Formal Methods in Software Development

OBDDs, FixPoints, and Symbolic Model Checking Ivano Salvo

Computer Science Department

SAPIENZA Università di Roma

Lesson 6, November 9th, 2019

Symbolic Model Checking

Basic Idea: represent Kripke structures by using **boolean functions**:

- 1. sets of states (as well as relations) are represented by their **characteristic function**: $x \in S \iff c_S(x)$ =True
- 2. Model Checking problems (such as reachability) solved by working **on set of states**, manipulating their charactheristic functions
- 3. Set of states satisfying a given temporal logic formula are characterized as the **fixpoint** of some monotone operator.

All this works (sometimes!) thanks to an efficient tool to manipulate boolean functions: **Ordered Binary Decision Diagrams** (OBDDs).

Lesson 7a:

Ordered Binary Decision Diagrams (OBDDs)

A **binary decision tree** is a **rooted**, **directed binary tree** that contains two types of vertices:

* **non-terminal** vertices v labeled by a variable **var**(v) and successors low(v) (when e v has value 0) and **high**(v) (when v has value 1).

* a **terminal** vertex v labeled by value(v) that is either 0 or 1.

A binary decision tree represents a **boolean function**.

Each **path** represents an **assignment to boolean variables** and the value of the terminal node represents the value of the function for that assignment.

Binary Decision Trees

Example: two bit comparator: $f(a_1, a_2, b_1, b_2) = a_1 \leftrightarrow b_1 \land a_2 \leftrightarrow b_2$

= function value

Binary Decision Diagrams

Idea: merging isomorphic subtrees (trivially, for example, just two terminal nodes): this leads to **Directed Acyclic Graphs** (DAGs).

Binary Decision Diagrams

The **Binary Decision Diagram** is **highly dependent** from the **order of variables**.

Example: two bit comparator: $f(a_1, a_2, b_1, b_2) = a_1 \leftrightarrow b_1 \land a_2 \leftrightarrow b_2$ with the order $a_1 < a_2 < b_1 < b_2$

In the *n* bit comparator, using this order, the BDD has 3 · 2^{*n*}-1 → EXPONENTIAL in *n*

With the order $a_1 < b_1 < ... < a_i < b_i$ <...< $a_n < b_n$ it has 3n+2 nodes \Rightarrow LINEAR in n

Canonical Forms

For several applications it is desirable to have a **canonical form** for BDDs.

Definition: Two BDDs B_1 and B_2 are **isomorphic** if there exists a bijection $h : V(B_1) \rightarrow V(B_2)$ that maps terminals to terminals and non-terminals to non-terminals such that: value(v)=value(h(v)), h(low(v))=low(h(v)), and h(high(v))=high(h(v)).

Canonical representations can be obtained by:

- 1. **Imposing a total ordering on variables**: if *u* has a successor *v*, then var(*u*)<var(*v*)
- 2. Avoid isomorphic sub-trees or redundant vertices.

Condition **2**. can be obtained by using **a** *reduce* **function that is linear** in the size of the DAG.

Reduction to a canonical form

Remove duplicate terminals: eliminate **all but one terminal** vertex with a given label and redirect all arcs to eliminated vertices to the remaining one.

Remove duplicate nonterminals: If there exist two nonterminal u and v such that var(u)=var(v), low(u)=low(v), and high(u)=high(v) then **eliminate one of them** and redirect all incoming arcs to the remaining vertex.

Remove redundant tests: if low(u)=high(u) then eliminate the vertex *u* and redirect incoming arcs to low(u) [=high(*u*)].

This procedure **can be implemented bottom-up**, linear in the size of the BDD. Some consequences:

Checking equivalence of boolean functions corresponds to checking OBDDs isomorphisms.

SAT on OBDDs is just checking if it is (not) the trivial OBDD.

Negative Results about OBDDs

★ It is **NP-complete** to find the **variable ordering** for a boolean function $f(x_1, ..., x_n)$ that makes the size of the **OBDD** representing *f* **optimal**.

