Formal Methods in Software Development

OBDDs, FixPoints, and Symbolic Model Checking Ivano Salvo

Computer Science Department

Lesson 6, November 9 ${ }^{\text {th }}, 2019$

Symbolic Model Checking

Basic Idea: represent Kripke structures by using boolean functions:

1. sets of states (as well as relations) are represented by their characteristic function: $x \in S \Leftrightarrow c_{S}(x)=$ True
2. Model Checking problems (such as reachability) solved by working on set of states, manipulating their charactheristic functions
3. Set of states satisfying a given temporal logic formula are characterized as the fixpoint of some monotone operator.

All this works (sometimes!) thanks to an efficient tool to manipulate boolean functions: Ordered Binary Decision Diagrams (OBDDs).

Lesson 7a:

Ordered Binary Decision Diagrams (OBDDs)

Binary Decision Trees

A binary decision tree is a rooted, directed binary tree that contains two types of vertices:
non-terminal vertices v labeled by a variable $\operatorname{var}(v)$ and successors low(v) (when e v has value 0) and high(v) (when v has value 1).
a terminal vertex v labeled by value (v) that is either 0 or 1.

A binary decision tree represents a boolean function.

Each path represents an assignment to boolean variables and the value of the terminal node represents the value of the function for that assignment.

Binary Decision Trees

Example: two bit comparator: $f\left(a_{1}, a_{2}, b_{1}, b_{2}\right)=a_{1} \leftrightarrow b_{1} \wedge a_{2} \leftrightarrow b_{2}$

Binary Decision Diagrams

Idea: merging isomorphic subtrees (trivially, for example, just two terminal nodes): this leads to Directed Acyclic Graphs (DAGs).

Binary Decision Diagrams

The Binary Decision Diagram is highly dependent from the order of variables.

Example: two bit comparator:
$f\left(a_{1}, a_{2}, b_{1}, b_{2}\right)=a_{1} \leftrightarrow b_{1} \wedge a_{2} \leftrightarrow b_{2}$ with the order $a_{1}<a_{2}<b_{1}<b_{2}$

In the n bit comparator, using this order, the BDD has $3 \cdot 2^{n}-1$ \Rightarrow EXPONENTIAL in n

With the order $a_{1}<b_{1}<\ldots<a_{i}<b_{i}$
$<\ldots<a_{n}<b_{n}$ it has $3 n+2$ nodes
\Rightarrow LINEAR in n

Canonical Forms

For several applications it is desirable to have a canonical form for BDDs.

Definition: Two BDDs B_{1} and B_{2} are isomorphic if there exists a bijection $h: V\left(B_{1}\right) \rightarrow V\left(B_{2}\right)$ that maps terminals to terminals and non-terminals to non-terminals such that: value $(v)=\operatorname{value}(h(v))$, $h(\operatorname{low}(v))=\operatorname{low}(h(v))$, and $h(\operatorname{high}(v))=\operatorname{high}(h(v))$.

Canonical representations can be obtained by:

1. Imposing a total ordering on variables: if u has a successor v, then $\operatorname{var}(u)<\operatorname{var}(v)$
2. Avoid isomorphic sub-trees or redundant vertices.

Condition 2. can be obtained by using a reduce function that is linear in the size of the DAG.

Reduction to a canonical form

Remove duplicate terminals: eliminate all but one terminal vertex with a given label and redirect all arcs to eliminated vertices to the remaining one.

Remove duplicate nonterminals: If there exist two nonterminal u and v such that $\operatorname{var}(u)=\operatorname{var}(v), \operatorname{low}(u)=\operatorname{low}(v)$, and $\operatorname{high}(u)=\operatorname{high}(v)$ then eliminate one of them and redirect all incoming arcs to the remaining vertex.

Remove redundant tests: if $\operatorname{low}(u)=\operatorname{high}(u)$ then eliminate the vertex u and redirect incoming arcs to low (u) [=high $(u)]$.

This procedure can be implemented bottom-up, linear in the size of the BDD. Some consequences:

* Checking equivalence of boolean functions corresponds to checking OBDDs isomorphisms.
* SAT on OBDDs is just checking if it is (not) the trivial OBDD.

