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Basic Idea: represent Kripke structures by using boolean
functions: 

1. sets of states (as well as relations) are represented by their
characteristic function: x ∊ S ⟺ cS(x)=True

2. Model Checking problems (such as reachability) solved by 
working on set of states, manipulating their charactheristic
functions

3. Set of states satisfying a given temporal logic formula are 
characterized as the fixpoint of some monotone operator.

All this works (sometimes!) thanks to an efficient tool to 
manipulate boolean functions: Ordered Binary Decision
Diagrams (OBDDs).

Symbolic Model Checking



Lesson 7a:

Ordered Binary
Decision Diagrams

(OBDDs)



Binary Decision Trees

A binary decision tree is a rooted, directed binary tree that
contains two types of vertices:

v non-terminal vertices v labeled by a variable var(v) and  
successors low(v) (when e v has value 0) and high(v) (when v
has value 1). 

v a terminal vertex v labeled by value(v) that is either 0 or 1.

A binary decision tree represents a boolean function.

Each path represents an assignment to boolean variables and the 
value of the terminal node represents the value of the function for 
that assignment.  



Binary Decision Trees

Example: two bit comparator: f(a1, a2, b1, b2) =  a1⟷b1∧ a2⟷b2

terminal vertices
= function value

low(v) high(v)

isomorphic 
subtrees

variable
assignment



Binary Decision Diagrams
Idea: merging isomorphic subtrees (trivially, for example, just 
two terminal nodes): this leads to Directed Acyclic Graphs
(DAGs).

Example: two bit comparator: 
f(a1, a2, b1, b2)  =  a1⟷b1∧ a2⟷b2

once the first two digits are 
different, the value of the function
is 0, regardless of a2 and b2.



Binary Decision Diagrams
The Binary Decision Diagram is highly dependent from the 
order of variables.

Example: two bit comparator: 
f(a1, a2, b1, b2)  =  a1⟷b1∧ a2⟷b2
with the order a1 < a2 < b1 < b2

In the n bit comparator, using this
order, the BDD has 3・2n-1
➡ EXPONENTIAL in n

With the order a1< b1 <… < ai < bi
<…< an < bn it has 3n+2 nodes
➡ LINEAR in n



Canonical Forms
For several applications it is desirable to have a canonical form
for BDDs.

Definition:  Two BDDs B1 and B2 are isomorphic if there exists a 
bijection h : V(B1) → V(B2)  that maps terminals to terminals and 
non-terminals to non-terminals such that: value(v)=value(h(v)), 
h(low(v))=low(h(v)), and h(high(v))=high(h(v)).

Canonical representations can be obtained by:
1. Imposing a total ordering on variables: if u has a successor v, 

then var(u)<var(v)
2. Avoid isomorphic sub-trees or redundant vertices. 

Condition 2. can be obtained by using a reduce function that is
linear in the size of the DAG. 



Reduction to a canonical form
Remove duplicate terminals: eliminate all but one terminal 
vertex with a given label and redirect all arcs to eliminated
vertices to the remaining one.

Remove duplicate nonterminals: If there exist two nonterminal u
and v such that var(u)=var(v), low(u)=low(v), and high(u)=high(v) 
then eliminate one of them and redirect all incoming arcs to the 
remaining vertex.

Remove redundant tests: if low(u)=high(u) then eliminate the 
vertex u and redirect incoming arcs to low(u) [=high(u)].

This procedure can be implemented bottom-up, linear in the size
of the BDD. Some consequences: 

v Checking equivalence of boolean functions corresponds to 
checking OBDDs isomorphisms.

v SAT on OBDDs is just checking if it is (not) the trivial
OBDD.



Negative Results about OBDDs

v It is NP-complete to find the variable ordering for a 
boolean function f(x1, …, xn) that makes the size of the OBDD
representing f optimal. 

v There are boolean functions f(x1, …, xn) such that the size of 
the OBDD is exponential in n for all variable orders. For 
example, the mid bit of the n bit product.  

However, several heuristics give good results: for example, 
related variables should be close in the ordering (as in the n bit 
comparator example)

OBDD packages usually use dynamic reordering when heuristic
seems to fail.