◆ There are boolean functions $f(x_1, ..., x_n)$ such that the size of the **OBDD is exponential in** *n* **for all variable orders**. For example, the **mid bit of the** *n* **bit product**.

However, several **heuristics give good results**: for example, **related variables should be close in the ordering** (as in the *n* bit comparator example)

OBDD packages usually use **dynamic reordering** when heuristic seems to fail.

Logical operators using OBDDs

Restriction: $f|_{x_i=b}(x_1, ..., x_n) = f(x_1, ..., x_{i-1}, b, x_{i+1}, ..., x_n)$

Just find the node w such that $var(w) = x_{i-1}$, remove such node and replace all arcs $v \to w$ with $v \to low(w)$ if b=0 and with $v \to high(w)$ if b=1. The resulting OBDD may not be in canonical form, so **reduce must be applied** to it.

Using restriction, one can easily compute Shannon expansion:

$$f = (\neg \mathbf{x} \land f|_{x=0}) \lor (\mathbf{x} \land f|_{x=1})$$

Then, binary operations can be recursively computed stemming from Shannon expansion.

To simplify notations:

* v, v' are the root of OBDDs representing f and f'. * x, x' are var(v) and var(v')

Logical operators using OBDDs

Let ***** be an arbitrary two-argument boolean connective.

• If v and v' are both terminals, f * f' = value(v) * value(v')

• If x=x' then using Shannon expansion, we have:

 $f * f' = (\neg x \land (f|_{x=0} * f'|_{x=0})) \lor (x \land (f|_{x=1} * f'|_{x=1}))$

The root of the OBDD is w such that var(w)=x and $low(w) = (f|_{x=0} * f'|_{x=0})$ and $high(w) = (f|_{x=1} * f'|_{x=1})$

★ If x < x' then $f'|_{x=0} = f'|_{x=1} = f'$ since f' does not depend on x. In this case Shannon expansion simplifies to:

 $f \star f' = (\neg x \land (f|_{x=0} \star f')) \lor (x \land (f|_{x=1} \star f'))$

and the OBDD is computed as before with *x* as root.

• If x' < x: symmetric to the previous case.

Since each problem generates two subproblems, to prevent exponential behaviour dynamic programming must be used! $\mathcal{O}(|f| \cdot |f'|)$.

Negation can be computed just flipping terminal nodes.

A single **multi-rooted DAG** can be used to represent **several boolean functions** that share subgraphs. In this case, *f* and *f*' are the same if they have the same root!

Adding label to edges to denote boolean negation. In this case f and $\neg f$ can be represented by a single OBDD.

OBDDs can be viewed as a DFA. A *n*-ary boolean function can be seen as the set of string x in $\{0, 1\}^n$ such that f(x) = 1. **The minimal automata that accept this language** is an alternative canonical form for *f*.

Standard boolean connectives can be seen as operation between languages (for example \land is intersection etc.)

Lesson 7b:

Using OBDDs to represent Kripke Structures

Characteristic functions

Let *Q* be a *n*-ary relation over {0,1}. *Q* can be represented by its **charactheristic function**: $(x_1, ..., x_n) \in Q$ iff $f_Q(x_1, ..., x_n) = 1$.

Let *Q* be a *n*-ary relation over a domain *D*. For simplicity we assume that $|D| = 2^m$ for some m > 1.

Elements of *D* can be encoded using a bijection $\phi : \{0,1\}^m \rightarrow D$.

Q can be represented by a $m \times n$ -ary boolean charactheristic function according to

$f_Q(d_1, ..., d_n) = 1$ iff $Q(\phi(d_1), ..., \phi(d_n))$

where $d_1, ..., d_n$ are vectors of length *m* of boolean variables.

Sets can be viewed simply as **unary relations**.

Kripke structures as OBDDs

Let $\mathcal{M}=(S, R, L)$ be a Kripke structure.

An encoding function ϕ (bijection) encodes states of *S*.

S is the constant function 1 on $\{0,1\}^m$. Subsets of S are represented by their characteristic functions.

R is represented by a characteristic function $f_R : \{0,1\}^{2m} \rightarrow \{0,1\}$.