Negative Results about OBDDs

* It is NP-complete to find the variable ordering for a boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ that makes the size of the OBDD representing f optimal.
* There are boolean functions $f\left(x_{1}, \ldots, x_{n}\right)$ such that the size of the OBDD is exponential in n for all variable orders. For example, the mid bit of the n bit product.

However, several heuristics give good results: for example, related variables should be close in the ordering (as in the n bit comparator example)
OBDD packages usually use dynamic reordering when heuristic seems to fail.

Logical operators using OBDDs

Restriction: $\left.f\right|_{x_{i}=b}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, b, x_{i+1}, \ldots x_{n}\right)$
Just find the node w such that $\operatorname{var}(w)=x_{i-1}$, remove such node and replace all $\operatorname{arcs} v \rightarrow w$ with $v \rightarrow \operatorname{low}(w)$ if $b=0$ and with $v \rightarrow$ high (w) if $b=1$. The resulting OBDD may not be in canonical form, so reduce must be applied to it.

Using restriction, one can easily compute Shannon expansion:

$$
f=\left(\left.\neg x \wedge f\right|_{x=0}\right) \vee\left(\left.x \wedge f\right|_{x=1}\right)
$$

Then, binary operations can be recursively computed stemming from Shannon expansion.

To simplify notations:

* v, v^{\prime} are the root of OBDDs representing f and f^{\prime}.
* x, x^{\prime} are $\operatorname{var}(v)$ and $\operatorname{var}\left(v^{\prime}\right)$

Logical operators using OBDDs

Let $*$ be an arbitrary two-argument boolean connective.

* If v and v^{\prime} are both terminals, $f * f^{\prime}=$ value $(v) *$ value $\left(v^{\prime}\right)$
* If $x=x^{\prime}$ then using Shannon expansion, we have:

$$
f * f^{\prime}=\left(\neg x \wedge\left(\left.\left.f\right|_{x=0} * f^{\prime}\right|_{x=0}\right)\right) \vee\left(x \wedge\left(\left.\left.f\right|_{x=1} * f^{\prime}\right|_{x=1}\right)\right)
$$

The root of the OBDD is w such that $\operatorname{var}(w)=x$ and

$$
\operatorname{low}(w)=\left(\left.\left.f\right|_{x=0} * f^{\prime}\right|_{x=0}\right) \text { and } \operatorname{high}(w)=\left(\left.\left.f\right|_{x=1} * f^{\prime}\right|_{x=1}\right)
$$

* If $x<x^{\prime}$ then $\left.f^{\prime}\right|_{x=0}=\left.f^{\prime}\right|_{x=1}=f^{\prime}$ since f^{\prime} does not depend on x. In this case Shannon expansion simplifies to:

$$
f * f^{\prime}=\left(\neg x \wedge\left(\left.f\right|_{x=0} * f^{\prime}\right)\right) \vee\left(x \wedge\left(\left.f\right|_{x=1} * f^{\prime}\right)\right)
$$

and the OBDD is computed as before with x as root.

* If $x^{\prime}<x$: symmetric to the previous case.

Since each problem generates two subproblems, to prevent exponential behaviour dynamic programming must be used!
$\mathcal{O}\left(|f| \cdot\left|f^{\prime}\right|\right)$.

Some optimizations

Negation can be computed just flipping terminal nodes.
A single multi-rooted DAG can be used to represent several boolean functions that share subgraphs. In this case, f and f^{\prime} are the same if they have the same root!

Adding label to edges to denote boolean negation. In this case f and $\neg f$ can be represented by a single OBDD.

OBDDs can be viewed as a DFA. A n-ary boolean function can be seen as the set of string x in $\{0,1\}^{n}$ such that $f(x)=1$. The minimal automata that accept this language is an alternative canonical form for f.

Standard boolean connectives can be seen as operation between languages (for example \wedge is intersection etc.)

Lesson 7b:

Using OBDDs to represent Kripke Structures

Characteristic functions

Let Q be a n-ary relation over $\{0,1\}$. Q can be represented by its charactheristic function: $\left(x_{1}, \ldots, x_{n}\right) \in Q$ iff $f_{Q}\left(x_{1}, \ldots, x_{n}\right)=1$.