Logical operators using OBDDs

Restriction: 𝑓|#$%&(x1, …, xn) = f(x1, …, xi-1 , b, xi+1 ,… xn)

Just find the node w such that var(w)= xi-1, remove such node and 
replace all arcs v → w with v → low(w) if b=0 and with v→ 
high(w) if b=1. The resulting OBDD may not be in canonical form, 
so reduce must be applied to it.

Using restriction, one can easily compute Shannon expansion: 

f =(¬x∧f|x=0)∨(x∧f|x=1)

Then, binary operations can be recursively computed stemming
from Shannon expansion.

To simplify notations: 

* v, v’ are the root of OBDDs representing f and f’.
* x, x’ are var(v) and var(v’)



Logical operators using OBDDs
Let✶ be an arbitrary two-argument boolean connective.

❖ If v and v’ are both terminals, f✶f’=value(v)✶value(v’)

❖ If x=x’ then using Shannon expansion, we have:

f✶f’=(¬x∧(f|x=0✶f ’|x=0))∨(x∧(f|x=1✶f ’|x=1))

The root of the OBDD is w such that var(w)=x and     
low(w) = (f|x=0✶f’|x=0) and high(w) = (f|x=1✶f’|x=1) 

❖ If x<x’ then f ’|x=0 = f ’|x=1 =f ’ since f ’ does not depend on x. In  
this case Shannon expansion simplifies to: 

f✶f’=(¬x∧(f|x=0✶f ’))∨(x∧(f|x=1✶f ’))

and the OBDD is computed as before with x as root.

❖ If x’<x: symmetric to the previous case.

Since each problem generates two subproblems, to prevent
exponential behaviour dynamic programming must be used!
𝒪(|f|・|f’|).



Some optimizations

Negation can be computed just flipping terminal nodes.

A single multi-rooted DAG can be used to represent several
boolean functions that share subgraphs. In this case, f and f’ are 
the same if they have the same root!

Adding label to edges to denote boolean negation. In this case f
and ¬f can be represented by a single OBDD.

OBDDs can be viewed as a DFA. A n-ary boolean function can 
be seen as the set of string x in {0, 1}n such that f(x) = 1. The 
minimal automata that accept this language is an alternative 
canonical form for f.

Standard boolean connectives can be seen as operation between
languages (for example∧ is intersection etc.)



Lesson 7b:

Using OBDDs
to represent

Kripke Structures



Characteristic functions

Let Q be a n-ary relation over {0,1}. Q can be represented by its
charactheristic function: (x1, …, xn) ∊ Q iff fQ (x1, …, xn)=1.

Let Q be a n-ary relation over a domain D. For simplicity we
assume that |D|=2m for some m>1. 

Elements of D can be encoded using a bijection 𝜙 : {0,1}m→D. 

Q can be represented by a m × n-ary boolean charactheristic
function according to

fQ(d1, …, dn)=1 iff Q(𝜙(d1), …, 𝜙(dn)) 
where d1, …, dn are vectors of length m of boolean variables. 

Sets can be viewed simply as unary relations. 



Kripke structures as OBDDs
Let M=(S, R, L) be a Kripke structure.

An encoding function 𝜙 (bijection) encodes states of S.

S is the constant function 1 on {0,1}m. Subsets of S are represented
by their characteristic functions.

R is represented by a characteristic function fR : {0,1}2m→{0,1}.

The mapping L is represented by an OBDD fp for each atomic
proposition p, such that fp is the characteristic function of the set 
{ s ∊ S | p ∊ L(s)}. 

Along the same lines, one can represent the set of initial states I 
or a set of (unconditionally) fairness constraints F={P1, …, Pk}.

M is not explicitely generated and then converted into its OBDD 
representation, but rather OBDDs are generated starting from a 
high level description of M (for example programs!).
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Fixpoints have a relevant role in Logic and Theoretical Computer 
Science. For example, they are used to define semantics of 
Programming Languages (recursive definitions) or equivalences
(bisimulation).

Given an function T: L→L, x ∊ L is a fixpoint of T if T(x)=x. 𝜇T
(resp. 𝜐T) denotes the minimum (resp. maximum) fixpoint of T.

