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Lesson 5a:

The Fairness problem



Often, system models abstract from details such as, for 
example, scheduler policies

Interleaving semantics does not rule out unrealistic behaviour, 
for example, those in which some processes do not make any
progress

Two possible approaches:

1. Embody a fair process scheduling in the model, as in the 
case of Peterson mutual exclusion algorithm. 

2. Assume some fairness properties, and perform model 
checking under such assumptions. 

In the following, we follow the second approach, which is more 
abstract.

Fairness



Example: Interleaving Semantics

Two independent traffic lights (lesson 1): 

Interleaving semantics allows infinite executions in which only
the first traffic light commute: {red1, red2}{green1, red2} {red1, 
red2}{green1, red2} {red1, red2}{green1, red2}…



Let us consider, the mutual exclusion protocol (shared
variables) and the following starvation freedom property:

“Once access is requested, a process does not have to wait infinitely
long before acquiring access to its critical section”

This is violated, just because, abstracting from the scheduling
policy, in the model there exists an execution that assignes the 
critical resource always to the same process.

Also the property:

“Each of the processes is infinitely often in its critical section”

is violated also by the Peterson protocol, as it does not exclude
that a process would never (or finitely often) request to enter
its critical section.

Example: (un)fair Schedulers



There are several notions of fairness:

v Unconditional Fairness: “every process gets its turn 
infinitely often” (without conditions, aka impartiality)

v Strong Fairness: “every process that is enabled infinitely
often gets its turn infinitely often” (aka compassion)

v Weak Fairness: “every process that is continuously
enabled from a certain point on gets its turn infinitely
often” (aka justice)

Many other fairness notions have been introduced in literature
and there is no clear consensus about which notion should be 
used in some scenario. It depends on the application.

We will see in the following some roadmap.

Fairness notions



Definition: Given a transition system without terminal states
T = (S, Act, →, I, AP, L) a set of actions A⊆Act, and an infinite 
path 𝜋 = s0𝛼0s1𝛼1s2𝛼2… we say that:

v 𝜋 is unconditionally A-fair whenever for infinite many
indices i, 𝛼i ∊ A (similar to LTL formula ≈ G F A)

v 𝜋 is strongly A-fair whenever if for infinite many indices
i, 𝛼i ∊ enabled(si) ⋂ A ≠ ∅ then for infinite many indices j we
have 𝛼j ∊ A (similar to LTL formula ≈ G F A→ G F A)

v 𝜋 is weakly A-fair whenever if exists i0, such that for all
indices i≥i0 (= almost always) 𝛼i ∊ enabled(si) ⋂ A ≠ ∅ then for 
infinite many indices j we have 𝛼j ∊ A (similar to LTL formula 
≈ F G A→ G F A).

[Observe that LTL formulas are state-based]

Fairness def. (action based)



Ex: Shared variables program

This process terminates only if unconditional fairness is
assumed. If the process Inc or the process Reset can execute
infinitely often, the concurrent program does not terminate.

[Brackets ⟨…⟩ means “atomic actions”]

Which notion of fairness we should use? No answer!

Keep in mind: if the fairness constraints are too strong, 
relevant computation can be ruled out. By contrast, if the 
fairness constraints are too weak, we refute a property because
we consider unrealistic behaviour of a system.

Uncond. Fairnes A ⟹ Strong Fairness A ⟹ Weak Fairness A



The dashed execution fragment is strongly fair (premises are 
vacously true), but not unconditionally fair for { enter2 }. 

The dotted is weakly fair, but not strongly fair for { enter2 }.
Process 1 requests access infinitely often, but not continuously
(enter2 is not enabled in ⟨c1, w2, y=0⟩) 

Mutual Exclusion Reloaded



Be careful in defining fairness assumption!

The strong fairness assumption {{enter1, enter2}} ensure only
that one of the two process enter its critical section infinitely
often. Maybe that {{enter1}, {enter2}} is what one wants!

Example: How to model Fairness



Definition: Let P⊆ (2'()* be an LT property over AP and let F
be a fairness assumption over A. A transition system M fairly 
satisfies P, notation M ⊨F P, if and only if fairTraces(M)⊆P. 

If all executions of M satisfies F, then M ⊨F P iff M ⊨ P. 

More in general, we have that M ⊨ P ⟹ M ⊨F P (fair executions 
are a subset of all executions).

As said before, we also have:
M ⊨weak F P ⟹ M ⊨ strong F P ⟹ M ⊨ uncond F P

Example [Independent Traffic Lights] The fair assumption:

{{switchToGreen1, switchToRed1}, {switchToGreen2, switchToRed2}}

rules out unrealistic behaviour, no matter if this is interpreted as
strong, weak or unconditional fairness constraint.

