s^{\prime} \in$ EG f and we can continue the process.

Observe that we descend in the compressed acyclic graph!

So the process must terminate!

Example: Mutual Exclusion

Let us consider the formula: $\mathbf{A}\left[\left(n_{1} \wedge n_{2}\right) \vee w 2 \mathbf{U} c_{2}\right]$ that states that the process P_{2} acquires the critical section once it has started to waiting for it.

Example: Mutual Exclusion

Build the graph for which holds $\left(n_{1} \wedge n_{2}\right) \vee w 2$ and $\neg c_{2}$. Let $\pi \equiv\left\langle n_{1}, n_{2}, y=1\right\rangle$ and $\pi^{\prime} \equiv\left\langle n_{1}, w_{2}, y=1\right\rangle \rightarrow\left\langle w_{1}, w_{2}, y=1\right\rangle \rightarrow\left\langle c_{1}\right.$, $\left.w_{2}, y=0\right\rangle \rightarrow\left\langle c_{1}, w_{2}, y=0\right\rangle$. Then $\pi \pi^{\prime \omega}$ is a counterexample. Also $\left\langle n_{1}, n_{2}, y=1\right\rangle \rightarrow\left\langle w_{1}, w_{2}, y=1\right\rangle$ because $\neg n_{1}$ and $\neg w_{2}$

Lesson 7c:

The μ-calculus

The μ-calculus

Widespread use of OBDDs has made fixpoint-based algorithms appealing for many applications.

The μ-calculus explicitely considers fixpoints in its sintax.
Model-checking procedures follow a bottom-up approach starting from sub-formulas. Fixpoints are computed by using iteration and convergence of ascending chains of sets of states.

A naïve approach requires a complexity $\mathcal{O}\left(n^{k}\right)$ to evaluate a μ calculus formula, where n is the number of states and k is the nesting of fixpoint to be evaluated.

More sophisticated algorithms are $\mathcal{O}\left(n^{d}\right)$ where d is the number of alternation greatest/leatest fixpoint.

Syntax of the μ-calculus

Formulas of the μ-calculus are relative to a transition system.
Here we consider a transition system of the form $\mathcal{M}=(S, T, L)$, similar to Kripke structures, but where the transition relation T is partioned into a family of actions $\alpha \subseteq S \times S$.

Let us consider a set of relational variables, Vars $=\left\{Q, Q_{1}, Q_{2}, \ldots\right\}$

- $p \in A P$ then p is a formula;
- a relational variable $Q \in$ Vars is a formula;
- if f and g are formulas then $f \vee g, f \wedge g$, and $\neg f$ are formulas.
- If f is a formula, $\alpha \in T$ then $[\alpha] f$ and $\langle\alpha\rangle f$ are formulas.
- If $Q \in \operatorname{Vars}$ and f is a formula then $\mu Q . f$ and $v Q . f$ are formulas

Semantics of the μ-calculus

A formula f is interpreted as the set of states in which f is true. We write such set $\llbracket f \rrbracket_{\mathcal{M}, e}$ in the transition system \mathcal{M} and in the environment e, where e is a map from variables to subsets of S.

$$
\begin{aligned}
& \llbracket p \rrbracket_{\mathbb{M}, e}=\{s \mid p \in L(s)\} \quad \llbracket Q \rrbracket_{\mathcal{M}, e}=e(Q) \\
& \llbracket \neg f \rrbracket_{\mathcal{M}, e}=S \backslash \llbracket f \rrbracket_{\mathcal{M}, e} \\
& \llbracket f \vee g \rrbracket_{\mathcal{M}, e}=\llbracket f \rrbracket_{\mathcal{M}, e} \cup \llbracket g \rrbracket_{\mathbb{M}, e} \quad \llbracket f \wedge g \rrbracket_{\mathbb{M}, e}=\llbracket f \rrbracket_{\mathcal{M}, e} \cap \llbracket g \rrbracket_{\mathcal{M}, e} \\
& \llbracket[\alpha] f \rrbracket_{\mathcal{M}, e}=\left\{s \mid \forall t .(s, t) \in \alpha \text { and } t \in \llbracket f \rrbracket_{\mathcal{M}, e}\right\} \\
& \llbracket\langle\alpha\rangle f \rrbracket_{\mathbb{M}, e}=\left\{s \mid \exists t .(s, t) \in \alpha \text { and } t \in \llbracket f \rrbracket_{\mathcal{M}, e}\right\} \\
& \llbracket \mu Q . f \rrbracket_{\mathcal{M}, e}=\operatorname{lfp} \tau \text {, where } \tau(Z)=\llbracket f \rrbracket_{\mathcal{M}, e}[Q \leftarrow Z] \\
& \llbracket v Q . f \rrbracket_{\mathcal{M}, e}=\operatorname{gfp} \tau \text {, where } \tau(Z)=\llbracket f \rrbracket_{\mathcal{M}, e}[Q \leftarrow Z]
\end{aligned}
$$

