Formal Methods in Software Development

Computational Tree Logic (CTL) CTL, LTL, and CTL* model Checking Ivano Salvo

Computer Science Department

Lesson 2d:

Computation Tree Logic CTL

Non Linear Time properties

Let us consider the property: "For every computation, it is always possible to return to the initial state"

A G F start does not properly work.

This system intuitively satisfies our intended property, but not the linear property **A G F** start (because of the path $(\neg start)^{\omega}$)

The solution is a **branching notion** of time, allowing nesting of path quantifiers **A** and **E**: in this case **A G E F** start.

CTL: syntax

State formulas are formulas that depend on a state of a transition system

- If $p \in AP$, then p is a state formula
- If f, g are state formulas, then so are $\neg f$, $f \land g$, $f \lor g$
- If f is a path formula, then $\mathbf{A} f$ and $\mathbf{E} f$ are state formulas

Path formulas are formulas that depend on a computation path

• If f, g are **state** formulas, then $\neg f$, $f \land g$, $f \lor g$, $\mathbf{X} f$, $\mathbf{F} f$, $\mathbf{G} f$, $f \lor g$, and $f \mathbf{R} g$ are path formulas

Similar to CTL*, but each temporal operator (X, F, G, U, R) must be preceded by a path quantifier (E or A)

Examples: (il) legal CTL formulas

Let $AP = \{x = 1, x < 2, x \ge 3\}$ be the set of atomic propositions.

Legal CTL formulas are:

EX (
$$x = 1$$
), **AX** ($x = 1$), $x = 1 \lor x < 2$

Illegal CTL formulas are:

E (
$$x = 1 \land AX x \ge 3$$
)

because $\mathbf{AX} \times \mathbf{a} \geq 3$ is not a path formula

EX (true
$$\mathbf{U} \times \mathbf{I} = 1$$
)

because **EX** nested with a path formula

By contrast, the following are legal CTL formulas:

EX (
$$x = 1 \land AX x \ge 3$$
)

EX A (true $\mathbf{U} \times \mathbf{u} = 1$)

Common operators: **EF** $\varphi \equiv \varphi'$ holds potentially

AF $\varphi \equiv "\varphi$ is inevitable"

EG $\varphi \equiv \varphi'$ holds potentially always

AG $\varphi \equiv$ "invariantly φ "

Minimal Fragment of CTL

From a theoretical point of view, 3 operators only are really needed: EX, EG, and EU (via duality):

$$\mathbf{AX} f \equiv \neg \mathbf{EX} \neg f$$

$$\mathbf{EF} f \equiv \neg \mathbf{E} \text{ (true } \mathbf{U} f \text{)}$$

$$\mathbf{AG} f \equiv \neg \mathbf{EF} \neg f$$

$$\mathbf{AF} f \equiv \neg \mathbf{EG} \neg f$$

$$\mathbf{A} (f \mathbf{U} g) \equiv \neg \mathbf{E} (\neg g \mathbf{U} \neg f \land \neg g) \land \neg \mathbf{EG} \neg g$$

$$\mathbf{A} (f \mathbf{R} g) \equiv \neg \mathbf{E} (\neg f \mathbf{U} \neg g)$$

$$\mathbf{E} (f \mathbf{R} g) \equiv \neg \mathbf{A} (\neg f \mathbf{U} \neg g)$$

Attention! that propositional operators (\land , \lor , \neg , etc.) **cannot be applied to path formula**, so it is not true that **EG** $f \equiv \mathbf{E} \neg \mathbf{F} \neg f$ simply because the latter **is not** a CTL formula.

Non Linear Time (LT) examples

The semantics of CTL* formulas are relative to a computation Tree.

Here some example of computation trees and CTL* formulas valid in such computation trees.

Other Examples

A remark on negation

Definition. A transition system \mathcal{M} satisfies a CTL formula φ , notation $\mathcal{M} \models \varphi$ if and only if \mathcal{M} , $s \models \varphi$ for all $s \in S_0$, where S_0 is the set of initial states of \mathcal{M} .

Be careful! \mathcal{M} , $s \nvDash \varphi$ implies \mathcal{M} , $s \vDash \neg \varphi$, but it is not true that $\mathcal{M} \nvDash \varphi$ implies $\mathcal{M} \vDash \neg \varphi$ (The same holds for LTL!).