The mapping *L* is represented by **an OBDD** f_p **for each atomic proposition** *p*, such that f_p is the characteristic function of the set { $s \in S | p \in L(s)$ }.

Along the same lines, one can represent the set **of initial states** *I* or a set of (unconditionally) **fairness constraints** $F = \{P_1, ..., P_k\}$.

 \mathcal{M} is not explicitly generated and then converted into its OBDD representation, but rather OBDDs are generated starting from a high level description of \mathcal{M} (for example programs!).

Lesson 7c:

Fixpoints

Classical FixPoint Theorem

Fixpoints have a relevant role in Logic and Theoretical Computer Science. For example, they are used to define semantics of Programming Languages (recursive definitions) or equivalences (bisimulation).

Given an function $T: L \rightarrow L$, $x \in L$ is a **fixpoint** of T if T(x)=x. μT (resp. νT) denotes the **minimum** (resp. **maximum**) fixpoint of T.

Definition: A complete lattice (L, \leq) is a partially ordered set, such that each subset $A \subseteq L$ has a greatest lower bound $\neg A$ (glb or inf standing for infimum) and a least upper bound $\neg A$ (lub or sup standing for supremum).

 $sup A = min\{x \mid \forall a \in A. x \ge a\}$ and $inf A = max\{x \mid \forall a \in A. x \le a\}$

Example: Given a set *S*, ($\mathcal{P}(S)$, \subseteq) is a complete lattice where if $A \subseteq P(S)$ then *inf* $A = \bigcap_{a \in A} a$ and *sup* $A = \bigcup_{a \in A} a$.

Observation: a complete lattice *L* has always a minimum, that is $\bot = \inf \emptyset$ and a maximum $\top = \sup L$. This implies that $L \neq \emptyset$.

Knarster-Tarski Theorem I

Def: *T*: *L* \rightarrow *L* is **monotonic** if $x \le y$ implies $T(x) \le T(y)$.

Theorem: [KNARSTER-TARSKI] If *L* is a complete lattice and *T* : $L \rightarrow L$ is *monotonic*, then *T* has a minimum fixpoint μT and a maximum fixpoint vT. Moreover:

 $\mu T = \inf \{x \mid T(x) \le x\} \text{ and } vT = \sup \{x \mid x \le T(x)\}$

Proof: Let $G = \{x \mid T(x) \le x\}$ and $g = \inf G$. We first show that $g \in G$. $g \le x, \forall x \in G$. By monocity of $T, T(g) \le T(x) \le x$. But, being an inf, g is the maximum lower bound, therefore $T(g) \le g$. Hence $g \in G$.

From $T(g) \le g$ we have $T(T(g)) \le T(g)$. But this implies that $T(g) \in G$. Therefore $g \le T(g)$. And therefore g = T(g), that is g is a **fixpoint**.

Finally, let $g' = \inf\{x \mid T(x) = x\}$. Since g is a fixpoint $g' \le g$. But since $\{x \mid T(x) = x\} \subseteq \{x \mid T(x) \le x\}$, we have also $g \le g'$. Hence g is the minimum fixpoint of T. A dual argument works for vT. \Box

Knarster-Tarski Theorem II

Definition: Let $T : L \to L$, we define **transfinite powers** of T as follows: $T^0 = \bot$. $T^{\alpha+1}=T(T^{\alpha})$ and if λ is a limit ordinal, $T^{\lambda}=\sup_{\alpha<\lambda}T^{\alpha}$. Dually, we define the **transfinite downward powers** as follows: $T_0=\top$. $T_{\alpha+1}=T(T_{\alpha})$ and if λ is a limit ordinal, $T_{\lambda}=\inf_{\alpha<\lambda}T_{\alpha}$.

Theorem: If *L* is a complete lattice and $T: L \rightarrow L$ is *monotonic*, then $T^{\alpha} \leq \mu T$ and $\nu T \leq T_{\alpha}$. Moreover, there exist two ordinals β_1 and β_2 such that $\mu T = T^{\alpha}$ for all $\alpha \geq \beta_1$ and $\nu T = T_{\alpha}$ for all $\alpha \geq \beta_2$.