Monotonicity

All logical operators, except negation, are monotonic: $f \rightarrow f^{\prime}$ implies $f \vee g \rightarrow f^{\prime} \vee g, f \wedge g \rightarrow f^{\prime} \wedge g,[\alpha] f \rightarrow[\alpha] f^{\prime}$, and $\langle\alpha\rangle f \rightarrow\langle\alpha\rangle f^{\prime}$.

Negation must be restricted to atomic propositions.
Using deMorgan's laws and duality, we can always push negation to atomic propositions:

$$
\begin{array}{ll}
\neg[\alpha] f \equiv\langle\alpha\rangle \neg f, & \neg\langle\alpha\rangle f \equiv[\alpha] \neg f, \\
\neg \mu Q . f \equiv v Q . \neg f(\neg Q), & \neg v Q . f \equiv \mu Q . \neg f(\neg Q) .
\end{array}
$$

Observe that if bound variables are under a even number of negations, they will be negation free at the end of this process.

Remember that in this finite world:

$$
\llbracket \mu Q . f \rrbracket_{\mathcal{M}, e}=\cup_{i} \tau^{i}(\text { false }) \quad \text { and } \quad \llbracket v Q . f \rrbracket_{\mathcal{M}, e}=\cap_{i} \tau^{i}(\text { true })
$$

Expressivity: CTL and μ-calculus

The μ-calculus is expressive enough to embody CTL.
We can easily translate any CTL formula into the μ-calculus, by using fixpoint characterization of CTL operators EG and EU.

$$
\begin{array}{cc}
\mathcal{T}(p)=p & \mathcal{T}(\neg f)=\neg \mathcal{T}(f) \\
\mathcal{T}(f \wedge g)=\mathcal{T}(f) \wedge \mathcal{T}(g) & \mathcal{T}(\mathbf{E X} f)=\langle\alpha\rangle \mathcal{T}(f) \\
\mathcal{T}(\mathbf{E}[f \mathbf{U} g])=\mu \mathrm{Z} . \mathcal{T}(g) \vee(\mathcal{T}(f) \wedge\langle\alpha\rangle \mathrm{Z}) \\
\mathcal{T}(\mathbf{E G} f)=v \mathrm{Z} . \mathcal{T}(f) \wedge\langle\alpha\rangle \mathrm{Z}
\end{array}
$$

Example: The CTL formula $\mathbf{E G}(\mathbf{E}[p \mathbf{U} q])$ is translated into the μ-calculus expression $v \mathrm{Y}$. $(\mu \mathrm{Z} .(q \vee(p \wedge\langle\alpha\rangle \mathrm{Z})) \wedge\langle\alpha\rangle \mathrm{Y})$.

Theorem: Let $\mathcal{M}=(S, R, L)$ be a Kripke structure and α be the transition relation R. Let f be a CTL formula. Then, for all $s \in S$:

$$
\mathcal{M}, s \vDash f \Leftrightarrow s \in \llbracket \mathcal{T}(f) \rrbracket_{\mathcal{M}}
$$

Evaluating fixpoint formulas

There is a naïve recursive algorithm to compute the set of states $\llbracket f \rrbracket_{\mathcal{M}, \mathrm{e}}$ recursively on the syntactic structure of f :

```
def eval(f,e):
    if \(f \equiv p\) then return \(\{s \mid p \in L(s)\}\)
    if \(f \equiv Q\) then return \(e(Q)\);
    if \(f \equiv g_{1} \wedge g_{2}\) then
        return eval \(\left(g_{1}, e\right) \cap \operatorname{eval}\left(g_{2}, e\right)\);
    if \(f \equiv g_{1} \vee g_{2}\) then
        return eval \(\left(g_{1}, e\right) \cup\) eval \(\left(g_{2}, e\right)\);
    if \(f \equiv\langle\alpha\rangle g\) then
        return \(\left\{s \mid \exists t\left[s \rightarrow{ }_{\alpha} t\right.\right.\) and \(\left.\left.t \in \operatorname{eval}(g, \mathcal{e})\right]\right\} ;\)
    if \(f \equiv[\alpha] g\) then
        return \(\left\{s \mid \forall t\left[s \rightarrow{ }_{\alpha} t\right.\right.\) and \(\left.\left.t \in \operatorname{eval}(g, e)\right]\right\} ;\)
```