TrLight1 ‖ TrLight2 ⊨F F G green ≡“each traffic light is green infin. often”

Fairness: Linear Time Properties



Let us consider again the semaphore based mutual exclusion
protocol. Let us define the following fairness constraints:

Fweak= {{req1},{req2}} Fstrong= {{enter1},{enter2}} Funcond = ∅

The strong fairness assumption Fstrong does not forbid a process
to never release its critical section. 

The weak fairness assumption Fweak implies that a process
requires to enter critical section infinitely often (and hence it
has to leave infinitely often its critical section because req1 is
enabled when c2 holds!)

Also Peterson’s protocol ensure that process will enter its critical
section if it requires it infinitely often. But it does not ensure that
processes leave their critical section. To ensure this, we should
impose the weak fairness assumption Fweak= {{req1},{req2}}. 

Example: Mutual Exclusion



Rule of Thumb:

Strong fairness is appropriate to obtain an adequate resolution
of contentions between processes or communication.

Weak fairness suffices for sets of actions that represent the 
concurrent execution of independent actions (interleaving)

Concurrency = interleaving + (strong or weak) fairness: 

Let us assume we have n processes represented by transition
systems Mi = (Si, Ai, →i, APi, Li) and consider the parallel
composition:

M = M1 ‖ M2 ‖ … ‖ Mn

and let us suppose that each pair 1 ≤ i < j ≤ n of processes
synchronize on a set of actions Hi,j.

Weak or Strong Fairness?



The strong fairness assumption {A1, A2, …, An} means that each
process makes some progress infinitely often (provided that
infinitely often a process has an enabled action to execute). This
assumption is satisfied, however, only with internal actions and 
no sync!

v {{𝛼} | 𝛼 ∊ Hi,j 0 < i < j ≤ n } forces every synchronization
action to be performed infinitely often

v {Hi,j | 0 < i < j ≤ n } forces every pair of processes to 
synchronize infinitely often, maybe on the same action

v {⋃ 𝐻-,/�
12-2/34 } just requires that there are infinite 

synchronization actions, regardless of which are processes
involved

For internal actions, the weak fairness assumption: {A1\H1, …, 
An\Hn }, where Hi= ⋃ 𝐻/�

-5/ , is appropriate, since internal actions
are continously ready to be executed.

Fair Synchronization



In all our examples, we deal with liveness properties. This is not
incidental. Fairness is (almost) irrilevant with respect to safety
properties.

Definition: Given a transition system M and a set of actions of M
a fairness policy F is realizable if for all reachable state s of M, 
the set of fair path starting in s is not empty.

Example:

The unconditional fairness assumption {{𝛼}} is not realizable, just 
because 𝛼 can be executed just once, and therefore there is no 
path in which 𝛼 appears infinitely often.

Fairness and Safety Properties



Theorem. Let M be a transition system with AP as set of atomic
proposition and F a realizable fairness policy, and Psafe be a 
safety property over AP. Then

M ⊨F Psafe⇔M ⊨ Psafe

Proof: (⇒) this is true for any linear property (previous slides).

(⟸) By contradiction, let us suppose that M ⊨F Psafe but not M ⊨
Psafe. Then there exists an execution 𝜋 ∉ Psafe and 𝜋 is not fair. 𝜋 is 
ruled out by a finite bad prefix 𝜋* that ends in a state s. Since F is 
realizable, there exists a fair path 𝜋’ starting in s. But clearly, 𝜋* 𝜋’ 
is a faire path that does not satisfy Psafe against the hypothesis 
that M ⊨F Psafe. ☐

Fairness and Safety Properties



Lesson 5b:

Fairness
in 

LTL Model Checking



The three notions of fairness we have considered can be 
expressed by LTL formulas of the shape:

Unconditional fairness: G F 𝜑

Strong fairness: G F 𝜑→ G F 𝜓

Weak fairness: F G 𝜑→ G F 𝜓

The only problem is that LTL formulas are built on atomic
propositions that label states: therefore 𝜑 and 𝜓 depend on the 
state labeling and they single out set of states of a transition
system M, i.e. { s | M, s ⊨ 𝜑}.

By contrast, so far we have defined fairness assumptions as set of 
actions, however…

Fairness is expressible in LTL



The strong (action based) fairness assumption Fstrong = {{enter1}, 
{enter2}} can be represented by the (state based) LTL formula:

sfair1 = G F (wait1∧ ¬crit2) → G F crit1

Observe that enter1 can be executed only if P1 is in the state wait1 
and P2 is not in its critical section.

