
Formal Methods
in Software Development

Lesson 4, October 26th, 2020

Automata Theory and Model Checking
Ivano Salvo

Computer Science Department

Lesson 4a:

Regular Properties
and

Finite Automata

A nondeterministic finite automata (NFA) A is a tuple
(Σ, Q, 𝛿, Q0, F) where:

• Σ is the finite input alphabet
• Q is the finite set of states
• 𝛿⊆ Q × Σ × Q is the transition relation
• Q0 ⊆Q is the set of initial states
• F⊆Q is the set of accepting states

Let w be a word in Σ* of length |w|= n.

A run over w is a finite sequence of states q0q1…qn such that q0∊ Q0
is an initial state and (qi, wi+1, qi+1) ∊ 𝛿 for all 0 ≤ i < n.

A run is accepting if qn ∊ F.

The automaton A accepts w if there exists an accepting run over w

The language L(A)⊆ Σ* consists of all words accepted by A.

Non-Determ. Finite Automata

An automaton A is deterministic if 𝛿 is a function [for all states s
and all symbols a there exists a unique next state 𝛿(s, a)] and
there exists a unique initial state (|𝛿(s, a)|≤ 1 and|Q0|= 1)).

For each non-deterministic automaton A there exists an
automaton A’ such that L(A) = L(A’). However, the size of A’ can
be exponential w.r.t. the size of A.

The class of languages accepted by finite automata is the class of
regular languages, that can be characterized by regular
expressions.

(Non-Det.) Finite Automata

q0 q1 q2

a

b

b

b

a

(a+b)*b(a+b)

Definition. A safety property P is regular if its set of bad
prefixes is a regular language over 2AP.

Example: Every invariant is a regular property. Let f be the
invariant property. The language of bad prefixes is f *(￢f)true*

(we use a propositional formulas to identify subsets of AP).

This automaton accepts words that violates the invariant f.

Remark: Here we assume f be a shorthand for L(s) ⊨ f

Regular Safety Properties (1)

q0 q1

f

true

￢f

Example. The mutual exclusion property can be easily modeled
by a NFA as follows:

If we remove the transition labeled true, this automaton accepts
minimal bad prefixes of the mutual exclusion property (words
that end at the first violation).

This is not incidental!

Theorem. A safety property P is regular iff the set of minimal
bad prefixes for P is regular.

Regular Safety Properties (2)

q0 q1

¬c1⋁¬c2

true

c1⋀c2

Again: 𝜑 means L(s)
such that L(s) ⊨ 𝜑this automata accepts

bad prefixes

Example: Let us consider again the Beverage vending machine
and the property: “The number of inserted coins is always at
least the number of dispensed drinks”

The language of minimal bad prefixes over the alphabet
∑ = {pay, drink} is (first violation of the property):

{ w・drink | #drink(w)=#pay(w) }

which is not regular, but context-free (usually counting
properties are never regular, because they require memory to
count occurrences and this is not possible with a NFA).

A non-regular safety property

Idea: Run in parallel the system model M and the automaton
for ¬f. M ⊨ f iff tracesfin(M) ⋂ badPrefixes(Pf) = ∅
iff tracesfin(M) ⋂ L(¬f) = ∅

Ingredients:
• build an automata for the intersection of two languages
• checking language emptiness

Definition: [Product of a Transition System M and a NFA]
Let M = (S, A, I, →, AP, L) and A =(Σ, Q, 𝛿, Q0, F), such that Σ=
2AP and Q0 ⋂ F = ∅. Then M ⊗ A = (S’, A, I’, →’, AP’, L’) where:
• S’= S × Q
• (s, q) →’a (s’, q’) whenever s →a s’ and 𝛿(q, L(s’), q’)
• I’ = {(s, q) | s ∊ I ⋀ ∃q0 ∊ Q0 . (q0, L(s), q) }
• AP’= Q
• L’: S × Q→ 2Q is given by L’(s, q) = {q}

This construction works also for Kripke structures.

Verifying Regular Safety Prop.