Let Q be a n-ary relation over a domain D. For simplicity we assume that $|D|=2^{m}$ for some $m>1$.

Elements of D can be encoded using a bijection $\phi:\{0,1\}^{m} \rightarrow D$.
Q can be represented by a $m \times n$-ary boolean charactheristic function according to

$$
f_{Q}\left(d_{1}, \ldots, d_{n}\right)=1 \text { iff } Q\left(\phi\left(d_{1}\right), \ldots, \phi\left(d_{n}\right)\right)
$$

where d_{1}, \ldots, d_{n} are vectors of length m of boolean variables.
Sets can be viewed simply as unary relations.

Kripke structures as OBDDs

Let $\mathcal{M}=(S, R, L)$ be a Kripke structure.
An encoding function ϕ (bijection) encodes states of S.
S is the constant function 1 on $\{0,1\}^{m}$. Subsets of \mathbf{S} are represented by their characteristic functions.
R is represented by a characteristic function $f_{R}:\{0,1\}^{2 m} \rightarrow\{0,1\}$.
The mapping L is represented by an $\operatorname{OBDD} f_{p}$ for each atomic proposition p, such that f_{p} is the characteristic function of the set $\{s \in S \mid p \in L(s)\}$.

Along the same lines, one can represent the set of initial states I or a set of (unconditionally) fairness constraints $F=\left\{P_{1}, \ldots, P_{k}\right\}$.
\mathcal{M} is not explicitely generated and then converted into its OBDD representation, but rather OBDDs are generated starting from a high level description of \mathcal{M} (for example programs!).

Lesson 7c:

Fixpoints

Classical FixPoint Theorem

Fixpoints have a relevant role in Logic and Theoretical Computer Science. For example, they are used to define semantics of Programming Languages (recursive definitions) or equivalences (bisimulation).

Given an function $T: L \rightarrow L, x \in L$ is a fixpoint of T if $T(x)=x . \mu T$ (resp. $v T$) denotes the minimum (resp. maximum) fixpoint of T.

Definition: A complete lattice (L, \leq) is a partially ordered set, such that each subset $A \subseteq L$ has a greatest lower bound $\sqcap A$ (glb or inf standing for infimum) and a least upper bound $\sqcup A$ (lub or sup standing for supremum).

$$
\sup A=\min \{x \mid \forall a \in A \cdot x \geq a\} \text { and } \inf A=\max \{x \mid \forall a \in A \cdot x \leq a\}
$$

Example: Given a set $S,(\mathcal{P}(S), \subseteq)$ is a complete lattice where if $\mathrm{A} \subseteq P(S)$ then $\inf A=\cap_{a \in A} a$ and $\sup A=\cup_{a \in A} a$.

Observation: a complete lattice L has always a minimum, that is $\perp=\inf \varnothing$ and a maximum $T=\sup L$. This implies that $L \neq \varnothing$.

Knarster-Tarski Theorem I

Def: $T: L \rightarrow L$ is monotonic if $x \leq y$ implies $T(x) \leq T(y)$.
Theorem: [KNARSTER-TARSKI] If L is a complete lattice and $T: L \rightarrow L$ is monotonic, then T has a minimum fixpoint μT and a maximum fixpoint $v T$. Moreover:

$$
\mu T=\inf \{x \mid T(x) \leq x\} \text { and } v T=\sup \{x \mid x \leq T(x)\}
$$

Proof: Let $G=\{x \mid T(x) \leq x\}$ and $g=\inf G$. We first show that $g \in G$. $g \leq x, \forall x \in \mathrm{G}$. By monocity of $T, T(g) \leq T(x) \leq x$. But, being an inf, g is the maximum lower bound, therefore $T(g) \leq g$. Hence $g \in G$.
From $T(g) \leq g$ we have $T(T(g)) \leq T(g)$. But this implies that $T(g)$ $\in G$. Therefore $g \leq T(g)$. And therefore $g=T(g)$, that is g is a fixpoint.
Finally, let $g^{\prime}=\inf \{x \mid T(x)=x\}$. Since g is a fixpoint $g^{\prime} \leq g$. But since $\{x \mid T(x)=x\} \subseteq\{x \mid T(x) \leq x\}$, we have also $g \leq g^{\prime}$. Hence g is the minimum fixpoint of T. A dual argument works for $v T$. \square