The assumption sfair2 can be defined analogously.

Fstrong does not forbid a process to never leave its critical section. 
The (action based) weak assumption = {{req1}, {req2}} can be 
encoded as the (state based) LTL formula 

wfair1 = F G noncrit1 → G F wait1

Observe that the action req1 is executable only if P1 is in the state 
noncrit1.

The assumption wfair2 can be defined analogously.

Example: Mutual Exclusion



Kripke structures have no action labels. One can always keep
information into states.

Let M be a transition system (S, A, →, I, AP, L). We can define
the system M’=(S’, A’, →’, I’, AP’, L’) where:

v A’ = A∪{ begin } 

v I’ = I × { begin } 

v S’= I’ ∪(S × A) 

v If s0 →𝛼 s (s0 ∊ I ), then (s0, begin)→’𝛼 (s, 𝛼). 
If s→𝛼 t then for all 𝛽, (s, 𝛽) ∊ S’. (s, 𝛽) →’𝛼 (t, 𝛼)

v AP’ = AP ∪{ enabled(𝛼), taken(𝛼) | 𝛼 ∊ A} 

v L’(s, 𝛼) = L(s) ∪{ taken(𝛼)} ∪{ enabled(𝛽) | 𝛽 ∊ Act(s)} 
and L’(s0, begin) = L(s0) ∪{ enabled(𝛽) | 𝛽 ∊Act(s0)}

Action vs State based Fairness 1



Theorem. traces(M) = traces(M’). Moreover, strong fairness for 
a set of actions F⊆ A can be described by the LTL formula:

strongFairF≡ G F enabled(F)→taken(F)

[similar for weak fairness and unconditional fairness]

Theorem. Let M be a transition system without terminal states
and let 𝜑 be a LTL formula and let F be a fairness assumption
that can be modeled by a LTL formula 𝜓. Then:

M ⊨F 𝜑 if and only if M ⊨ fair → 𝜑

Proof. M ⊨ fair → 𝜑 if and only if ¬fair or fair∧𝜑. ¬fair is
satisfied on all non fair path, whereas fair∧𝜑 holds on all fair 
paths satisfying fair. ☐

Action vs State based Fairness 2



Best LTL model checking algorithms are exponential on the 
size of the formula 𝜑 to be verified.

If fairness constraints are modeled by complex LTL formula 𝜓, 
the computational cost to solve the model checking problem

M ⊨ fair → 𝜑

could be huge! 

For example, if fairness constraints are described by n set of 
actions A1, …, An the formula is

∧i=1, …, n G F enabled(Ai) → taken(Ai)

Be careful about complexity



Lesson 5c:

Fairness in CTL 
& CTL Model Checking

with fairness constraints



We will consider strong fairness constraints of the form:

𝑠𝑓𝑎𝑖𝑟 = ? 𝐆	𝐅	𝜑- 	→ 𝐆	𝐅	𝜓-

�

D3-3E

Where 𝜑i and 𝜓i are CTL formulas (without fairness). Observe
that being CTL formulas, 𝜑i and 𝜓i identify a set of states of a 
Kripke structure M: Sat(𝜑i) = { s |M, s ⊨ 𝜑i }.
On the other hand, given a path 𝜋 = s0s1s2…, we have:

𝜋 ⊨LTL G F 𝜑i → G F 𝜓i 

if for all 1≤ i ≤ k, there exists j such that sj ⊨CTL 𝜑i for finitely
many indices j [¬ G F 𝜑i ], or sj ⊨CTL 𝜓i for infinitely many
indices [G F 𝜑i ∧ G F 𝜓i] (remember that a→b ≡ ¬a ⋁ b).
A path 𝜋 is fair M, if 𝜋 ⊨LTL G F 𝜑i → G F 𝜓i . We denote with: 
• fairPaths(s) the set of fair paths starting in a state s, 
• fairPaths(M) the set of fair paths starting in an initial state s0 

of M.

Strong Fairness in CTL



Formulas of the form G F 𝜑→ G F 𝜓 are not in CTL, because:
1. The formula G F 𝜑 has two consecutive temporal operators
2. The boolean connective → is applied to two path formulas

In CTL we must change the semantics of E and A stipulating
that they quantify over fair paths.

We define a new ⊨F semantic satisfaction judgement:

Fairness is not expressible in CTL

Observe that 1. influence indirectly also the semantics of 
temporal operators X or U!!!