Let us define: ¬F = Pinv = ⋀ ¬𝑞&�
()*+

Theorem. Let A be a NFA such that L(A) = badPrefixes(P) of
some safety property P and let M be a transition system. Then
the following statements are equivalent:
• M ⊨ P
• tracesfin(M) ⋂ L(A) = ∅
• M ⊗ A ⊨ Pinv

Checking a regular safety property has been reduced to a
invariant checking, that in turn it can be solved by a
reachability.

Equivalently, emptiness of a regular language is a
reachability problem (check whether accepting states are
reachable from initial states)

The accepted words are counterexamples

Verifying Regular Safety Prop.

Lesson 4b:

Finite Automata
over

Infinite Words

𝜔-regular languages are subsets of infinite words Σ𝜔 over a
finite alphabet Σ generated by 𝜔-regular expressions.

Example: (ab)𝜔= ababababab… Observe that (ab)* is an infinite
set of finite words, but (ab)𝜔 is one infinite word.

The operator 𝜔 lifts to languages. L𝜔={ w1w2w3 …| wi ∊L }
Definition: An 𝜔-regular expression over Σ has the form:

G = E1 · F1
𝜔 + … + En · Fn

𝜔

where n ≥ 1 and E1, F1,…, En Fn are regular expressions.
L(G) = L(E1) · L(F1)𝜔∪…∪ L(En) · L(Fn)𝜔

L is 𝜔-regular if L = L(G) for some 𝜔-regular expression G.

𝜔-regular languages are closed under union, intersection and
complementation.

Examples: (a+b)*·b𝜔 is the language of words with finitely many
a’s. (b*a)𝜔 is the language of words with infinitely many a’s.

𝜔-regular Languages

A non-determistic Büchi automata A is a 5-tuple (Σ, Q, 𝛿, Q0, F)
where:

• Σ is the finite input alphabet
• Q is the finite set of states
• 𝛿⊆ Q × Σ × Q is the transition relation
• Q0 ⊆Q is the set of initial states
• F⊆Q is the set of accepting states

Let w be an infinite word in Σ𝜔. A run 𝜌 over w is an infinite
sequence of states q0q1…qn… such that q0 ∊ Q0 is an initial state
and (qi, wi+1, qi+1) ∊ 𝛿 for all i ∊ ℕ. inf(𝜌) is the set of states that
occur infinitely often in 𝜌.
A run is accepting if qj ∊ F for infinitely many i.
The automaton A accepts w if there exists an accepting run 𝜌
over w such that inf(𝜌) ⋂ F ≠ ∅
The language L(A)⊆Σ𝜔 consists of all the words accepted by A.

(Non-Det.) Büchi Automata

This definition is exactly the
same of NFA, but the
semantics of accepted words
change!

Theorem. The class of languages accepted by NBA’s is exactly
the class of 𝜔-regular languages.

Examples: Infinitely many a’s: (b*a)𝜔

Finitely many a’s: (a+b)*·b𝜔

The automaton “knows” when the sequence of finitely many a’s
stops

Büchi Autom. and 𝜔-regular lang.

q0 q1

b

a

a

b

q0 q1

a,b

b

b

deterministic

non-deterministic
b in q0: two trans.

NBA for L1 +L2 with L1, L2 𝜔-reg

Theorem. If L1 and L2 are 𝜔-regular, then L1∪L2 is 𝜔-regular.

Proof: Given an automaton A1 = (Σ, Q1, 𝛿1, I1, F1) accepting L1
and an automaton A2 = (Σ, Q2, 𝛿2, I2, F2) accepting L2 we build
the automata

A = A1 + A2 =(Σ, Q1∪ Q2, 𝛿, I1∪ I2, F1∪ F2)

where (q, a, q’) ∊ 𝛿 if (q, a, q’) ∊ 𝛿1 or (q, a, q’) ∊ 𝛿2 .

It is easy to see that A1 + A2 a accepts L1∪L2. (Exercise J). ☐

NBA for L1 ·L2, L1 reg. L2 𝜔-reg
Idea: Taking the NFA A1 accepting L1, the basic trick is adding
a transition to an initial state of the NBA A2 accepting L2,
whenever there is a transition to a final state of A1.

Final states are those of the NBA A2. Observe that possible
infinite runs inside A1 are not accepting.

