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Lesson 2d:

Computation Tree Logic
CTL



Non Linear Time properties
Let us consider the property: “For every computation, it is 
always possible to return to the initial state”

A G F start does not properly work.
It is too strong.

This system intuitively satisfies our intended property, but not 
the linear property A G F start (because of the path (¬start)𝜔)

The solution is a branching notion of time, allowing nesting of 
path quantifiers A and E: in this case A G E F start.

start
¬
start



State formulas are formulas that depend on a state of a 
transition system

• If p ∊ AP, then p is a state formula
• If f, g are state formulas, then so are ￢ f,  f ⋀ g, f ⋁ g
• If f is a path formula, then A f and E f are state formulas

Path formulas are formulas that depend on a computation path

• If f, g are state formulas, then ￢ f,  f ⋀ g, f ⋁ g, X f, F f, G f, f U
g, and f R g are path formulas

CTL: syntax

Similar to CTL*, but each temporal operator (X, F, G, U, R) 
must be preceded by a path quantifier (E or A)



Let AP = {x = 1, x < 2, x ≥ 3} be the set of atomic propositions.
Legal CTL formulas are:

EX (x = 1), AX (x = 1), x = 1 ⋁ x < 2 

Illegal CTL formulas are:
E (x = 1 ⋀ AX x ≥ 3)

because AX x ≥ 3 is not a path formula
EX (true U x = 1)

because EX nested with a path formula

By contrast, the following are legal CTL formulas:
EX (x = 1 ⋀ AX x ≥ 3) EX A (true U x = 1)

Common operators: EF 𝜑 ≡ “𝜑 holds potentially”
AF 𝜑 ≡ “𝜑 is inevitable”
EG 𝜑 ≡ “𝜑 holds potentially always”
AG 𝜑 ≡ “invariantly 𝜑”

Examples: (il)legal CTL formulas



From a theoretical point of view, 3 operators only are really 
needed: EX, EG, and EU (via duality):

AX f ≡ ¬ EX ¬ f
EF f ≡ ¬ E (true U f )
AG f ≡ ¬ EF ¬ f
AF f ≡ ¬ EG ¬ f

A (f U g ) ≡ ¬ E (¬ g U ¬ f ⋀ ¬ g) ⋀ ¬ EG ¬ g
A ( f R g ) ≡ ¬ E (¬ f U ¬ g)
E ( f R g ) ≡ ¬ A (¬ f U ¬ g)

Attention! that propositional operators (⋀, ⋁ , ¬, etc.) cannot be 
applied to path formula, so it is not true that EG f ≡ E ¬ F ¬f
simply because the latter is not a CTL formula.

Minimal Fragment of CTL



The semantics of CTL* 
formulas are relative 
to a computation Tree.

Here some example of 
computation trees and 
CTL* formulas valid in 
such computation 
trees.

Non Linear Time (LT) examples



Other Examples

Black states are those 
that satisfy the formula



A remark on negation

Definition. A transition system M satisfies a CTL formula 𝜑, 
notation M ⊨ 𝜑 if and only if M, s ⊨ 𝜑 for all s ∊ S0, where S0 is 
the set of initial states of M. 

Be careful! M, s ⊭ 𝜑 implies M, s ⊨ ¬𝜑, but it is not true that 
M ⊭ 𝜑 implies M ⊨ ¬𝜑 (The same holds for LTL!).

The problem is the universal quantification over initial states!

Example: Both a and ¬a does not hold here:



Equivalent CTL formulas

Besides duality, there are a lot of interesting logical equivalence, 
useful, for example in Model Checking algorithms (in particular 
in Symbolic Model Checking).

A CTL formula f is equivalent to g if and only if for all 
transition systems M, M ⊨ f iff M ⊨ g

Expansion Laws for CTL: 

A (f U g) ≡ g ⋁ (f ⋀ AX A(f U g))
AG f ≡ f ⋀ AX AG f
AF f ≡ f ⋁ AX AF f

E (f U g) ≡ g ⋁ (f ⋀ EX E(f U g))
EG f ≡ f ⋀ EX EG f
EF f ≡ f ⋁ EX EF f



Theorem. Let f be a CTL formula and let f LTL be the LTL 
formula obtained by eliminating all path quantifiers in f. Then:
f  ≡ f LTL  or there does not exist any LTL formula equivalent to f

Lemma. [PERSISTENCE] The CTL formula A F A G a and the LTL 
formula F G a are not equivalent.
Proof: Just consider the following Kripke structure.