Theorem. The CTL model checking problem with fairness can 
be reduced to:
1. The CTL model checking problem without fairness, and
2. The problem of computing Satfair(E G a) for some a ∊ AP.

Proof: This approach is quite straightforward for the 
propositional logic fragment, for example Satfair(a) if a ∊ L(s) and 
there exists a fair path starting in s, that is M, s ⊨fair E G true.
Similarly, of course, for M, s ⊨fair E X f : there must be a fair path
starting in s such that s1 ⊨ f and M, s1 ⊨fair E G true.
As for M, s ⊨fair E [f1 U f2] there must be a fair path starting in s
such that there exist M, sn ⊨fair f2 and M, si ⊨fair f1, for all 1≤ i ≤ n
and sn ⊨fair E G true (observe that only the infinite suffix is
relevant for fairness).  
Obviously, in the iterative CTL algorithm, M, s ⊨fair E G f is
applied when f has been processed, and hence the problem is
to check M, s ⊨ E G af with af atomic proposition. ☐

CTL model checking with fairness



Let afair be a fresh atomic proposition such that:
afair ∊ L(s) if and only if s ∊ Satfair(E G true) ≡ M, s ⊨fair E G true

Then:
Satfair(E X a) ≡ Sat(E X a ∧ afair)

Satfair(E [a U a’]) ≡ Sat(E [a U a’∧ afair])

And those on the right-hand side are pure CTL formulas that
can be computed by the usual CTL algorithm (see lesson 3).

Therefore, we are left with the problem of computing:
Satfair(E G a)

That, in particular, can be used to compute afair ∊ L(s) ≡ s ∊
Satfair(E G true). 

Summing up…



Lemma. Let sfair = ⋀ 𝐆	𝐅	𝑎- 	→ 𝐆	𝐅	𝑏-�
D3-3E be a fair constraint. 

Then M, s ⊨sfair EG a if and only if there exists a finite path s0s1…sn
and a cycle s’0 s’1 … s’r such that:
i. s=s0 and s’0= s’r

ii. si ⊨ a for all 0 ≤ i ≤ n and s’j ⊨ a for all 0 ≤ j ≤ r 
iii. For all 0 ≤ i ≤ k, Sat(ai) ⋂ {s’0, s’1, …, s’r } = ∅ or

Sat(bi) ⋂ {s0, s1, …, sn } ≠ ∅
Proof (if): Clearly s0s1…sn(s’0s’1…s’r )𝜔 is a fair path according to 
sfair satisfying EG a.
(Only if) M, s ⊨sfair EG a implies that there exists an infinite fair 
path 𝜋 = s0s1s2 … such that 𝜋 ⊨sfair G a and 𝜋 ⊨ sfair. Two cases:
1. 𝜋 ⊨ G F ai. This implies exists s’ ⊨ bi visited infinitely often in 𝜋. 

Let n and r be the first and second occurrence of s’. Clearly {s0, s1, 
…, sn } and {sn, sn+1, …, sr } satisfies iii.
2. 𝜋 ⊭ G F ai. Then there exists m such that sm, sm+1, …∉ Sat(bi). 

There are finitely many states, there is a cycle sn, sn+1, …, sr (n>m) 
such that Sat(ai) ⋂ {sn, sn+1, …, sr} = ∅. ☐

Checking M, s ⊨fair EG a (1)



The previous Lemma can be used as follows. Let us consider the 
graph Ga whose nodes Va = { s | M, s ⊨ a } and edges
Ea = {(s, s’) ∊ R| s, s’ ∊ Va}. 

Each infinite path in Ga is a path in M satisfying G a. 
Conversely, each path in M satisfying G a is a path in Ga.

M, s ⊨sfair EG a if and only if there exists a nontrivial SCC C in Ga
reachable from s and a set of nodes D⊆C such that for all 0 ≤ i ≤ 
k, D ⋂ Sat(ai) = ∅ or D ⋂ Sat(bi) ≠ ∅.

Satfair(EG a) = {s | exists C reachable from s in Ga}

Unconditional Fairness: in this case, ai is true for all i. Observe
that in this case, fair paths correspond to accepting runs of a 
Generalised Büchi automaton. 

Checking M, s ⊨fair EG a (2)



G1 satisfy unconditional fairness constraint G F b1∧ G F b2 
because there is the SCC {s2, s3, s4}. 
By contrast, G2 does not satisfy G F b1∧ G F b2 because there is
the SCC {s2, s3, s4} that contains b2 and the SCC {s1} that contains
only b1, but no one of them contains both b1 and b2.

Example: unconditional fairness

G1

G2



That’s all Folks!

Thanks for your attention…
…Questions?