Definition: A complete lattice (L, ≤) is a partially ordered set, 
such that each subset A⊆L has a greatest lower bound ⊓A (glb or 
inf standing for infimum) and a least upper bound ⊔A (lub or sup
standing for supremum). 

sup A=min{ x|∀a ∊ A.x ≥ a }  and  inf A=max { x|∀a∊A.x ≤ a } 

Example: Given a set S, (𝒫(S), ⊆) is a complete lattice where if
A ⊆P(S) then inf A = ⋂a∊A a and sup A= ⋃a∊A a.

Observation: a complete lattice L has always a minimum, that is
⊥= inf ∅ and a maximum ⊤ = sup L. This implies that L ≠ ∅. 

Classical FixPoint Theorem



Def: T: L→L is monotonic if x ≤ y implies T(x) ≤ T(y).

Theorem: [KNARSTER-TARSKI] If L is a complete lattice and  
T : L→L is monotonic, then T has a minimum fixpoint 𝜇T
and a maximum fixpoint 𝜐T. Moreover: 

𝜇T = inf {x | T(x) ≤ x} and 𝜐T = sup {x | x ≤ T(x)}

Proof: Let G={x|T(x) ≤ x} and g=inf G. We first show that g ∊ G. 
g ≤ x, ∀x∊G. By monocity of T, T(g) ≤ T(x) ≤ x. But, being an inf, 
g is the maximum lower bound, therefore T(g) ≤ g. Hence g∊G.

From T(g) ≤ g we have T(T(g)) ≤ T(g). But this implies that T(g)
∊G. Therefore g ≤ T(g). And therefore g = T(g), that is g is a 
fixpoint. 

Finally, let g’=inf{x|T(x)=x}. Since g is a fixpoint g’≤g. But since
{x|T(x)=x}⊆{x|T(x) ≤ x}, we have also g≤g’. Hence g is the 
minimum fixpoint of T. A dual argument works for 𝜐T. ☐

Knarster-Tarski Theorem I



Definition: Let T : L→L, we define transfinite powers of T as
follows: T0 =⊥. T𝛼+1=T(T𝛼) and if 𝜆 is a limit ordinal, T𝜆=sup𝛼<𝜆T𝛼. 
Dually, we define the transfinite downward powers as follows: 
T0 =⊤. T𝛼+1=T(T𝛼) and if 𝜆 is a limit ordinal, T𝜆=inf𝛼<𝜆T𝛼.

Theorem: If L is a complete lattice and T : L→L is monotonic, then
T𝛼 ≤ 𝜇T and 𝜐T ≤ T𝛼. Moreover, there exist two ordinals 𝛽1 and 𝛽2
such that 𝜇T = T𝛼 for all 𝛼 ≥ 𝛽1 and 𝜐T = T𝛼 for all 𝛼 ≥ 𝛽2.

Proof: (1) T𝛼 ≤ 𝜇T. Trivially, T0 =⊥ ≤ 𝜇T. If T𝛼 ≤ 𝜇T, by 
monotonicity of T we have T(T𝛼) ≤ T(𝜇T) that means T𝛼+1 ≤ 𝜇T. T𝜆

=sup𝛼<𝜆T𝛼 and all T𝛼 ≤ 𝜇T (by transfinite inductive hypothesis) we
have the thesis because limits preserve ≤. 

(2) T𝛼 ≤ T𝛼+1. Trivially, T0 =⊥ ≤ T1. Assuming T𝛼 ≤ T𝛼+1, by 
monotonicity, we have T(T𝛼) ≤ T(T𝛼+1), hence T𝛼+1 ≤ T𝛼+2. 

(3) If 𝛼 ≤ 𝛽 then T𝛼 ≤ T𝛽. The property is trivial using (2) and 
observing again that limits preserve ≤ (for limit ordinals). 

Knarster-Tarski Theorem II



Proof: (cntnd) 

(4) If 𝛼 ≤ 𝛽 and T𝛼 = T𝛽 then T𝛼 = 𝜇T. If T𝛼 = T𝛽 and since by (2) 
the sequence T𝛼 is ascending ordered, all T𝛼 = T𝛾= T𝛽 for all 𝛾
such that 𝛼 ≤ 𝛾 ≤ 𝛽. But this implies that T𝛼 = T(T𝛼), that is T𝛼 is
a fixpoint and by (1) T𝛼 is 𝜇T.