We have s0 ⊨LTL F G a, since all path starting in s0 will remain 
forever in s0 or in s2 (that satisfy G a).  
By contrast s0 ⊭CTL A F A G a, since s0

𝝎 ⊭CTL F A G a because of 
the paths s0

* s1 s2
𝝎 which passes the ¬a-state s1 .❏

LTL versus CTL: eliminating A



Theorem. 
1. There exist LTL formulas for which no equivalent CTL 
formula exist. For instance: F G a or F (a ⋀ X a)
2. There exist CTL formulas for which no equivalent LTL 
formula exist. For instance: AF AG a or AF (a ⋀ AX a) or AG EF a

Proof (idea): exhibit suitable transition systems M and M’ such 
that M ⊨LTL g and M’ ⊭LTL g but such that cannot be distinguished 
by any CTL formula, that is, for all CTL property g, M ⊨CTL g if and 
only if f M’ ⊨CTL g. 
Example: Let us consider AG EF a. This is satisfied by M above, but 
not by M’. On the other hand since traces(M’)⊆traces(M), M’ 
satisfies all LTL formulas satisfied by M. ❏

LTL and CTL are not comparable

M M’



Lesson 3a:

CTL Model Checking



As it is clear from CTL semantics the truth of a formula depends 
on the truth of its subformula (maybe in some other state as EX
or EF shows).
CTL formulas are state formula: we can determine in each state 
which are formulas that are satisfied.
Putting together these two facts, and following a common 
pattern in graph algorithms (it is usually convenient explore the 
whole graph (visits), even when we need for example just a 
path between two nodes), we have:
Idea: Compute a set label(s) in such a way that for each sub-
formula g of f, g ∊ label(s) whenever  M, s ⊨ g holds.
Observation: the number of sub-formulas are linear in the size 
| f | of a CTL formula f.

CTL model checking: basics



Start with the original labeling of states with atomic 
propositions, i.e. label(s)= L(s).

f ≡ ￢ g➱ f ∊ label(s) if and only if g ∉ label(s) 

f ≡ g ⋁ h➱ f ∊ label(s) if and only if g ∊ label(s) or h ∊ label(s)

f ≡ E X g➱ f ∊ label(s) if and only if g ∊ label(s’) for some s’, s→s’

The interesting cases are f ≡ E G h and f ≡ E [ g U h ]

CTL model checking: basics



When f ≡ E [ g U h ] the idea is: start from the set of states such 
that h ∊ label(s) and then proceed backwards on states such that 
g ∊ label(s). Label all these states with g.

CTL model checking: EU f

def checkEU(g, h):
T = { s | h ∊ labels(s) }
forall s ∊ T do label(s)=label(s) ∪ { E [g U h] }
while T ≠ ∅ do

choose s ∊ T
T = T ∖ { s }
forall t ∊ prec(s) do 

if E[g U h] ∉ label(t) and g ∊ label(t)
then

label(s)=label(s) ∪ { E [g U h] }
T = T∪ { t } It is essentially a 

backward visit of a 
graph. The complexity 
is O(|S| + |R|)

prec(s) = {t | R(t, s)}



When g ≡ E G h, we must find infinite paths labeled by h. 
In a finite directed graph, such paths must enter a strongly 
connected component where all states are labeled by h. 

Roughly speaking: 
1. Compute the set of states S’ = { s ∊ S | h ∊ label(s)}.
2. Decompose (S’, R’) in strongly connected components.
3. Add all states s such that h ∊ label(s) and from which one of 

such strongly connected components is reachable.

CTL model checking: EG f (1) 



Lemma. Let S’= { s’ ∊ S | M, s’ ⊨ h }. Then M, s ⊨ E G h if and only 
if the following conditions are satisfied:

1. s ∊ S’
2. There exists a path from s to a strongly connected 

component C ⊆ S’.

Proof: (If) Let 𝜋 be an infinite path starting at s satisfying G h. 
Clearly, s ⊨ h. Since 𝜋 is an infinite path, it has the shape 𝜋0𝜋1 and 
in 𝜋1 each state occurs infinitely often. Both states in 𝜋0 and 𝜋1 
belongs S’. Since each state appears infinitely often in 𝜋1, there is 
a path between any pairs of states in 𝜋1, therefore states in 𝜋1 
belong to some C that is a SCC in (S’, R’).