The problem is the universal quantification over **initial states**!

Example: Both a and $\neg a$ does not hold here:

Equivalent CTL formulas

Besides duality, there are a lot of interesting logical equivalence, useful, for example in Model Checking algorithms (in particular in Symbolic Model Checking).

A CTL formula f is equivalent to g if and only if **for all transition systems** \mathcal{M} , $\mathcal{M} \models f$ **iff** $\mathcal{M} \models g$

Expansion Laws for CTL:

$$\mathbf{A} (f \mathbf{U} g) \equiv g \lor (f \land \mathbf{AX} \mathbf{A} (f \mathbf{U} g))$$

$$\mathbf{AG} f \equiv f \land \mathbf{AX} \mathbf{AG} f$$

$$\mathbf{AF} f \equiv f \lor \mathbf{AX} \mathbf{AF} f$$

$$\mathbf{E} (f \mathbf{U} g) \equiv g \lor (f \land \mathbf{EX} \mathbf{E} (f \mathbf{U} g))$$

$$\mathbf{EG} f \equiv f \land \mathbf{EX} \mathbf{EG} f$$

$$\mathbf{EF} f \equiv f \lor \mathbf{EX} \mathbf{EF} f$$

LTL versus CTL: eliminating A

Theorem. Let f be a CTL formula and let f^{LTL} be the LTL formula obtained by eliminating all path quantifiers in f. Then: $f \equiv f^{LTL}$ or there does not exist any LTL formula equivalent to f

Lemma. [PERSISTENCE] The CTL formula **A F A G** *a* and the LTL formula **F G** *a* are not equivalent.

Proof: Just consider the following Kripke structure.

We have $s_0 \models_{LTL} \mathbf{F} \mathbf{G} a$, since all path starting in s_0 will remain forever in s_0 or in s_2 (that satisfy $\mathbf{G} a$).

By contrast $s_0 \not\models_{\text{CTL}} \mathbf{A} \mathbf{F} \mathbf{A} \mathbf{G} a$, since $s_0^{\omega} \not\models_{\text{CTL}} \mathbf{F} \mathbf{A} \mathbf{G} a$ because of the paths $s_0^* s_1 s_2^{\omega}$ which passes the $\neg a$ -state s_1 . \square

LTL and CTL are not comparable

Theorem.

- 1. There exist LTL formulas for which no equivalent CTL formula exist. For instance: **F G** a or **F** $(a \land \mathbf{X} \ a)$
- 2. There exist CTL formulas for which no equivalent LTL formula exist. For instance: **AF AG** a or **AF** $(a \land AX a)$ or **AG EF** a

Proof (idea): exhibit suitable transition systems \mathcal{M} and \mathcal{M} ' such that $\mathcal{M} \models_{\text{LTL}} g$ and $\mathcal{M}' \nvDash_{\text{LTL}} g$ but such that cannot be distinguished by any CTL formula, that is, for all CTL property g, $\mathcal{M} \models_{\text{CTL}} g$ if and only if $f \mathcal{M}' \models_{\text{CTL}} g$.

Example: Let us consider **AG EF** a. This is satisfied by \mathcal{M} above, but not by \mathcal{M} . On the other hand since traces(\mathcal{M}) \subseteq traces(\mathcal{M}), \mathcal{M} satisfies all LTL formulas satisfied by \mathcal{M} .

Lesson 3a:

CTL Model Checking

CTL model checking: basics

As it is clear from CTL semantics **the truth** of a formula depends on the truth of its **subformula** (maybe in some other state as **EX** or **EF** shows).

CTL formulas are **state formula**: we can determine in each state which are formulas that are satisfied.

Putting together these two facts, and following a common pattern in graph algorithms (it is usually convenient **explore the whole graph** (visits), even when we need for example just a path between two nodes), we have:

Idea: Compute a set label(s) in such a way that for each subformula g of f, $g \in label(s)$ whenever \mathcal{M} , $s \models g$ holds.

Observation: the number of sub-formulas are **linear** in the **size** | f | of a CTL formula f.

CTL model checking: basics

Start with the original labeling of states with atomic propositions, i.e. label(s) = L(s).