Proof: (1) $T^{\alpha} \leq \mu T$. Trivially, $T^{0} = \bot \leq \mu T$. If $T^{\alpha} \leq \mu T$, by monotonicity of *T* we have $T(T^{\alpha}) \leq T(\mu T)$ that means $T^{\alpha+1} \leq \mu T$. $T^{\lambda} = \sup_{\alpha < \lambda} T^{\alpha}$ and all $T^{\alpha} \leq \mu T$ (by transfinite inductive hypothesis) we have the thesis because limits preserve \leq .

(2) $T^{\alpha} \leq T^{\alpha+1}$. Trivially, $T^0 = \bot \leq T^1$. Assuming $T^{\alpha} \leq T^{\alpha+1}$, by monotonicity, we have $T(T^{\alpha}) \leq T(T^{\alpha+1})$, hence $T^{\alpha+1} \leq T^{\alpha+2}$.

(3) If $\alpha \leq \beta$ then $T^{\alpha} \leq T^{\beta}$. The property is trivial using (2) and observing again that limits preserve \leq (for limit ordinals).

Knarster-Tarskij Theorem II

Proof: (cntnd)

(4) If $\alpha \leq \beta$ and $T^{\alpha} = T^{\beta}$ then $T^{\alpha} = \mu T$. If $T^{\alpha} = T^{\beta}$ and since by (2) the sequence T^{α} is ascending ordered, all $T^{\alpha} = T^{\gamma} = T^{\beta}$ for all γ such that $\alpha \leq \gamma \leq \beta$. But this implies that $T^{\alpha} = T(T^{\alpha})$, that is T^{α} is a fixpoint and by (1) T^{α} is μT .

(5) There exists α such that $T^{\alpha} = \mu T$. By contradiction, assume that this is not the case. By (2) and (4) this implies that the sequence of powers of *T* is **strictly** ordered and contains **distinct** elements, defining an injection from the set of ordinals into *L*. Absurd. (for any set *L*, there exists an ordinal of "bigger" cardinality).

All these reasoning **works dually** for downward powers and for vT (**Exercise** \bigcirc).

Set Operators

Given a set *S*, the powerset $\mathcal{P}(S)$ is a complete lattice, ordered by \subseteq (as expected *sup* is \cup and *inf* is \cap).

A function $\tau : \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ is called a **predicate transformer**.

★ *τ* is **monotonic** if *Q*⊆*Q*′ implies $\tau(Q) \subseteq \tau(Q')$

◆ *τ* is **finitary** if *x* ∈ *τ*(*Q*) if and only if $\exists Q_0 \subseteq Q, Q_0$ finite, such that *x* ∈ *τ*(*Q*₀)

★ *τ* is \cup -continuous if for a sequence $Q_1 \subseteq Q_2 \subseteq Q_3 \subseteq ...$ we have that $\cup_i \tau(Q_i) = \tau(\cup_i Q_i)$

★ *τ* is ∩ **-continuous** if for a sequence $Q_1 \supseteq Q_2 \supseteq Q_3 \supseteq ...$ we have that $\bigcap_i \tau(Q_i) = \tau(\bigcap_i Q_i)$

Finitary Operators

Lemma: If τ is monotone and $\{x_j\}_{j \in J}$ is an ascending chain then $\sup_{j \in J} \tau(x_j) \subseteq \tau(\sup_{j \in J} x_j)$

Proof: for all $i \in J$, we have: $x_i \subseteq \sup_{j \in J} x_j$. By monotonicity of τ we have that $\tau(x_i) \subseteq \tau(\sup_{j \in J} x_j)$, that is, $\tau(\sup_{j \in J} x_j)$ is an upper bound of the chain $\{\tau(x_i)\}_{i \in J}$. Being sup $\{\tau(x_i)\}_{i \in J}$ the minimum of upper bounds, we get the thesis. \Box

Lemma: If τ is monotone and finitary and $\{x_j\}_{j \in J}$ is an ascending chain then $\sup_{j \in J} \tau(x_j) \supseteq \tau(\sup_{j \in J} x_j)$.