Knarster-Tarski Theorem II

Definition: Let $T: L \rightarrow L$, we define transfinite powers of T as follows: $T^{0}=\perp . \mathrm{T}^{\alpha+1}=T\left(T^{\alpha}\right)$ and if λ is a limit ordinal, $\mathrm{T}^{\lambda}=\sup _{\alpha<\lambda} T^{\alpha}$. Dually, we define the transfinite downward powers as follows: $T_{0}=\top . \mathrm{T}_{\alpha+1}=T\left(T_{\alpha}\right)$ and if λ is a limit ordinal, $\mathrm{T}_{\lambda}=\inf _{\alpha<\lambda} T_{\alpha}$.

Theorem: If L is a complete lattice and $T: L \rightarrow L$ is monotonic, then $T^{\alpha} \leq \mu T$ and $v T \leq T_{\alpha}$. Moreover, there exist two ordinals β_{1} and β_{2} such that $\mu T=T^{\alpha}$ for all $\alpha \geq \beta_{1}$ and $v T=T_{\alpha}$ for all $\alpha \geq \beta_{2}$.

Proof: (1) $T^{\alpha} \leq \mu T$. Trivially, $T^{0}=\perp \leq \mu T$. If $T^{\alpha} \leq \mu T$, by monotonicity of T we have $T\left(T^{\alpha}\right) \leq T(\mu T)$ that means $\mathrm{T}^{\alpha+1} \leq \mu T$. T^{λ} $=\sup _{\alpha<\lambda} T^{\alpha}$ and all $T^{\alpha} \leq \mu T$ (by transfinite inductive hypothesis) we have the thesis because limits preserve \leq.
(2) $T^{\alpha} \leq T^{\alpha+1}$. Trivially, $T^{0}=\perp \leq T^{1}$. Assuming $T^{\alpha} \leq T^{\alpha+1}$, by monotonicity, we have $T\left(T^{\alpha}\right) \leq T\left(T^{\alpha+1}\right)$, hence $T^{\alpha+1} \leq T^{\alpha+2}$.
(3) If $\alpha \leq \beta$ then $T^{\alpha} \leq T^{\beta}$. The property is trivial using (2) and observing again that limits preserve \leq (for limit ordinals).

Knarster-Tarskij Theorem II

Proof: (cntnd)
(4) If $\alpha \leq \beta$ and $T^{\alpha}=T^{\beta}$ then $T^{\alpha}=\mu T$. If $T^{\alpha}=T^{\beta}$ and since by (2) the sequence T^{α} is ascending ordered, all $T^{\alpha}=T^{\gamma}=T^{\beta}$ for all γ such that $\alpha \leq \gamma \leq \beta$. But this implies that $T^{\alpha}=T\left(T^{\alpha}\right)$, that is T^{α} is a fixpoint and by (1) T^{α} is μT.
(5) There exists α such that $T^{\alpha}=\mu T$. By contradiction, assume that this is not the case. By (2) and (4) this implies that the sequence of powers of T is strictly ordered and contains distinct elements, defining an injection from the set of ordinals into L. Absurd. (for any set L, there exists an ordinal of "bigger" cardinality).

All these reasoning works dually for downward powers and for $v T$ (Exercise © ${ }^{(2)}$.

Set Operators

Given a set S, the powerset $\mathcal{P}(S)$ is a complete lattice, ordered by \subseteq (as expected sup is \cup and inf is \cap).

A function $\tau: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ is called a predicate transformer.