 $f \equiv \neg g \Rightarrow f \in label(s)$ if and only if $g \notin label(s)$

 $f \equiv g \lor h \Rightarrow f \in label(s)$ if and only if $g \in label(s)$ or $h \in label(s)$

 $f \equiv \mathbf{E} \mathbf{X} g \Rightarrow f \in label(s)$ if and only if $g \in label(s')$ for some $s', s \rightarrow s'$

The interesting cases are $f \equiv \mathbf{E} \mathbf{G} h$ and $f \equiv \mathbf{E} [g \mathbf{U} h]$

CTL model checking: EU f

When $f = \mathbf{E} [g \mathbf{U} h]$ the idea is: **start** from the **set of states such that** $h \in label(s)$ and then **proceed backwards** on states such that $g \in label(s)$. Label all these states with g.

```
def checkEU(g, h):
    T = \{ s \mid h \in labels(s) \}
    forall s \in T do label(s) = label(s) \cup \{ E [g U h] \}
    while T \neq \emptyset do
         choose s \in T
                                      \operatorname{prec}(s) = \{t \mid R(t, s)\}\
         T = T \setminus \{s\}
        forall t \in prec(s) do
             if E[g U h] \notin label(t) and g \in label(t)
                  then
                      label(s)=label(s) \cup \{ \mathbf{E} [g \mathbf{U} h] \}
                      T = T \cup \{t\}
                                                               It is essentially a
                                                               backward visit of a
                                                               graph. The complexity
                                                               is O(|S| + |R|)
```

CTL model checking: EG f (1)

When $g \equiv \mathbf{E} \mathbf{G} h$, we must find **infinite paths labeled by** h. In a finite directed graph, such paths must enter a **strongly connected component** where **all states** are **labeled by** h.

Roughly speaking:

- 1. Compute the set of states $S' = \{ s \in S \mid h \in label(s) \}$.
- 2. Decompose (S', R') in strongly connected components.
- 3. Add all states s such that $h \in label(s)$ and from which one of such strongly connected components is reachable.

CTL model checking: EG f (2)

Lemma. Let $S' = \{ s' \in S \mid \mathcal{M}, s' \models h \}$. Then $\mathcal{M}, s \models \mathbf{E} \mathbf{G} h$ if and only if the following conditions are satisfied:

1.
$$s \in S'$$

2. There exists a path from s to a strongly connected component $C \subseteq S'$.

Proof: (**If**) Let π be an infinite path starting at s satisfying **G** h. Clearly, $s \models h$. Since π is an infinite path, it has the shape $\pi_0\pi_1$ and in π_1 each state occurs infinitely often. Both states in π_0 and π_1 belongs S'. Since each state appears infinitely often in π_1 , there is a path between any pairs of states in π_1 , therefore states in π_1 belong to some C that is a SCC in (S', R').

(**Only If**) Let π_0 be a finite path from s to $t \in C$ in S'. Then we can find a finite path π_1 from t to t. The path π_0 π_1^{ω} satisfies **G** h. \square

CTL model checking: EG f/3

```
def checkEG(g):
    S' = \{ s \mid g \in labels(s) \}
    SCC = \{ C \mid C \text{ is a nontrivial } SCC \text{ of } S' \}
     T = \bigcup_{C \in SCC} \{ s \mid s \in C \}
    forall s \in T do label(s) = label(s) \cup \{ EG g \}
     while T \neq \emptyset do
         choose s \in T
         T = T \setminus \{s\}
         forall t \in \operatorname{prec}(s), t \in S' do
              if EG g \in label(t)
                   then
                        label(s)=label(s) \cup \{ EG g \}
                        T = T \cup \{t\}
```

Strongly connected components of the subgraph $\langle S', R' \rangle$ of states where h holds

Backward reachability from strong connected components.

Theorem. Given a Kripke structure $\mathcal{M}=(S, R, L)$ and a CTL formula f, determining if $\mathcal{M} \models_{\text{CTL}} g$ can be decided in time

$$\mathcal{O}((|S|+|R|)\cdot |f|$$

Example: microwave oven

Lesson 3b:

LTL Model Checking

LTL Model Checking (1)

Several algorithms. Today, we see a tableaux construction.

It suffices (thanks to duality) to check properties of the form $\mathbf{E} f(\mathbf{A} f \equiv \neg \mathbf{E} \neg f)$. Moreover (again thanks to duality), we consider only operators **X** and **U**.