(Only If) Let 𝜋0 be a finite path from s to t ∊ C in S’. Then we can 
find a finite path 𝜋1 from t to t. The path 𝜋0 𝜋1

𝝎 satisfies G h.❏

CTL model checking: EG f (2) 



CTL model checking: EG f / 3 
def checkEG(g):

S’ = { s | g ∊ labels(s) }
SCC = { C | C is a nontrivial SCC of S’ }
T = ∪C ∊ SCC { s | s ∊ C }
forall s ∊ T do label(s)=label(s) ∪ { EG g }
while T ≠ ∅ do

choose s ∊ T
T = T ∖ { s }
forall t ∊ prec(s), t ∊ S’ do 

if EG g ∉ label(t)
then

label(s)=label(s) ∪ { EG g }
T = T∪ { t } 

Strongly connected 
components of the 
subgraph ⟨S’, R’⟩ of 
states where h holds

Backward reachability 
from strong connected 
components.

Theorem. Given a Kripke structure M=(S, R, L) and a CTL formula 
f, determining if M ⊨CTL g can be decided in time 

𝒪( (|S|+|R|)・|f|



Example: microwave oven
AG(Start→AF Heat)
≡ AG(¬Start ⋁ AF Heat)
≡ ¬EF(Start ⋀ EG ¬Heat)

Start
Start

Start

Start

¬Heat

¬Heat ¬Heat

¬Heat ¬Heat

SCC
¬Heat

Start ⋀
EG ¬Heat All states satisfy EF(Start ⋀ EG ¬Heat)



Lesson 3b:

LTL Model Checking



LTL Model Checking (1)

Several algorithms. Today, we see a tableaux construction. 

It suffices (thanks to duality) to check properties of the form 
E f (A f  ≡ ￢E￢ f ). Moreover (again thanks to duality), we 
consider only operators X and U.

Definition [Closure of f ] CL( f ) is the smallest set containing f
and satisfying:

• ￢ g ∊ CL( f ) iff g ∊ CL( f ) 
• If g1 ⋁ g2 ∊ CL( f )  then g1, g2 ∊ CL( f )
• If X g ∊ CL( f ) then g ∊ CL( f )
• If ￢ X g ∊ CL( f ) then X￢ g ∊ CL( f )
• If g1 U g2 ∊ CL( f ) then g1, g2, X (g1 U g2 ) ∊ CL( f )



LTL Model Checking (2)

Definition An atom is a pair (s, K), where s is a state and K is a 
maximal set of formulas in CL( f ) consistent with L(s), that is
(we identify : g with ￢￢ g) :

• for each atomic proposition p, p ∊ K iff p ∊ L(s)
• for each g ∊ CL( f ) then g ∊ K iff￢ g ∉ K 
• for each g1 ⋁ g2 ∊ CL( f ), g1 ⋁ g2 ∊ K iff g1 ∊ K or g2 ∊ K
• for each ￢ X g ∊ CL( f ), ￢ X g ∊ K iff X￢ g ∊ K
• for each g1 U g2 ∊ CL( f ), g1 U g2 ∊ K iff g2 ∊ K or g1 ∊ K and

X (g1 U g2) ∊ K

Definition Given a LTL model checking problem M, s ⊨ E f , the 
atom graph GM, f is built with atoms as the set of vertices. 
There is an edge from (s, K) to (s’, K’) iff (s, s’) is transition in 
M, and for each formula X g ∊ CL( f ), X g ∊ K iff g ∊ K’. 



LTL Model Checking (3)
Definition An eventuality sequence is an infinite path p in GM, f

such that if g1 U g2 ∊ K for some atom (s, K) then there exists an 
atom (s’, K’) reachable from (s, K) along p, such that g2 ∊ K’. 

Theorem M , s ⊨ E f  ⇔ there exists an eventuality sequence in 
GM, f starting at atom (s, K) such that f ∊ K.
Proof (sketch): 
(If) Assume (s0, K0) (s1, K1) (s2, K2)… is an eventuality sequence
with (s, K)=(s0, K0). By def, p = s0 s1 s2… is a path in M.
To make induction hypothesis work, we prove that for every g ∊
CL( f ) and for all i ≥ 0, p i ⊨ g iff g ∊ Ki. The proof proceeds by 
induction on sub-formulas of f.
If g=￢ h, p i ⊨ g ⇔ p i ⊭ h ⇔ h ∉ Ki (IND)⇔ g ∊ Ki (by maximality)

If g=X h then p i ⊨ g ⇔ p i+1 ⊨ h (IND) h ∊ Ki+1. Since (si, Ki)→ (si+1, 
Ki+1) then h ∊ Ki+1 ⇔ X h ∊ Ki.



LTL Model Checking (4)
Proof (cntd.): If g = h1 U h2 we have h2 ∊ Kj for some j ≥ i and h1, 
X g ∊ Kk for i ≤ k < j. This implies h1 ∊ Kk and h2 ∊ Kj and hence
pi ⊨ g. 