* τ is monotonic if $Q \subseteq Q^{\prime}$ implies $\tau(Q) \subseteq \tau\left(Q^{\prime}\right)$
* τ is finitary if $x \in \tau(Q)$ if and only if $\exists Q_{0} \subseteq Q, Q_{0}$ finite, such that $x \in \tau\left(Q_{0}\right)$
* τ is U-continuous if for a sequence $Q_{1} \subseteq Q_{2} \subseteq Q_{3} \subseteq \ldots$ we have that $\mathrm{U}_{i} \tau\left(Q_{i}\right)=\tau\left(\mathrm{U}_{i} Q_{i}\right)$
* τ is \cap-continuous if for a sequence $Q_{1} \supseteq Q_{2} \supseteq Q_{3} \supseteq \ldots$ we have that $\cap_{i} \tau\left(Q_{i}\right)=\tau\left(\cap_{i} Q_{i}\right)$

Finitary Operators

Lemma: If τ is monotone and $\left\{x_{j}\right\}_{j \in J}$ is an ascending chain then $\sup _{\mathrm{j} \in \mathrm{J}} \tau\left(x_{j}\right) \subseteq \tau\left(\sup _{\mathrm{j} \epsilon \mathrm{J}} x_{j}\right)$
Proof: for all $i \in J$, we have: $x_{i} \subseteq \sup _{\mathrm{j} \in J} x_{j}$. By monotonicity of τ we have that $\tau\left(x_{i}\right) \subseteq \tau\left(\sup _{\mathrm{j} \epsilon \mathrm{J}} x_{j}\right)$, that is, $\tau\left(\sup _{\mathrm{j} \epsilon \mathrm{J}} x_{j}\right)$ is an upper bound of the chain $\left\{\tau\left(x_{i}\right)\right\}_{\mathrm{i} \in \mathrm{j}}$. Being sup $\left\{\tau\left(x_{i}\right)\right\}_{\mathrm{i} \in \mathrm{J}}$ the minimum of upper bounds, we get the thesis. \square

Lemma: If τ is monotone and finitary and $\left\{x_{j}\right\}_{j \in J}$ is an ascending chain then $\sup _{j \in J} \tau\left(x_{j}\right) \supseteq \tau\left(\sup _{j \in J} x_{j}\right)$.
Proof: Let $y \in \tau\left(\sup _{\mathrm{j} \epsilon} x_{j}\right)$. There exists a finite set $z_{0} \subseteq \sup _{\mathrm{j} \in \mathrm{J}} x_{j}$ such that $y \in \tau\left(z_{0}\right)$. Since $\left\{x_{j}\right\}_{j \in J}$ is a chain, there exists k such that $z_{0} \subseteq x_{k} \subseteq \sup _{\mathrm{j} \in \mathrm{J}} x_{j}$. Therefore $y \in \sup _{\mathrm{j} \in \mathrm{J}} \tau\left(x_{\mathrm{j}}\right) . \square$

Theorem: $\tau: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ is U-continuous if and only if it τ is monotonic and finitary.

Kleene Fixpoint Theorem

Theorem: [KLEENE] If τ is \cup-continuous then $\mu \tau=\cup_{i \in \mathrm{~N}} \tau^{i}(\varnothing)=\tau^{\omega}$.
Proof:

$$
\begin{aligned}
\tau^{\omega} & =\sup \left\{\tau^{i} \mid i<\omega\right\} \\
& =\sup \left\{\tau\left(\tau^{i}\right) \mid i<\omega\right\} \\
& =\tau\left(\sup \left\{\tau^{i} \mid i<\omega\right\}\right) \\
& =\tau\left(\tau^{\omega}\right)
\end{aligned}
$$

$$
\text { (def. of } \tau^{\omega} \text {) }
$$

$$
\text { (prestige } \odot \text {) }
$$

(continuity)

$$
\text { (def. of } \tau^{\omega} \text {) }
$$

\square

Question: Which is the dual notion of finitary? That ensure that for a monotonic operator τ we have $v \tau=\bigcap_{i \in \mathrm{~N}} \tau_{i}(\varnothing)=\tau_{\omega}$?

For the purposes of Model Checking... all this is a bit too much. In a finite S, the monotonic chain $\tau^{i}(\varnothing)$ reaches the least fixpoint $\mu \tau$ after a finite number of steps and $\tau_{i}(S)$ reaches the greatest fixpoint $v \tau$ after a finite number of steps!