Example: Let us considereL1=(ab)*, L2=(a+b)*ba𝜔 and
L1· L2=(ab)*(a+b)*ba𝜔

NBA accepting L𝜔, L regular
Idea: Insert a new initial (and accepting state) qnew and:

1. put a transition from qnew to any successor of initial states;

2. 2. put a transition to qnew from any accepting state.
[qnew is not necessary if initial states are without ingoing
transitions and they are not accepting]

Example: L=a*b.

1

2

As usual, we want automata with a total transition relation
(non-blocking). If a computation gets stuck, it’s not a problem
for theory, it is just a non-accepting computation (the same for
non-deterministic NFAs).

Proposition: For each NBA A there exists a non-blocking
equivalnet NBA A’ equivalent to A.

Proof: Just add a sink (or trap) state qtrap and transitions to
whenever a transition is not defined in some state. ☐

More or less, the same trick works for Kripke structures and
NFAs.

Remark: A equivalent to A’ means that L(A)= L(A’)

Non blocking NBA

Deterministic Büchi automata are less expressive.

Theorem. There is no deterministic Büchi automata that accepts
the language (a+b)*b𝜔.

Proof: Assume that there exists such automaton. The word b𝜔
belongs to the language. There exists an accepting state q1 such
that 𝛿*(q0, 𝑏/0) = q1 (𝛿 is a function!).

The word 𝑏/0ab𝜔 belongs to the language. There exists an
accepting state q2 such that 𝛿*(q0, 𝑏/0a𝑏/3) = q2.

The word 𝑏/0a𝑏/3ab𝜔 belongs to the language. There exists an
accepting state q2 such that 𝛿*(q0, 𝑏/0a𝑏/3a𝑏/4) = q3 and so on.

But there are finitely many states. Therefore there must be that
some qi= qj and hence 𝛿*(q0, 𝑏/0a𝑏/3 … a𝑏/)) = 𝛿*(q0,
𝑏/0a𝑏/3 … a𝑏/6),	but this implies that there is an accepting run for
the word 𝑏/0a𝑏/3 … a𝑏/)(a𝑏/)90 … a𝑏/6)𝜔 that contains infinitely
many a’s. Contradiction. ☐

The need for non-determinism

Properties of the form “eventually forever” has exactly the
shape of the 𝜔-regular language (a+b)*b𝜔.

Definition: A persistence property is a linear time property
P⊆2AP such that for some propositional formula 𝜑:

P={A0A1A2… ∊ (2AP)𝜔| ∃i ≥ 0∀j ≥ i. Aj ⊨ 𝜑 }

A persistence property can be modeled in LTL as F G 𝜑.

Alternatively, they can be formalised as “¬𝜑 holds finitely
many times”.

Remark: ∃i ≥ 0∀j ≥ i is sometimes written ∀;and can be read
“almost always”

The need for non-determinism

A generelised Büchi automata A is a 5-tuple (Σ, Q, 𝛿, Q0, F)
where Σ, Q, 𝛿, Q0 are as for NBA, and F = {F1, …, Fn} is a
possibly empty subset of 2Q. F1, …, Fn are called accepting sets.

The automaton A accepts w if there exists an accepting run 𝜌
over w such that for all sets Fi ∊ F we have inf(𝜌) ⋂ Fi ≠ ∅.

Theorem. For each GNBA A there exists a NBA A‘ such that
L(A) = L(A’).

Proof: make n copy of A and jump to i+1th copy whenever we
go trough a state in Fi.

Generalised Büchi Automata

Theorem. If L1 and L2 are 𝜔-regular, then L1 ⋂ L2 is 𝜔-regular.

Proof: Given an automaton A1 = (Σ, Q1, 𝛿1, I1, F1) accepting L1
and an automaton A2 = (Σ, Q2, 𝛿2, I2, F2) accepting L2 we build a
generalised automata A =(Σ, Q, 𝛿, I, F) accepting L. We define
A = A1 ⊗ A1 =(Σ, Q1×Q2, 𝛿, I1×I2, {F1×Q2, Q1×F2}), where ((q1, q2),
a, (q’1, q’2)) ∊ 𝛿 iff (q1, a, q’1) ∊ 𝛿1 and (q2, a, q’2) ∊ 𝛿2. ☐

We will use this trick in verification, building an automata for
the model, one for specifications (or better, for bad
behaviours) and we will check if their intersection is empty.