(5) There exists 𝛼 such that T𝛼 = 𝜇T. By contradiction, assume 
that this is not the case. By (2) and (4) this implies that the 
sequence of powers of T is strictly ordered and contains
distinct elements, defining an injection from the set of ordinals
into L. Absurd. (for any set L, there exists an ordinal of ”bigger” 
cardinality).  

All these reasoning works dually for downward powers and 
for 𝜐T (Exercise🙃). ☐

Knarster-Tarskij Theorem II



Given a set S, the powerset P(S) is a complete lattice, ordered
by ⊆ (as expected sup is ⋃ and inf is ⋂).

A function 𝜏 : P(S) → P(S) is called a predicate transformer.

v 𝜏 is monotonic if Q⊆Q’ implies 𝜏(Q)⊆𝜏(Q’)

v 𝜏 is finitary if x ∊ 𝜏(Q) if and only if∃Q0⊆Q, Q0 finite,  
such that x ∊ 𝜏(Q0)

v 𝜏 is ⋃ -continuous if for a sequence Q1⊆Q2⊆Q3⊆… we
have that ⋃i 𝜏(Qi) = 𝜏( ⋃i Qi )

v 𝜏 is ⋂ -continuous if for a sequence Q1⊇Q2⊇Q3⊇… we
have that ⋂i 𝜏(Qi) = 𝜏(⋂ i Qi )

Set Operators



Lemma: If 𝜏 is monotone and {xj}j∊J is an ascending chain then
supj∊J 𝜏(xj)⊆𝜏(supj∊J xj)

Proof: for all i∊J, we have: xi⊆supj∊J xj. By monotonicity of 𝜏 we
have that 𝜏(xi)⊆𝜏(supj∊J xj), that is, 𝜏(supj∊J xj) is an upper bound
of the chain {𝜏(xi)} i∊J. Being sup {𝜏(xi)} i∊J the minimum of upper
bounds, we get the thesis. ☐

Lemma: If 𝜏 is monotone and finitary and {xj}j∊J is an ascending
chain then supj∊J 𝜏(xj)⊇𝜏(supj∊J xj).

Proof: Let y ∊ 𝜏(supj∊J xj). There exists a finite set z0⊆supj∊J xj
such that y ∊ 𝜏(z0). Since {xj}j∊J is a chain, there exists k such that
z0⊆xk⊆ supj∊J xj. Therefore y ∊ supj∊J 𝜏(xj). ☐

Theorem: 𝜏 : P(S) → P(S) is ⋃-continuous if and only if it 𝜏 is
monotonic and finitary.

Finitary Operators



Theorem: [KLEENE] If 𝜏 is ⋃-continuous then 𝜇𝜏 = ⋃i∊N 𝜏i(∅) = 𝜏𝜔.

Proof:  

𝜏𝜔 = sup {𝜏i |i < 𝜔}  (def. of 𝜏𝜔)
= sup {𝜏(𝜏i) |i < 𝜔 } (prestige J )
= 𝜏(sup {𝜏i |i < 𝜔}) (continuity)
= 𝜏(𝜏𝜔) (def. of 𝜏𝜔) ☐

Question: Which is the dual notion of finitary? That ensure that
for a monotonic operator 𝜏 we have 𝜐𝜏 = ⋂i∊N 𝜏i(∅) = 𝜏𝜔?

For the purposes of Model Checking… all this is a bit too
much. In a finite S, the monotonic chain 𝜏i(∅) reaches the least
fixpoint 𝜇𝜏 after a finite number of steps and 𝜏i(S) reaches the 
greatest fixpoint 𝜐𝜏 after a finite number of steps! 

On a finite set, a monotonic operator is necessarily finitary!

Kleene Fixpoint Theorem



Proofs of the following three lemmas can be easily obtained
specializing proofs of the general case to the finite case.

Lemma: If S is finite and 𝜏 is monotonic, then 𝜏 is also ⋃-
continuous and ⋂ -continuous. 