Evaluating fixpoint formulas

if $f \equiv \mu \mathrm{Q} \cdot g(Q)$ then $Q_{\text {val }}=$ FALSE repeat
$Q_{\text {old }}=Q_{\text {val }}$
$Q_{\text {val }}=\operatorname{eval}\left(g, e\left[\mathrm{Q}=Q_{\text {val }}\right]\right)$
until $Q_{\text {old }}=Q_{\text {val }}$ return $Q_{\text {val; }}$
fi
-•• \qquad

Repr. μ-calculus with OBDDs

States are represented by a vector x of boolean variables. As usual, there exists an OBDD, $\mathrm{O}_{p}(x)$ for each atomic proposition $p \in A P$. Each transition relation α is an $\operatorname{OBBD~}_{\alpha}\left(x, x^{\prime}\right)$.

The function assoc $\left[Q_{i}\right]$ plays the role of environments in OBDD representation and return the OBDD corresponding to the set of states associated to the relational variable Q_{i}.

We define a function $\mathfrak{B}(f$, assoc) that taking a μ-calculus formula f and an association list assoc that assign an OBDD to each free relational variables of f, returns an OBDD corresponding to the semantics of f, that is $\llbracket f \rrbracket_{\mathbb{M}, e}$

Repr. μ-calculus with OBDDs

$$
\begin{gathered}
\mathscr{B}(p, \text { assoc })=\mathrm{O}_{p}(x) \quad \mathscr{B}\left(Q_{i}, \text { assoc }\right)=\operatorname{assoc}\left(Q_{i}\right) \\
\mathscr{B}(\neg f, \text { assoc })=\neg \mathscr{B}(f, \text { assoc }) \\
\mathscr{B}(f \wedge g, \text { assoc })=\mathscr{B}(f, \text { assoc }) \wedge \mathscr{B}(g, \text { assoc }) \\
\mathscr{B}(f \vee g, \text { assoc })=\mathscr{B}(f, \text { assoc }) \vee \mathscr{B}(g, \text { assoc }) \\
\mathscr{B}(\langle\alpha\rangle f, \text { assoc })=\exists x^{\prime}\left[\mathrm{O}_{\alpha}\left(x, x^{\prime}\right) \wedge \mathscr{B}(f, \text { assoc })\left(x^{\prime}\right)\right] \\
\mathscr{B}([\alpha] f, \text { assoc })=\forall x^{\prime}\left[\mathrm{O}_{\alpha}\left(x, x^{\prime}\right) \wedge \mathscr{B}(f, \text { assoc })\left(x^{\prime}\right)\right]
\end{gathered}
$$

where $\mathrm{O}\left(x^{\prime}\right)$ is the OBDD in which occurrence of each variable x_{i} is substituted by its primed version x_{i}^{\prime}.

$$
\begin{aligned}
& \mathcal{B}(\mu \mathrm{Q} \cdot f, \text { assoc })=\operatorname{fix}\left(f, \text { assoc, } \mathrm{O}_{\text {false }}, Q\right) \\
& \mathscr{B}(v \mathrm{Q} \cdot f, \text { assoc })=\operatorname{fix}\left(f, \text { assoc, } \mathrm{O}_{\text {true }}, Q\right)
\end{aligned}
$$

where fix is the OBDD version of usual gfp/lfp iterative computation (see next slide)

Fix computation with OBDDs

```
def fixOBDD \((f\), assoc, \(\mathscr{B}, Q)\)
    \(O_{\text {res }}=\mathscr{B}\)
    repeat
        \(O_{\text {old }}=O_{\text {res }}\)
        \(O_{\text {res }}=\mathscr{B}\left(f, \operatorname{assoc}\left\langle\mathrm{Q}=O_{\text {old }}\right\rangle\right) ;\)
    until \(O_{\text {old }}=O_{\text {res }}\)
    return \(Q_{\text {val; }}\)
```

where assoc $\left\langle Q:=\mathrm{O}_{\text {old }}\right\rangle$ creates a new variable Q and associate the OBDD $\mathrm{O}_{\text {old }}$ with Q.