This strategy will also lead to an alternative algorithm for LTL
model checking. There is an algorithm (based again on atoms)
that allow to build an automata from an LTL formula.

Intersection of 𝜔 -regular lang.

Lesson 4c:

Automata Theory
and

Model Checking

Definition: A linear time property P over AP is 𝜔-regular if P is
an 𝜔-regular language over the alphabet 2AP.

Examples:

❖ Invariants are 𝜔-regular. If 𝜑 is a property over AP defining
the invariant, 𝜑𝜔 is a 𝜔-regular language.

❖ Regular safety properties are 𝜔-regular.
(2AP)𝜔\ Psafe= badPrefixes(Psafe) · (2AP)𝜔

[Remember that 𝜔-regular are closed under complementation]

❖Many liveness properties are typical examples of 𝜔-regular
(not regular) properties.

Example: ((¬crit)*crit)𝜔=“a process enters critical section
infinitely often”

((¬wait)*wait · true* · crit)𝜔+ ((¬wait)*wait · true* · crit)*(¬wait)𝜔
= “whenever a process is waiting, it will enter its critical section
eventually later” (starvation freedom)

𝜔-Regular Properties

Similar to regular safety properties. However, here we have to
check language emptiness for a (generalised) non
deterministic Büchi automata.

Again, the idea is related to strongly connected components of
a directed graph.

Definition: [Product of a Transition System M and a NBA]
Let M = (S, A, I, →, AP, L) and A =(Q, Σ, 𝛿, Q0, F) be a non-
blocking NBA, such that Σ= 2AP. Then M ⊗ A = (S’, A, I’, →’,
AP’, L’) where:
• S’= S × Q
• (s, q) →’a (s’, q’) whenever s→a s’ and 𝛿(q, L(s’), q’)
• I’ = {(s, q) | s ∊ I ⋀ ∃q0 ∊ Q0 . (q0, L(s), q) }
• AP’= Q
• L’: S × Q→ 2Q is given by L’(s, q) = {q}

Checking 𝜔 -regular properties

Let us define: ¬𝜑 = ⋀ ¬𝑞&�
()*< and Ppersistence = F G ¬𝜑

Theorem. Let M be a finite transition system and let P an 𝜔-
regular property over AP and let A be a nonblocking NBA such
that L𝜔(A) = (2AP)𝜔\P. Then the following are equivalent:
• M ⊨ P
• traces(M) ⋂ L𝜔(A)= ∅
• M ⊗ A ⊨ Ppersistence(A)

Checking a 𝜔-regular property has been reduced to a
checking a persistence property.

Equivalently, emptiness of a 𝜔-regular language is a
problem of detecting cycles: checking whether accepting states
belong to a cycle reachable from some initial state.

In this case, counterexamples have the form u·v𝜔

Verifying 𝜔-regular Properties

In this case, counterexamples have the form u·v𝜔, where for
some q in v, L(q) ⊨ ¬𝜑.

Counterexamples

Once again, a SCC decomposition of the graph M ⊗ A would
solve the problem. traces(M) ⋂ L𝜔(A)= ∅ if and only if there is a
SCC C that contains a state not satisfying 𝜑 and C is reachable
from an initial state.

This algorithm is optimal, in the sense that it is linear with the
size of M ⊗ A.

However, in practice cycle checking can be performed more
efficiently without decomposing the whole system M ⊗ A into
strongly connected components.

Many model checkers implement a nested double DFS search.
This approach has several advantages:

• When a counterexample is found, only a small part of M ⊗
A is visited.

• M is described by a program, and states can be generated
during the nested DFS (on-the-fly model checking).