Definition [Closure of f] CL(f) is the **smallest set** containing f and satisfying:

- $\neg g \in CL(f)$ iff $g \in CL(f)$
- If $g_1 \lor g_2 \in CL(f)$ then $g_1, g_2 \in CL(f)$
- If $\mathbf{X} g \in CL(f)$ then $g \in CL(f)$
- If $\neg \mathbf{X} g \in CL(f)$ then $\mathbf{X} \neg g \in CL(f)$
- If $g_1 \mathbf{U} g_2 \in CL(f)$ then $g_1, g_2, \mathbf{X} (g_1 \mathbf{U} g_2) \in CL(f)$

LTL Model Checking (2)

Definition An **atom** is a pair (s, K), where s is a state and K is a maximal **set of formulas in** CL(f) **consistent with** L(s), that is (we identify : g with $\neg \neg g$) :

- for each atomic proposition $p, p \in K$ iff $p \in L(s)$
- for each $g \in CL(f)$ then $g \in K$ iff $\neg g \notin K$
- for each $g_1 \lor g_2 \in CL(f)$, $g_1 \lor g_2 \in K$ iff $g_1 \in K$ or $g_2 \in K$
- for each $\neg \mathbf{X} g \in CL(f)$, $\neg \mathbf{X} g \in K$ iff $\mathbf{X} \neg g \in K$
- for each $g_1 \mathbf{U} g_2 \in CL(f)$, $g_1 \mathbf{U} g_2 \in K$ iff $g_2 \in K$ or $g_1 \in K$ and $\mathbf{X} (g_1 \mathbf{U} g_2) \in K$

Definition Given a LTL model checking problem \mathcal{M} , $s \models \mathbf{E} f$, the **atom graph** $G^{\mathcal{M}, f}$ is built with **atoms** as the set of **vertices**.

There is an **edge** from (s, K) to (s', K') iff (s, s') **is transition in** \mathcal{M} , and for each formula $\mathbf{X} g \in CL(f)$, $\mathbf{X} g \in K$ iff $g \in K'$.

LTL Model Checking (3)

Definition An **eventuality sequence** is an infinite path π in $G^{M,f}$ such that if $g_1 \cup g_2 \in K$ for some atom (s, K) then there exists an atom (s', K') reachable from (s, K) along π , such that $g_2 \in K'$.

Theorem \mathcal{M} , $s \models \mathbf{E} f \Leftrightarrow$ there exists an eventuality sequence in $G^{\mathcal{M},f}$ starting at atom (s,K) such that $f \in K$.

Proof (sketch):

(**If**) Assume (s_0, K_0) (s_1, K_1) (s_2, K_2) ... is an eventuality sequence with (s, K)= (s_0, K_0) . By def, $\pi = s_0 s_1 s_2$... is a path in \mathcal{M} .

To make induction hypothesis work, we prove that for every $g \in CL(f)$ and for all $i \ge 0$, $\pi^i \models g$ iff $g \in K_i$. The proof proceeds by induction on sub-formulas of f.

If $g = \neg h$, $\pi^i \models g \Leftrightarrow \pi^i \not\models h \Leftrightarrow h \notin K_i$ (**IND**) $\Leftrightarrow g \in K_i$ (by maximality)

If g=X h then $\pi^i \models g \Leftrightarrow \pi^{i+1} \models h$ (**IND**) $h \in K_{i+1}$. Since $(s_i, K_i) \rightarrow (s_{i+1}, K_{i+1})$ then $h \in K_{i+1} \Leftrightarrow X h \in K_i$.

LTL Model Checking (4)

Proof (cntd.): If $g = h_1$ **U** h_2 we have $h_2 \in K_j$ for some $j \ge i$ and h_1 , **X** $g \in K_k$ for $i \le k < j$. This implies $h_1 \in K_k$ and $h_2 \in K_j$ and hence $\pi^i \models g$.

Conversely, if $\pi^i \models g$, there exists $j \ge i$ such that $\pi^j \models h_2$ and $\pi^k \models h_1$ K_k for $i \le k < j$. (**HH**) $h_2 \in K_j$ and $h_1 \in K_k$. By absurd, $g \notin K_i$ and $h_1 \in K_i$ implies that $\mathbf{X} g \notin K_i$ (def. of atom) and hence (def. of atom) $\mathbf{X} \frown g \in K_i$ (def of transition relation) $\frown g \in K_{i+1}$ and $g \notin K_{i+1}$ and so on until $g \notin K_j$ against the fact that $h_2 \in K_j$.