Proof: Let $y \in \tau(\sup_{j \in J} x_j)$. There exists a finite set $z_0 \subseteq \sup_{j \in J} x_j$ such that $y \in \tau(z_0)$. Since $\{x_j\}_{j \in J}$ is a chain, there exists k such that $z_0 \subseteq x_k \subseteq \sup_{j \in J} x_j$. Therefore $y \in \sup_{j \in J} \tau(x_j)$.

Theorem: $\tau : \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ is \cup -continuous if and only if it τ is monotonic and finitary.

Kleene Fixpoint Theorem

Theorem: [KLEENE] If τ is \cup -continuous then $\mu \tau = \bigcup_{i \in \mathbb{N}} \tau^i(\emptyset) = \tau^{\omega}$. **Proof**:

 $\tau^{\omega} = \sup \{\tau^{i} \mid i < \omega\} \qquad (def. \text{ of } \tau^{\omega}) \\ = \sup \{\tau(\tau^{i}) \mid i < \omega\} \qquad (prestige ©) \\ = \tau(\sup \{\tau^{i} \mid i < \omega\}) \qquad (continuity) \\ = \tau(\tau^{\omega}) \qquad (def. \text{ of } \tau^{\omega}) \qquad \Box$

Question: Which is the dual notion of finitary? That ensure that for a monotonic operator τ we have $v\tau = \bigcap_{i \in \mathbb{N}} \tau_i(\emptyset) = \tau_{\omega}$?

For the purposes of Model Checking... all this is a bit too much. In a finite *S*, the monotonic chain $\tau^i(\emptyset)$ reaches the least fixpoint $\mu\tau$ after a finite number of steps and $\tau_i(S)$ reaches the greatest fixpoint $\nu\tau$ after a finite number of steps!

On a finite set, a monotonic operator is necessarily finitary!

Finite Fixpoint properties

Proofs of the following three lemmas can be easily obtained specializing proofs of the general case to the finite case.

Lemma: If S is finite and τ is monotonic, then τ is also \cup -continuous and \cap -continuous.

Lemma: If *S* is finite and τ is monotonic, then there exist two integers *p*, *q* such that $\tau^p(\emptyset) = \tau^i(\emptyset)$ and $\tau_q(S) = \tau_j(S)$ for all $i \ge p$ and for all $j \ge q$.

Lemma: If *S* is finite and τ is monotonic, then there exist two integers *p* and *q* such that $\tau^p(\emptyset) = \mu\tau$ and $\tau_q(S) = \nu\tau$.

Computing Finite Fixpoints - Lfp

Using characteristic functions for representing sets, the **constant FALSE is the emptyset**. The invariant of the following program is **INV** $\equiv Q' \subseteq \mu \tau \land Q' = \tau(Q)$.

The computed sequence is **strictly increasing** (wrt \subseteq) and hence |S| is an upperbound to the number of iterations.

It terminates because the guard of the **while** implies $Q \neq Q'$.

def leastFixedPoint(Tau: PredicateTransformer): Q = FALSE; Q' = Tau(Q);while $(Q \neq Q')$ do Q = Q'; Q'=Tau(Q');return Q;

Computing Finite Fixpoints - Gfp

Using characteristic functions for representing sets, the **constant TRUE is the universe set S**. The invariant of the following program is **INV** $\equiv Q' \supseteq v\tau \land Q' = \tau(Q)$.

The computed sequence is **strictly decreasing** (wrt \subseteq) and hence |S| is an upperbound to the number of iterations.

It terminates because the guard of the **while** implies $Q \neq Q'$.

def greatestFixedPoint(Tau: PredicateTransformer): $Q = \mathbf{TRUE};$ Q' = Tau(Q);while $(Q \neq Q')$ do Q = Q'; Q'=Tau(Q');return Q;

Lesson 7d:

Symbolic CTL model checking

FixPoints and CTL

Identifying a formula f with the set of states $Sat(f)=\{s \mid M, s \models f\}$, we can characterize temporal operators as predicate transformers and their semantics as fixpoints of such operators. Intuitively:

* eventualities (F and U) are least fixpoints and

✤ properties that hold forever (R and G) are greatest fixpoints.