Checking a persistence property

Double Nested DFS

Observe that visited states by dfs1 and dfs2
are global information. This is essential to
keep complexity linear and to avoid to visit
several times the same state.

def dfs1(q):
mark(q);
forall p ∊ succ(q) do

if p is not marked then dfs1(p);
if accept(q) then dfs2(q)

def dfs2(q):
flag(q);
forall p ∊ succ(q) do

if p is in dfs2 stack then return TRUE;
else if p is not flagged then dfs2(p);

State on the stack of dfs1 up to q are the
finite prefix u, whereas states on the
stack of dfs2 are the cycle v

dfs2(q) starts when all successors of a
final state q have been explored

dfs1(q) is used to finds states
where property holds (accept(q))

Running the Double DFS Search

Start dfs1 with s0. Consider the order of visit s0 s2 s3 s1
.

The cycle s1 → s3 → s1 is found when analysing s1. Here dfs2
starts, because s1 ⊭ 𝜑 and all its successors have been already
analysed. The counterexample is s0 s2 s3 (s1 s3 s1)𝜔

The order is essential. If we start dfs2 in s2, we fail to find a
cycle with a state already onto the stack, but we mark as visited
s3 and s1 and therefore we later fail to find (s1 s3 s1)𝜔.

¬𝜑

𝜑

𝜑

¬𝜑

Correctness of Double DFS (1)
Lemma. Let q be a node that does not appear in any cycle. Then
a DFS backtrack from q after all nodes reachable from q have
been visited.

Theorem. The Double Nested DFS search returns a
counterexample if and only if traces(M) ⋂ L𝜔(A) ≠ ∅.

Proof: It is almost trivial to show that if the double DFS returns
TRUE, a cycle is found (and hence an accepted word).

It is less obvious to show that if a cycle exists, the double DFS
finds it. Or equivalently, if it returns FALSE, no cycle exists.

Let us suppose that there exists a cycle from q to a state on the
stack of dfs1 that goes trough a state r already flagged by dfs2.
Let q and r the first states for which this happens and let q’ be
the root of dfs2 that flagged r (dfs2(q’) started before dfs2(q)).

There are two cases.

Correctness of Double DFS (2)

If q’ is reachable from q, then there exists a cycle that would have
been found examining q’: q’→r→q→q’ (see picture, left)

If q’ is not reachable from q , then if q’ appears in a cycle, this was
missed in a previous iteration, before starting the second DFS
from q, contrary to the fact that q is the first state (contraddiction).

Therefore q’ does not occur in a cycle, but q is reachable from q’
(via r). By the Lemma, we have discovered and backtracked from
q, before starting the DFS from q’, against our assumptions (r
flagged from q’, see picture, right).

☐

Lesson 4d:

On the Fly
LTL Model Checking

LTL model checking via NBA
Theorem. For any LTL formula 𝜑 over AP, there exists a NBA
A𝜑 wiht Words(𝜑)=L𝜔(A𝜑) which can be constructed in time
and space 2𝒪(|𝜑|).

The proof is rather technical and tedious, but the ingredients
are exactly the same of the algorithm based on tableaux, see
lesson 3. In particular:

❖ automata states represent maximal consistent sets of Cl(𝜑),
❖ transition relation is related to presence of subformula of
the form X 𝜓 in Cl(𝜑), and
❖accepting states are related to the presence of some 𝜓1 U 𝜓2
in Cl(𝜑). (Remember that U (and its negation) need to consider
infinite paths).

Once one has M ⊗ A¬𝜑we just need to check language
emptiness. Remark: even though NBAs are closed under
complementation, it is convenient to build A¬𝜑 rather than
complementing A𝜑.

On-the-fly LTL model checking

Usually, the model M is described by a high-level language.

The generation of reachable states of M can proceed in parallel
with the construction of the automaton A¬𝜑 (remember that
states of M ⊗ A¬𝜑 are pairs).

The product automaton M ⊗ A¬𝜑 is constructed on demand.

A new vertex is only considered if no accepting cycle has been
found in the fragment of M ⊗ A¬𝜑 already explored.

When generating the successor states in A¬𝜑we only need to
consider those successors matching the current state in M.

On-the-fly technique is particurlarly effective when a
refutation is early found: in this case a counterexample is
returned and large parts of M ⊗ A¬𝜑 are not generated.

That’s all Folks!

Thanks for your attention…
…Questions?