Lemma: If S is finite and 𝜏 is monotonic, then there exist two
integers p, q such that 𝜏p(∅) = 𝜏i(∅) and 𝜏q(S) = 𝜏j(S) for all i ≥ p
and for all j ≥ q.

Lemma: If S is finite and 𝜏 is monotonic, then there exist two
integers p and q such that 𝜏p(∅) = 𝜇𝜏 and 𝜏q(S) = 𝜐𝜏.

Finite Fixpoint properties



Computing Finite Fixpoints - Lfp
Using characteristic functions for representing sets, the 
constant FALSE is the emptyset. The invariant of the following
program is INV ≡ Q’ ⊆ 𝜇𝜏∧Q’=𝜏(Q).

The computed sequence is strictly increasing (wrt⊆) and 
hence |S| is an upperbound to the number of iterations.

It terminates because the guard of the while implies Q ≠ Q’. 

def leastFixedPoint(Tau: PredicateTransformer):
Q = FALSE;
Q’ = Tau(Q);
while (Q ≠ Q’) do 

Q = Q’;
Q’=Tau(Q’);

return Q;



Computing Finite Fixpoints - Gfp
Using characteristic functions for representing sets, the 
constant TRUE is the universe set S. The invariant of the 
following program is INV ≡ Q’ ⊇ 𝜐𝜏∧Q’=𝜏(Q). 

The computed sequence is strictly decreasing (wrt⊆) and 
hence |S| is an upperbound to the number of iterations.

It terminates because the guard of the while implies Q ≠ Q’. 

def greatestFixedPoint(Tau: PredicateTransformer):
Q = TRUE;
Q’ = Tau(Q);
while (Q ≠ Q’) do 

Q = Q’;
Q’=Tau(Q’);

return Q;



Lesson 7d:
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Identifying a formula f with the set of states Sat(f )={s|M, s ⊨ f }, 
we can characterize temporal operators as predicate 
transformers and their semantics as fixpoints of such operators. 
Intuitively: 

v eventualities (F and U) are least fixpoints and 

v properties that hold forever (R and G) are greatest fixpoints.

They use expansion laws for F, U, R, and G using X.

FixPoints and CTL

AF f =𝜇Z. f ⋁ AX Z
EF f =𝜇Z. f ⋁ EX Z
A[ f U g] =𝜇Z. g ⋁ (f∧AX Z)
E[ f U g] =𝜇Z. g ⋁ (f∧AX Z)
EG f =𝜐Z. f ∧ EX Z
AG f =𝜐Z. f ∧ AX Z
A[ f R g] = 𝜐Z. g ∧ (f ⋁ AX Z)
E [ f R g] = 𝜐Z. g ∧ (f ⋁ EX Z)



Lemma: The predicate transformer 𝜏(Z)=f∧EX Z is monotonic.
Proof: Let Z1⊆Z2. Let s ∊ 𝜏(Z1). Then s ⊨ f and there exists a 
successor s’ of s, such that s’ ∊ Z1. But then s’ ∊ Z2 and this
implies that also s ∊ 𝜏(Z2). ☐

Lemma: EG f is a fixpoint of the predicate transformer 
𝜏(Z)=f∧EX Z.
Proof: Suppose s0⊨ EG f. Then there exists an infinite path
𝜋=s0s1s2… such that for all k, sk⊨ f. This implies that s0 ⊨ EG f and 
s1⊨ EG f, that is s0⊨ EX EG f. Thus Sat(EG f )⊆Sat(f∧EX EG f ). 
Clearly Sat(f∧EX EG f )⊆Sat(EG f ) and hence they are equal.☐

Lemma: EG f is the greatest fixpoint of the predicate 
transformer 𝜏(Z)=f∧EX Z.
Proof: Being a fixpoint, EG f⊆ 𝜐Z. f∧EX Z = ⋂k𝜏k(S) for some k.
Let s ∊ ⋂k𝜏k(S). Since it is a fixpoint, s ∊ 𝜏(⋂k𝜏k(S)). This implies
that s ⊨ f and ∃s’.R(s, s’) and s’ ∊ ⋂k𝜏k(S). Applying this
argument to s’ we find an infinite sequence of states that belong
to ⋂k𝜏k(S) starting in s and thus s ∊ EG f . ☐