Optimizations

The overall complexity is $\mathcal{O}\left(|\mathcal{M}| \cdot|f| \cdot|S|^{k}\right)$, being $\mathcal{O}(|\mathcal{M}| \cdot$ $|f|)$ the cost of a single iteration and $|S|^{k}$ the maximum number of iteration due to nested fixpoint computations.

Observation: it is not necessary to reinitialize from FALSE (or TRUE) nested least (or greatest) fixpoint computations of the same type of its outermost fixpoint.

This works because of the following corollary of Knarster-Tarski fixpoint theorem:
Corollary: τ monotonic and $\mathrm{W} \subseteq \mu \tau$, then $\tau^{i}(\mathrm{~W}) \subseteq \mu \tau$.
Definition: The alternation depth $\# f$ of f is 0 if $f \equiv p \in A P$, $\max \{\# g, \# h\}$ if $f \equiv g \vee h, f \equiv g \wedge h, \# g$ if $f \equiv \neg g$ or $f \equiv[\alpha] g$ or $f \equiv\langle\alpha\rangle g$.
The alternation depth of $f \equiv \mu Q . g$ is the maximum between $1, \# g$ and $1+\max \left\{\# h \mid h \equiv v Q\right.$. h^{\prime} is a top-level subformula of $\left.g\right\}$.
The alternation depth of $f \equiv v Q . g$ is the maximum between $1, \# g$ and $1+\max \left\{\# h \mid h \equiv \mu Q\right.$. h^{\prime} is a top-level subformula of $\left.g\right\}$.

Optimizations: example

Let us consider the formula: $\mu Q_{1} \cdot g_{1}\left(Q_{1}, \mu Q_{2} \cdot g_{2}\left(Q_{1}, Q_{2}\right)\right)$: for each iteration of the outermost fixpoint, we need to compute the inner fixpoint of the predicate transformer $\tau\left(Q_{1}\right)=\mu Q_{2} \cdot g_{2}\left(Q_{1}, Q_{2}\right)$.

When evaluating the outermost fixpoint, we start with $Q_{1}{ }^{0}=$ FALSE and then computing $\tau\left(Q_{1}{ }^{0}\right)$: this requires iteration of the inner fixpoint, computing a sequence FALSE $=Q_{2}{ }^{0,0} \subseteq Q_{2}{ }^{0,1} \subseteq \ldots$ $\subseteq Q_{2}{ }^{0, \omega}$ and so we get the first approximation $Q_{1}{ }^{1}=g_{1}\left(Q_{1}{ }^{0}, Q_{2}{ }^{0, \omega}\right)$.

The next inner fixpoint computation of $\tau\left(Q_{1}{ }^{1}\right)$, will start from $Q_{2}{ }^{1,0}=Q_{2}{ }^{0, \omega}=\tau\left(Q_{1}{ }^{0}\right)$ rather than $Q_{2}{ }^{1,0}=$ FALSE. In general we start the inner fixpoint in the $i^{\text {th }}$ iteration of the outer fixpoint, from $Q_{2}{ }^{i, 0}=Q_{2}{ }^{i-1, \omega}$.

As a consequence, the computation of n nested leatest fixpoint (or n nested greatest fixpoint) computations can be computed in a number of steps bounded by $n \cdot|S|$, rather than in $|S|^{n}$ as in the naïve algorithm.

Optimizations: implementation

As a consequence, if the alternation depth of a formula f is d, the algorithm can compute fixpoint in $\mathcal{O}\left((|f| \cdot n)^{d}\right)$, because $|f|$ is an upperbound of the number of nested fixpoint of the same kind.

The algorithm is similar to the naïve version, except that it stores intermediate approximations in an array F_{i} (see next slide), whose size is the total number of fixpoint computations (equivalently, the number of relational variables)

When Q_{j} is bounded by μ (resp. v), F_{j} is initialised to FALSE (resp. TruE) and reset to FalSE (resp. TruE) only when starts an outermost greatest (resp. leatest) fixpoint computation.