On a finite set, a monotonic operator is necessarily finitary!

Finite Fixpoint properties

Proofs of the following three lemmas can be easily obtained specializing proofs of the general case to the finite case.

Lemma: If S is finite and τ is monotonic, then τ is also U continuous and \cap-continuous.

Lemma: If S is finite and τ is monotonic, then there exist two integers p, q such that $\tau^{p}(\varnothing)=\tau^{i}(\varnothing)$ and $\tau_{q}(S)=\tau_{j}(S)$ for all $i \geq p$ and for all $j \geq q$.

Lemma: If S is finite and τ is monotonic, then there exist two integers p and q such that $\tau^{p}(\varnothing)=\mu \tau$ and $\tau_{q}(S)=v \tau$.

Computing Finite Fixpoints - Lfp

Using characteristic functions for representing sets, the constant FAlSE is the emptyset. The invariant of the following program is INV $\equiv Q^{\prime} \subseteq \mu \tau \wedge Q^{\prime}=\tau(Q)$.

The computed sequence is strictly increasing (wrt \subseteq) and hence $|S|$ is an upperbound to the number of iterations.

It terminates because the guard of the while implies $Q \neq Q^{\prime}$.

```
def leastFixedPoint(Tau: PredicateTransformer):
    Q = FALSE;
    Q' = Tau(Q);
    while (Q\not= Q') do
        Q = Q';
        Q'=Tau(Q');
    return Q;
```


Computing Finite Fixpoints - Gfp

Using characteristic functions for representing sets, the constant True is the universe set S . The invariant of the following program is INV $\equiv Q^{\prime} \supseteq v \tau \wedge Q^{\prime}=\tau(Q)$.

The computed sequence is strictly decreasing (wrt \subseteq) and hence $|S|$ is an upperbound to the number of iterations.

It terminates because the guard of the while implies $Q \neq Q^{\prime}$.
def greatestFixedPoint(Tau: PredicateTransformer):
$Q=$ True;
$Q^{\prime}=\operatorname{Tau}(Q)$;
while $\left(Q \neq Q^{\prime}\right)$ do
$Q=Q^{\prime} ;$
$Q^{\prime}=\operatorname{Tau}\left(Q^{\prime}\right) ;$
return Q;

Lesson 7d:

Symbolic CTL model checking

FixPoints and CTL

Identifying a formula f with the set of states $\operatorname{Sat}(f)=\{s \mid \mathcal{M}, s \vDash f\}$, we can characterize temporal operators as predicate transformers and their semantics as fixpoints of such operators. Intuitively:

* eventualities (\mathbf{F} and \mathbf{U}) are least fixpoints and
* properties that hold forever (R and \mathbf{G}) are greatest fixpoints.

They use expansion laws for $\mathbf{F}, \mathbf{U}, \mathbf{R}$, and \mathbf{G} using \mathbf{X}.

$$
\begin{aligned}
& \mathbf{A F} f=\mu Z . f \vee \mathbf{A X} Z \\
& \mathbf{E F} f=\mu Z . f \vee \mathbf{E X Z} \\
& \mathbf{A}[f \mathbf{U} g]=\mu \mathrm{Z} \cdot g \vee(f \wedge \mathbf{A X} Z) \\
& \mathbf{E}[f \mathbf{U} g]=\mu Z . g \vee(f \wedge \mathbf{A X} Z) \\
& \mathbf{E G} f=v Z . f \wedge \mathbf{E X Z} \\
& \mathbf{A G} f=v Z . f \wedge \mathbf{A X} Z \\
& \mathbf{A}[f \mathbf{R} g]=v Z . g \wedge(f \vee \mathbf{A X} Z) \\
& \mathbf{E}[f \mathbf{R} g]=v Z . g \wedge(f \vee \mathbf{E X} Z)
\end{aligned}
$$