EG as a greatest fixpoint



Lemma: The operator 𝜏(Z) = h∨(g∧EX Z) is monotonic.
Proof: Let Z1⊆Z2. Let s ∊ 𝜏(Z1). If s ⊨ h then s ∊ 𝜏(Z2). Otherwise
s ⊨ g and there exists a successor s’ of s such that s’∊Z1. Since
s’∊Z2, we have also that s ∊ 𝜏(Z2). ☐

Lemma: E [g U h] is a fixpoint of 𝜏(Z) = h∨(g∧EX Z).
Proof: We have to show that Sat(E [g U h])=Sat(g∨(h∧EX E [g
U h])). s0 ∊ Sat(E [g U h]) if and only if there exists a path of 
length k ≥ 0 such that sk⊨ h and si ⊨ g for 0 ≤ i < k if and only if s0
∊ Sat(h∨(g∧EX E [g U h]).  ☐

Lemma: E [g U h] is the least fixpoint of the predicate 
transformer 𝜏(Z) = h∨(g∧EX Z).
Proof: Being a fixpoint, ⋃i𝜏i(∅) = 𝜇Z. h∨(g∧EX Z)⊆E [g U h]. 
Let s ∊ E [g U h]. If s ⊨ h then s ∊ 𝜏(Z) for any Z and so s ∊ ⋃i𝜏i(∅).
Otherwise s ⊨ g and there exists a path of length k ≥ 0 such that
sk⊨ h and sj ⊨ g for 0 ≤ j < k. It is easy to see that s ∊ 𝜏k(∅) by 
induction on k. ☐

EU as a least fixpoint



If you want to understand deeply fixpoints and semantics of 
temporal operators…try to solve the following exercises:

v Exercise 1: Which is the least fixpoint of the operator 
𝜏(Z)=f∧EX Z? 

v Exercise 2: Find a Kripke structure in which the greatest
fixpoint of the operator 𝜏(Z) = h∨(g∧EX Z) contains at least
a state s such that s ⊭ E [g U h]. 

v Exercise 2: Find a Kripke structure in which the leatest
fixpoint of the operator 𝜏(Z) = g∧EX Z) does not contain
some state s such that s ⊭ E G g. 

v Exercise 3: Find a monotonic but not continuous operator 
(of course you must deal with infinite sets!)

v Exercise 4: Which is the dual notion of finitary? That
ensure that for a monotonic operator 𝜏 we have 𝜐𝜏 = ⋂i∊N 𝜏i(∅) 
= 𝜏𝜔?

Exercises on fixpoints



The problem is to find three functions such that:

check(EX f)=checkEX(check(f))

check(E[f U g]) = checkEU(check(f), Check(g))

check(EG f) = checkEG(check(f))

Observe that the parameter of check is a CTL formula 𝜑, its
result is an OBDD representing the set of states satisfying 𝜑. 

The parameters of checkEX, checkEU, and checkEG are OBDDs.  

CTL model checking



❖ checkEX(f(v)) is strighforward. It is equivalent to 
∃v’.f(v’)∧R(v,v’).

❖ checkEU(f1(v), f2(v)) is based on the characterization of EU as
the least fixpoint of the predicate transformer 𝜇Z. f2(v) ∨(f1(v) 
∧EX Z).

It is computed a converging sequence of states Q1, …, Qi , …
Having the OBDD for Qi and those for f1(v) and f2(v) one can 
easily compute those for Qi+1. Observe that checking Qi= Qi+1 is
strighforward. 

❖ checkEG(f(v)) is based on the characterization of EG as the 
greatest fixpoint of the predicate transformer 𝜐Z. f1(v) ∧ EX Z.

CTL model checking



In the previous slides we use formulas such as:∃v’.f(v’)∧R(v,v’).

They are quantified boolean formulas: They are equivalent to 
propositional formulas, but they allow a more succint
representation.

Semantics:

They can be represented as OBDD using restriction:

Quantified Boolean Formulas



That’s all Folks!

Thanks for your attention…
…Questions?