Optimized fixpoint computation

if $f \equiv \mu \mathrm{Q}_{i} \cdot g\left(Q_{i}\right)$ then forall top-level gfp subf. $v Q_{i} \cdot g_{i}\left(Q_{i}\right)$ do $F_{i}=$ TRUE repeat
$Q=F_{i}$ reset only greatest fixpoint computations
$F_{i}=\operatorname{eval}\left(g, e\left[\mathrm{Q}=F_{i}\right]\right) ;$
until $Q=F_{i}$
return F_{i}

Least fixpoint computation
fi
...

$$
\begin{aligned}
& \text { if } f \equiv v Q_{i} \cdot g\left(Q_{i}\right) \text { then } \\
& \text { forall top-level gfp subf. } \mu \mathrm{Q}_{i} \cdot g_{i}\left(Q_{i}\right) \text { do } F_{i}=\text { FALSE } \\
& \text { repeat } \\
& \begin{array}{l}
\text { reset only leatest fixpoint computations } \\
F_{i}=F_{i} \\
\text { inside the greatest fixpoint computation }
\end{array} \\
& \begin{array}{l}
\text { until } \left.Q=F_{i}, e\left[Q=F_{i}\right]\right) ; \\
\text { return } F_{i}
\end{array} \\
& \text { fi }
\end{aligned}
$$

Complexity Considerations

The model checking problem for the μ-calculus has been proven to be in NP \cap co-NP.

This essentially comes from the following facts:

1. the problem is in NP because it is polynomial to check if a given guess for a fixpoint is indeed a fixpoint.
2. in the μ-calculus we can easily negate formulas;

Clarke etal. conjecture that there exists no polynomial algorithm... but it's very difficult to prove this statement.

In particular, if it would be $N P$-complete, then $N P=\operatorname{co}-N P$ which is unlikely to be true.

Lesson 7c:

Symbolic LTL model checking

Symbolic LTL MC: ideas

We sketch briefly how to adapt LTL model-checking to a symbolic procedure based again on a tableau construction.

The basic idea of LTL symbolic model checking is similar to that of on-the-fly LTL model checking.

We check $\mathcal{M}, s \vDash E \mathrm{E} f$ building a Kripke structure $\mathcal{T}=\left(S_{T}, R_{T}, L_{T}\right)$ from the formula f, to represent all paths that satisfies f.

Then, we build the product Kripke structure $\mathcal{M} \otimes \mathcal{T}$, and check on $\mathcal{M} \otimes \mathcal{T}$ if there exists a state such that $s \in \operatorname{Sat}(f)$.

Elementary Formulas

Given a set of atomic propositions A_{f} occurring in f, the set of states S_{T} of the Kripke structure \mathcal{T} represents sets of subformulas of f.
Each state $s \in S_{T}=\mathcal{P}(e l(f))$ is a set of elementary propositions.

- $e l(p)=\{p\}$ if $p \in A P_{f}$.
- $e l(\neg g)=e l(g)$.
- el $(g \vee h)=e l(g) \cup e l(h)$.
- el $(\mathbf{X} g)=\{\mathbf{X} g\} \cup e l(g)$.
- $e l(g \mathbf{U} h)=\{\mathbf{X}(g \mathbf{U} h)\} \cup e l(g) \cup e l(h)$.

The labeling $L_{T}(s)$ is defined in such a way that each state is labeled with the set of atomic propositions contained in the state.

Building the transition relation

To define the transition relation, we need to define the set of states that satisfies a given formula in $e l(f)$ as follows (observe why we don't need to add negations in el(f)):

- $\operatorname{sat}(g)=\{s \mid g \in s\}$ where $g \in \operatorname{el}(f)$.
- $\operatorname{sat}(\neg g)=\{s \mid s \notin \operatorname{sat}(g)\}$.
- $\operatorname{sat}(g \vee h)=\operatorname{sat}(g) \cup \operatorname{sat}(h)$.
- $\operatorname{sat}(g \mathbf{U} h)=\operatorname{sat}(h) \cup(\operatorname{sat}(g) \cap \operatorname{sat}(\mathbf{X}(g \mathbf{U} h)))$.