Conversely, if pi ⊨ g, there exists j ≥ i such that p j ⊨ h2 and p k ⊨ h1
Kk for i ≤ k < j. (HH) h2 ∊ Kj and h1 ∊ Kk. By absurd, g ∉ Ki and h1 ∊
Ki implies that X g ∉ Ki (def. of atom) and hence (def. of atom) X￢
g ∊ Ki (def of transition relation)  ￢ g ∊ Ki+1 and g ∉ Ki+1 and so on
until g ∉ Kj against the fact that h2 ∊ Kj.

(only if) Assuming that M , s ⊨ E f there exists a path p = s0 s1 s2 …
in M such that p ⊨ f. Define Ki = { g ∊ CL( f ) | p i ⊨ g }.
One can show that:
1. (si, Ki ) is an atom;
2. (si, Ki )→(si+1, Ki+1) is a transition in G.
3. The sequence (s0, K0 ) (s1, K1 ) (s2, K2 )… is an eventuality

sequence. ❏



LTL Model Checking (5)
Definition: A non trivial strongly connected component C in GM, f

is self-fullfilling if for every atom (s, K) and for every h1 U h2 ∊ K
there exists an atom (s’, K’) in C such that h2 ∊ K’.
Theorem. There exists an eventuality sequence in GM, f starting at 
an atom (s, K) iff there exists a self-fulfilling strongly connected 
component in GM, f reachable from (s, K) .
Proof (sketch): (If) Take an eventuality sequence and consider the 
set of atoms C’ that appear infinitely often in it. C’⊆C, C strongly
connected component. Take (s, K) in C and g = h1 U h2 ∊ K. There 
must be a path from (s, K) to C’. If h2 appear in the path, ok. 
Otherwise, g is in every atom on the path and in an atom of C’. 
Since C’ comes from an eventuality sequence, h2 is in some atom 
of C’⊆C, thus C is self-fullfilling. 
(Only if) Take a path from (s, K) to C. Clearly in C any
subformula of the form h1 U h2 is followed by an atom containing
h2 . The only problem is along the path, but we can reason as in 
the (If) part. ❏--



LTL Model Checking: Algorithm
Theorem M, s ⊨ E f if and only if there exists an atom (s, K) such 
that f ∊ K and a path from (s, K) to a self-fullfilling SCC. 

The size of the graph G is (|S|+|R|)⋅2 ) .
Using Tarjan algorithm for SCC, this is also the complexity of this 
algorithm for LTL model checking.

Bad News: It is exponential in the size of the formula f.

Good News: Usually the transition system is huge, but the 
formula is small. 

Is there any polynomial algorithm for LTL model checking? 
Probably, no (unless P=NP).

--



LTL Model Checking: Complexity
The LTL model checking problem is PSPACE-complete.
Here we prove just that LTL model checking is NP-hard.

We reduce the Hamiltonian path problem for a graph G=(V, E) 
to the LTL model checking problem M, s ⊨ E f where:
• M is the Kripke structure (S, R, L) where:

* S is V ∪ { s, t }
* R is E ∪{ (s, v)|v ∊ V } ∪ {(v, t)|v ∊ V }
* L(vi)={ pi } and L(s) = L(t) = ∅.

• s is the initial state in M, and 
• f is the formula: 

E (F p1 ⋀… ⋀ F pn ⋀
⋀ G (p1 →X G￢ p1) ⋀… ⋀ G (pn →X G￢ pn)

M, s ⊨ E f holds if and only if there exists an Hamiltonian path 
in G (observe that f has size polynomial in |G|).

There exists a path that contains all nodes

Each node occurs just once



Detour: Hamiltonian path in CTL
Taken a graph G=(V, E), we define a Kripke structure 
M =(S, R, L) where:
• S=V ⋃ {b} b is needed to make R total
• R=E ⋃ {v→b | v ∊ E}
• L(v)={v}

We define f = ⋁ 𝑔(𝑣./, … , 𝑣.2)
�
./,…,.2 	6789:;<;=>?	>@	(A,…,B)

and g inductively as follows:
g(vi) = vi
𝑔(𝑣./, … , 𝑣.2) = 𝑣./⋀ E X 𝑔(𝑣.C, … , 𝑣.2) if n>1

It is easy to see that 𝒈(𝒗𝒊𝟏, … , 𝒗𝒊𝒏) holds if and only if 𝒗𝒊𝟏, … , 𝒗𝒊𝒏
is a Hamiltonian path in G.

Therefore, M ⊨ f if and only if G has a Hamiltonian path.