EG as a greatest fixpoint

Lemma: The predicate transformer $\tau(Z)=f \wedge \mathbf{E X} Z$ is monotonic.
Proof: Let $Z_{1} \subseteq Z_{2}$. Let $s \in \tau\left(Z_{1}\right)$. Then $s \vDash f$ and there exists a successor s^{\prime} of s, such that $s^{\prime} \in Z_{1}$. But then $s^{\prime} \in Z_{2}$ and this implies that also $s \in \tau\left(Z_{2}\right)$. \square

Lemma: EG f is a fixpoint of the predicate transformer $\tau(Z)=f \wedge$ EX Z.
Proof: Suppose $s_{0} \vDash$ EG f. Then there exists an infinite path $\pi=s_{0} s_{1} s_{2} \ldots$ such that for all $k, s_{k} \vDash f$. This implies that $s_{0} \vDash$ EG f and $s_{1} \vDash \operatorname{EG} f$, that is $s_{0} \vDash \operatorname{EX} \operatorname{EG} f$. Thus $\operatorname{Sat}(\operatorname{EG} f) \subseteq \operatorname{Sat}(f \wedge \mathbf{E X} \operatorname{EG} f)$. Clearly $\operatorname{Sat}(f \wedge \mathbf{E X} \operatorname{EG} f) \subseteq \operatorname{Sat}(\operatorname{EG} f)$ and hence they are equal. \square
Lemma: EG f is the greatest fixpoint of the predicate transformer $\tau(Z)=f \wedge \mathbf{E X} Z$.
Proof: Being a fixpoint, EG $f \subseteq v Z . f \wedge \mathbf{E X Z}=\cap_{k} \tau_{k}(S)$ for some k. Let $s \in \cap_{k} \tau_{k}(\mathrm{~S})$. Since it is a fixpoint, $s \in \tau\left(\cap_{k} \tau_{k}(\mathrm{~S})\right)$. This implies that $s \vDash f$ and $\exists s^{\prime} . \mathrm{R}\left(s, s^{\prime}\right)$ and $s^{\prime} \in \cap_{k} \tau_{k}(\mathrm{~S})$. Applying this argument to s^{\prime} we find an infinite sequence of states that belong to $\cap_{k} \tau_{k}(\mathrm{~S})$ starting in s and thus $s \in \operatorname{EG} f . \square$

EU as a least fixpoint

Lemma: The operator $\tau(Z)=h \bigvee(g \wedge \mathbf{E X} Z)$ is monotonic.
Proof: Let $Z_{1} \subseteq Z_{2}$. Let $s \in \tau\left(Z_{1}\right)$. If $s \vDash h$ then $s \in \tau\left(Z_{2}\right)$. Otherwise $s \vDash g$ and there exists a successor s^{\prime} of s such that $s^{\prime} \in Z_{1}$. Since $s^{\prime} \in Z_{2}$, we have also that $s \in \tau\left(Z_{2}\right) . \square$

Lemma: $\mathbf{E}[g \mathbf{U} h]$ is a fixpoint of $\tau(Z)=h \bigvee(g \wedge \mathbf{E X} Z)$.
Proof: We have to show that $\operatorname{Sat}(\mathbf{E}[g \mathbf{U} h])=\operatorname{Sat}(g \vee(h \wedge$ EX E $[g$ $\mathbf{U} h])) . s_{0} \in \operatorname{Sat}(\mathbf{E}[g \mathbf{U} h])$ if and only if there exists a path of length $k \geq 0$ such that $s_{k} \vDash h$ and $s_{i} \vDash g$ for $0 \leq i<k$ if and only if s_{0} $\in \operatorname{Sat}(h \vee(g \wedge \mathbf{E X} \mathbf{E}[g \mathbf{U} h]) . \square$

Lemma: $\mathbf{E}[g \mathbf{U} h]$ is the least fixpoint of the predicate transformer $\tau(Z)=h \bigvee(g \wedge$ EX Z $)$.
Proof: Being a fixpoint, $\cup_{i} \tau_{i}(\varnothing)=\mu Z . h \bigvee(g \wedge \mathbf{E X} Z) \subseteq \mathbf{E}[g \mathbf{U} h]$. Let $s \in \mathbf{E}[g \mathbf{U} h]$. If $s \vDash h$ then $s \in \tau(Z)$ for any Z and so $s \in \cup_{i} \tau_{i}(\varnothing)$. Otherwise $s \vDash g$ and there exists a path of length $k \geq 0$ such that $s_{k} \vDash h$ and $s_{j} \vDash g$ for $0 \leq j<k$. It is easy to see that $s \in \tau_{k}(\varnothing)$ by induction on k. \square