Again, we want to define R_{T} in such a way that each formula elementary formula in s in satisfied in s. As usual, we must take care of $\mathbf{X} g$ and $\neg \mathbf{X} g$.

$$
R_{T}\left(s, s^{\prime}\right)=\bigwedge_{\mathbf{X} \rho \in \operatorname{el}(f)} s \in \operatorname{sat}(\mathbf{X} g) \Leftrightarrow s^{\prime} \in \operatorname{sat}(g)
$$

Example

$$
g=~ \neg \text { heat } \mathbf{U} \text { close. (microwave oven example) }
$$

There exists some paths that do not satisfy g : for example the path that loops forever in state 3 , where close never holds.

Properties of T

Theorem. Let \mathcal{T} be the tableau for the path formula f. Then, for every Kripke structure \mathcal{M} and every path π^{\prime} of \mathcal{M}, if $\mathcal{M}, \pi^{\prime} \vDash f$, then there is a path π in \mathcal{T} such that starts in a state of $\operatorname{sat}(f)$ such that labels $\left.\left(\pi^{\prime}\right)\right|_{\text {APf }}=\operatorname{labels}(\pi)$.
Proof: rather technical. Omitted (see Clarke etal.).

Then, having $\mathcal{T}=\left(S_{T}, R_{T}, L_{T}\right)$ and $\mathcal{M}=\left(S_{M}, R_{M}, L_{M}\right)$, we build the product $\mathcal{P}=(S, R, L)$ as follows:

- $S=\left\{\left(s, s^{\prime}\right) \mid s \in S_{T}, s^{\prime} \in S_{M}\right.$ and $\left.\left.L_{M}\left(s^{\prime}\right)\right|_{A P_{f}}=L_{T}(s)\right\}$.
- $R\left(\left(s, s^{\prime}\right),\left(t, t^{\prime}\right)\right)$ iff $R_{T}(s, t)$ and $R_{M}\left(s^{\prime}, t^{\prime}\right)$.
- $L\left(\left(s, s^{\prime}\right)\right)=L_{T}(s)$.
R may fail to be total: we remove states without successors.
P contains exactly those paths $\pi^{\prime \prime}=\left(s_{i}, s_{i}{ }^{\prime}\right)$ such that $L_{T}\left(s_{i}\right)=L_{M}\left(s_{i}\right)$

Properties of \mathcal{T}

Theorem. $\mathcal{M}, s^{\prime} \equiv \mathbf{E} f$ if and only if there exists $s \in \mathcal{T}$ such that $\left(s, s^{\prime}\right) \in \operatorname{sat}(f)$ and $\mathcal{P},\left(s, s^{\prime}\right) \vDash$ EG true under the fairness constraints $\{\operatorname{sat}(\neg(g \mathbf{U} h) \vee h \mid(g \mathbf{U} h)$ occurs in $f\}$.

Proof: rather technical. Omitted (see Clarke etal.).

A path that satisfies the fairness constraint $\{\operatorname{sat}(\neg(g \mathbf{U} h) \vee h$ $\mid(g \mathbf{U} h)$ occurs in $f\}$ has the property that no subformula of the form $(g \mathbf{U} h)$ holds almost always on a path while h remain false.

Formula EG true under fairness constraints can be checked by using CTL (symbolic) model checking.

LTL Symbolic Model Checking

Representation of \mathcal{T} : associate to each formula g in $e l(f)$ a boolean variable $v_{q} . \mathcal{M}$ and \mathcal{T} can be defined over variables in $A P_{f}$ and some additional variable for formulas in $e l(f)$.

States in \mathcal{M} has the shape (p, q), with p boolean variables for atomic proposition $A P_{f}$ and q variables that are not mentioned in f.
States in \mathcal{T} has the shape (p, r) with r variables of non atomic formulas in the tableau of f.

As usual, transition relations are predicates over two copies, v and v^{\prime} of state variables. In particular, $\mathcal{P}=\mathcal{M} \otimes \mathcal{T}^{\prime}$, we have:

$$
R_{P}\left(p, q, r, p^{\prime}, q^{\prime}, r^{\prime}\right)=R_{T}\left(p, r, p^{\prime}, r^{\prime}\right) \wedge R_{M}\left(p, q, p^{\prime}, q^{\prime}\right)
$$

On this Kripke structure, we can use CTL model checking with fairness constraints to determine a set of states $V=\mathrm{EG}$ true holds. Moreover, we have that $\mathcal{M}, s \vDash \mathbf{E} f$ if and only if s is represented by (p, q) and $\exists r .(p, q, r) \in V$ and $(p, r) \in \operatorname{sat}(f)$.

That's all Folks!

Thanks for your attention...

 ... Questions?