They use **expansion laws** for **F**, **U**, **R**, and **G** using **X**.

$$AF f = \mu Z. f \lor AX Z$$

$$EF f = \mu Z. f \lor EX Z$$

$$A[f U g] = \mu Z. g \lor (f \land AX Z)$$

$$E[f U g] = \mu Z. g \lor (f \land AX Z)$$

$$EG f = v Z. f \land EX Z$$

$$AG f = v Z. f \land AX Z$$

$$A[f R g] = v Z. g \land (f \lor AX Z)$$

$$E[f R g] = v Z. g \land (f \lor EX Z)$$

EG as a greatest fixpoint

Lemma: The predicate transformer $\tau(Z)=f \land \mathbf{EX} Z$ is monotonic. **Proof**: Let $Z_1 \subseteq Z_2$. Let $s \in \tau(Z_1)$. Then $s \models f$ and there exists a successor s' of s, such that $s' \in Z_1$. But then $s' \in Z_2$ and this implies that also $s \in \tau(Z_2)$. \Box

Lemma: EG *f* is a fixpoint of the predicate transformer $\tau(Z)=f \wedge \mathbf{EX} Z$.

Proof: Suppose $s_0 \models \mathbf{EG} f$. Then there exists an infinite path $\pi = s_0 s_1 s_2 \dots$ such that for all $k, s_k \models f$. This implies that $s_0 \models \mathbf{EG} f$ and $s_1 \models \mathbf{EG} f$, that is $s_0 \models \mathbf{EX} \mathbf{EG} f$. Thus $\operatorname{Sat}(\mathbf{EG} f) \subseteq \operatorname{Sat}(f \land \mathbf{EX} \mathbf{EG} f)$. Clearly $\operatorname{Sat}(f \land \mathbf{EX} \mathbf{EG} f) \subseteq \operatorname{Sat}(f \land \mathbf{EX} \mathbf{EG} f) \subseteq \operatorname{Sat}(f \land \mathbf{EX} \mathbf{EG} f)$.

Lemma: **EG** *f* is the greatest fixpoint of the predicate transformer $\tau(Z)=f \wedge \mathbf{EX} Z$.

Proof: Being a fixpoint, **EG** $f \subseteq vZ$. $f \land EX Z = \bigcap_k \tau_k(S)$ for some k. Let $s \in \bigcap_k \tau_k(S)$. Since it is a fixpoint, $s \in \tau(\bigcap_k \tau_k(S))$. This implies that $s \models f$ and $\exists s'.R(s, s')$ and $s' \in \bigcap_k \tau_k(S)$. Applying this argument to s' we find an infinite sequence of states that belong to $\bigcap_k \tau_k(S)$ starting in s and thus $s \in EG f$. \Box

EU as a least fixpoint

Lemma: The operator $\tau(Z) = h \lor (g \land \mathbf{EX} Z)$ is monotonic. **Proof**: Let $Z_1 \subseteq Z_2$. Let $s \in \tau(Z_1)$. If $s \models h$ then $s \in \tau(Z_2)$. Otherwise $s \models g$ and there exists a successor s' of s such that $s' \in Z_1$. Since $s' \in Z_2$, we have also that $s \in \tau(Z_2)$. \Box

Lemma: **E** [*g* **U** *h*] is a fixpoint of $\tau(Z) = h \lor (g \land \mathbf{EX} Z)$.

Proof: We have to show that $\operatorname{Sat}(\mathbf{E}[g \mathbf{U} h]) = \operatorname{Sat}(g \lor (h \land \mathbf{EX} \mathbf{E}[g \mathbf{U} h]))$. $s_0 \in \operatorname{Sat}(\mathbf{E}[g \mathbf{U} h])$ if and only if there exists a path of length $k \ge 0$ such that $s_k \vDash h$ and $s_i \vDash g$ for $0 \le i < k$ if and only if $s_0 \in \operatorname{Sat}(h \lor (g \land \mathbf{EX} \mathbf{E}[g \mathbf{U} h]))$. \Box

Lemma: **E** [*g* **U** *h*] is the least fixpoint of the predicate transformer $\tau(Z) = h \lor (g \land \mathbf{EX} Z)$.