Obviously, this reduction is not polynomial!



Lesson 3c:

Summary
of LTL

Model Checking



The problem M, s ⊨ A f is transformed in the refutation of M, s
⊨ E￢f. To verify M, s ⊨ E f where M =(S, R, L):

1. Build the set of formulas: CL( f ).

2. For each state s ∊ S, compute the set K of formulas in CL( f ) 
consistent with L(s) ➱ atoms (s, K)

3. Build the graph GM, f that contains an edge from (s, K) to (s’, 
K’) whenever (s, s’) is in R, X g in K, and g in K’.

4. Find an eventuality sequence by finding strongly connected 
components of GM, f

[An eventuality sequence is an infinite path p in GM, f such that 
if g1 U g2 ∊ K for some atom (s, K) then there exists an atom (s’, 
K’) reachable from (s, K) along p, such that g2 ∊ K’]. 

LTL model checking: summary



Example: microwave oven
A(¬Heat U Close)
≡ ¬E ¬ (¬Heat U Close)

Close
CloseClose

¬Heat

¬Heat ¬Heat

¬Heat ¬Heat

Close



Taking f ≡ (¬Heat U Close)
• Compute the closure of f, CL(¬ f ):

{¬ f, f, X f , ¬ X f, X ¬ f, Heat, ¬Heat, Close, ¬Close } 
• Compute atoms:

• {¬Heat , ¬Close}⊆L(1), L(2) 
K1’={¬Heat , ¬Close, f, X f } 

K1’’={¬Heat , ¬Close, ¬f, ¬X f , X ¬ f } 
• {¬Heat , Close}⊆L(3), L(5), L(6) 

K2’={¬Heat , Close, f, X f } 
K2’’={¬Heat , Close, f, ¬X f , X ¬ f } 

• {Heat , Close}⊆L(4), L(7) 
K3’={Heat , Close, f, X f } 

K3’’={Heat , Close, f, ¬X f , X ¬ f } 

LTL model checking: example 1

Not just subformulas!

Close is not consistent 
with ¬f



Example of transitions:
(1, K1’)→(2, K1’) because X f ∊ K1’, f ∊ K1’, and (1,2) ∊ R

(1, K1’’)→(2, K1’’) because X¬f ∊ K1’,¬f ∊ K1’’, and (1,2) ∊ R
There is no transition (1, K1’)→(2, K1’’) since X f ∊ K1’ but f ∉ K1’’

Once the full graph is constructed, it is easy to see that there is 
no atom (s, K) from which there is a path into a self-fullfilling
non trivial strong component of GM, f.

Therefore, no state s is such that M, s ⊨ E ¬ f and hence all 
states satisfy M, s ⊨ A g.

Compute the graph G



Lesson 3d:

CTL*
Model Checking



Idea of CTL* Model Checking
Idea: use CTL and LTL model checking procedures on sub-
formulas.

Substitute any maximal state sub-formulas with fresh atomic 
propositions. Like CTL algorithm, the CTL* algorithm works in 
stages.

Level 0: atomic propositions
Level i+1: all state sub-formulas g such that all state sub-
formulas of g are of level i or less and g is not contained in any 
lower level.
Example: AG((¬Close ⋀ Start) → A (G ¬Heat ⋁ F ¬Error))
Only E quantifier: ¬EF((¬Close ⋀ Start ⋀ E (F Heat ⋀ G Error))

Level 0: Close, Start, Heat, Error
Level 1: ￢Close, E (F Heat ⋀ G Error)
Level 2: EF((¬Close ⋀ Start ⋀ E (F Heat ⋀ G Error))
Level 3: ¬EF((¬Close ⋀ Start ⋀ E (F Heat ⋀ G Error))



CTL* Model Checking: algorithm



CTL*: example and complexity

Example: ¬EF((¬Close ⋀ Start ⋀ E (F Heat ⋀ G Error))
Level 1: The level 1 formula ¬Close is added to L(1) and L(2)
E (F Heat ⋀ G Error) is pure LTL, but there is no state satisfying 
this formula.

Level 2: E (F Heat ⋀ G Error) is replaced by a fresh atomic 
proposition a. LTL-model checking is then applied to the 
formula EF((¬Close ⋀ Start ⋀ a), that is unsatisfiable, so all states 
are labeled with ¬EF((¬Close ⋀ Start ⋀ E (F Heat ⋀ G Error)).

Theorem: There exists a CTL* model checking algorithm with 
complexity O(|M|2|f|)

Theorem: CTL* model checking is PSPACE-complete.



That’s all Folks!

Thanks for your attention…
…Questions?