Exercises on fixpoints

If you want to understand deeply fixpoints and semantics of temporal operators...try to solve the following exercises:

* Exercise 1: Which is the least fixpoint of the operator $\tau(Z)=f \wedge \mathbf{E X} Z$?
* Exercise 2: Find a Kripke structure in which the greatest fixpoint of the operator $\tau(Z)=h \bigvee(g \wedge \mathbf{E X} Z)$ contains at least a state s such that $s \notin \mathbf{E}[g \mathbf{U} h]$.
* Exercise 2: Find a Kripke structure in which the leatest fixpoint of the operator $\tau(Z)=g \wedge \mathbf{E X} Z$) does not contain some state s such that $s \not \vDash \mathbf{E} \mathbf{G} g$.
* Exercise 3: Find a monotonic but not continuous operator (of course you must deal with infinite sets!)
* Exercise 4: Which is the dual notion of finitary? That ensure that for a monotonic operator τ we have $v \tau=\bigcap_{i \in \mathrm{~N}} \tau_{i}(\varnothing)$ $=\tau_{\omega}$?

CTL model checking

The problem is to find three functions such that:

$$
\begin{gathered}
\operatorname{check}(\mathbf{E X} f)=\operatorname{checkEX}(\operatorname{check}(f)) \\
\operatorname{check}(\mathbf{E}[f \mathbf{U} g])=\operatorname{checkEU}(\operatorname{check}(f), \operatorname{Check}(g)) \\
\operatorname{check}(\mathbf{E G} f)=\operatorname{check} E G(\operatorname{check}(f))
\end{gathered}
$$

Observe that the parameter of check is a CTL formula φ, its result is an OBDD representing the set of states satisfying φ.

The parameters of checkEX, checkEU, and checkEG are OBDDs.

CTL model checking

* checkEX(f(v)) is strighforward. It is equivalent to $\exists v^{\prime} . f\left(v^{\prime}\right) \wedge R\left(v, v^{\prime}\right)$.
* checkEU($\left.f_{1}(v), f_{2}(v)\right)$ is based on the characterization of EU as the least fixpoint of the predicate transformer $\mu \mathrm{Z}$. $f_{2}(v) \vee\left(f_{1}(v)\right.$ \wedge EX Z).

It is computed a converging sequence of states $Q_{1}, \ldots, Q_{i}, \ldots$ Having the OBDD for Q_{i} and those for $f_{1}(v)$ and $f_{2}(v)$ one can easily compute those for Q_{i+1}. Observe that checking $Q_{i}=Q_{i+1}$ is strighforward.

* checkEG(f(v)) is based on the characterization of EG as the greatest fixpoint of the predicate transformer $v Z . f_{1}(v) \wedge$ EX Z.

Quantified Boolean Formulas

In the previous slides we use formulas such as: $\exists v^{\prime} . f\left(v^{\prime}\right) \wedge R\left(v, v^{\prime}\right)$.
They are quantified boolean formulas: They are equivalent to propositional formulas, but they allow a more succint representation.

Semantics:

- $\sigma \models \exists v f$ iff $\sigma\langle v \leftarrow 0\rangle \vDash f$ or $\sigma\langle v \leftarrow 1\rangle \vDash f$, and
- $\sigma \models \forall v f$ iff $\sigma\langle v \leftarrow 0\rangle \vDash f$ and $\sigma\langle v \leftarrow 1\rangle \vDash f$.

They can be represented as OBDD using restriction:

- $\exists x f=\left.\left.f\right|_{x \leftarrow 0} \vee f\right|_{x \leftarrow 1}$
- $\forall x f=\left.\left.f\right|_{x \leftarrow 0} \wedge f\right|_{x \leftarrow 1}$

That's all Folks!

Thanks for your attention...

 ... Questions?