Proof: Being a fixpoint, $\bigcup_i \tau_i(\emptyset) = \mu Z$. $h \lor (g \land EX Z) \subseteq E[g \cup h]$. Let $s \in E[g \cup h]$. If $s \models h$ then $s \in \tau(Z)$ for any Z and so $s \in \bigcup_i \tau_i(\emptyset)$. Otherwise $s \models g$ and there exists a path of length $k \ge 0$ such that $s_k \models h$ and $s_j \models g$ for $0 \le j \le k$. It is easy to see that $s \in \tau_k(\emptyset)$ by induction on k. \Box

Exercises on fixpoints

If you want to understand deeply fixpoints and semantics of temporal operators...try to solve the following exercises:

***** Exercise 1: Which is the least fixpoint of the operator $\tau(Z)=f \wedge \mathbf{EX} Z$?

★ Exercise 2: Find a Kripke structure in which the greatest fixpoint of the operator $\tau(Z) = h \lor (g \land \mathbf{EX} Z)$ contains at least a state *s* such that $s \nvDash \mathbf{E} [g \mathbf{U} h]$.

★ Exercise 2: Find a Kripke structure in which the leatest fixpoint of the operator $\tau(Z) = g \land \mathbf{EX} Z$ does not contain some state *s* such that *s* \nvDash **E G** *g*.

Exercise 3: Find a monotonic but not continuous operator (of course you must deal with infinite sets!)

★ Exercise 4: Which is the dual notion of finitary? That ensure that for a monotonic operator τ we have $\upsilon \tau = \bigcap_{i \in \mathbb{N}} \tau_i(\varnothing) = \tau_{\omega}$?

CTL model checking

The problem is to find three functions such that: $check(\mathbf{EX} f)=checkEX(check(f))$ $check(\mathbf{E}[f \mathbf{U} g]) = checkEU(check(f), Check(g))$ $check(\mathbf{EG} f) = checkEG(check(f))$

Observe that the parameter of *check* is a CTL formula φ , its result is an OBDD representing the set of states satisfying φ .

The parameters of *checkEX*, *checkEU*, and *checkEG* **are OBDDs**.

CTL model checking

◆ *checkEX*(*f*(*v*)) is strightforward. It is equivalent to $\exists v'.f(v') \land R(v,v')$.

★ *checkEU*($f_1(v)$, $f_2(v)$) is based on the characterization of **EU** as the least fixpoint of the predicate transformer μZ . $f_2(v) \lor (f_1(v) \land \mathbf{EX} Z)$.

It is computed a converging sequence of states $Q_1, ..., Q_i, ...$ Having the OBDD for Q_i and those for $f_1(v)$ and $f_2(v)$ one can easily compute those for Q_{i+1} . Observe that checking $Q_i = Q_{i+1}$ is strightforward.

* *checkEG*(f(v)) is based on the characterization of **EG** as the greatest fixpoint of the predicate transformer vZ. $f_1(v) \land EX Z$.

Quantified Boolean Formulas

In the previous slides we use formulas such as: $\exists v'.f(v') \land R(v,v')$.

They are **quantified boolean formulas**: They are equivalent to propositional formulas, but they allow a more succint representation.

Semantics:

- $\sigma \models \exists v f \text{ iff } \sigma \langle v \leftarrow 0 \rangle \models f \text{ or } \sigma \langle v \leftarrow 1 \rangle \models f, \text{ and }$
- $\sigma \models \forall v f \text{ iff } \sigma \langle v \leftarrow 0 \rangle \models f \text{ and } \sigma \langle v \leftarrow 1 \rangle \models f.$

They can be represented as OBDD using restriction:

- $\exists x f = f|_{x \leftarrow 0} \lor f|_{x \leftarrow 1}$
- $\forall x f = f|_{x \leftarrow 0} \land f|_{x \leftarrow 1}$

That's all Folks!

Thanks for your attention... ...Questions?