(**only if**) Assuming that \mathcal{M} , $s \models \mathbf{E} f$ there exists a path $\pi = s_0 s_1 s_2 \dots$ in \mathcal{M} such that $\pi \models f$. Define $K_i = \{ g \in \mathrm{CL}(f) \mid \pi^i \models g \}$. One can show that:

- 1. (s_i, K_i) is an atom;
- 2. $(s_i, K_i) \rightarrow (s_{i+1}, K_{i+1})$ is a transition in G.
- 3. The sequence (s_{0}, K_0) (s_{1}, K_1) (s_{2}, K_2) ... is an eventuality sequence. \Box

LTL Model Checking (5)

Definition: A non trivial strongly connected component C in $G^{M,f}$ is **self-fullfilling** if for every atom (s, K) and for every h_1 **U** $h_2 \in K$ there exists an atom (s', K') in C such that $h_2 \in K'$.

Theorem. There exists an eventuality sequence in $G^{M,f}$ starting at an atom (s, K) iff there exists a self-fulfilling strongly connected component in $G^{M,f}$ reachable from (s, K).

Proof (sketch): (**If**) Take an eventuality sequence and consider the set of atoms C' that appear infinitely often in it. $C' \subseteq C$, C strongly connected component. Take (s, K) in C and $g = h_1 \cup h_2 \in K$. There must be a path from (s, K) to C'. If h_2 appear in the path, ok. Otherwise, g is in every atom on the path and in an atom of C'. Since C' comes from an eventuality sequence, h_2 is in some atom of $C' \subseteq C$, thus C is self-fullfilling.

(**Only if**) Take a path from (s, K) to C. Clearly in C any subformula of the form h_1 **U** h_2 is followed by an atom containing h_2 . The only problem is along the path, but we can reason as in the (**If**) part. \square

LTL Model Checking: Algorithm

Theorem \mathcal{M} , $s \models \mathbf{E} f$ if and only if there exists an atom (s, K) such that $f \in K$ and a path from (s, K) to a self-fullfilling SCC.

The size of the graph *G* is $(|S| + |R|) \cdot 2^{|f|}$.

Using Tarjan algorithm for SCC, this is also the complexity of this algorithm for LTL model checking.

Bad News: It is exponential in the size of the formula *f*.

Good News: Usually the transition system is huge, but the formula is small.

Is there any polynomial algorithm for LTL model checking? Probably, no (unless P=NP).

LTL Model Checking: Complexity

The LTL model checking problem is **PSPACE-complete**. Here we **prove** just that LTL model checking is **NP-hard**.

We reduce the **Hamiltonian path problem** for a graph G=(V, E) to the LTL model checking problem $\mathcal{M}, s \models E f$ where:

- \mathcal{M} is the Kripke structure (S, R, L) where:
 - * S is $V \cup \{s, t\}$
 - * R is $E \cup \{ (s, v) | v \in V \} \cup \{ (v, t) | v \in V \}$
 - * $L(v_i) = \{ p_i \}$ and $L(s) = L(t) = \emptyset$.
- s is the initial state in \mathcal{M} , and
- f is the formula: There exists a path that contains all nodes

E (**F**
$$p_1 \wedge ... \wedge$$
 F $p_n \wedge$
 \wedge **G** $(p_1 \rightarrow \mathbf{X} \mathbf{G} \neg p_1) \wedge ... \wedge \mathbf{G} (p_n \rightarrow \mathbf{X} \mathbf{G} \neg p_n)$
Each node occurs just once

 \mathcal{M} , $s \models \mathbf{E} f$ holds if and only if there exists an Hamiltonian path in G (observe that f has size polynomial in |G|).

Detour: Hamiltonian path in CTL

Taken a graph G=(V, E), we define a Kripke structure $\mathcal{M} = (S, R, L)$ where:

- $S=V \cup \{b\}$ b is needed to make R total
- $R=E \cup \{v \rightarrow b \mid v \in E\}$
- $L(v)=\{v\}$

We define $f = \bigvee_{(i_1,\dots,i_n) \text{ permutation of } (1,\dots,n)} g(v_{i_1},\dots,v_{i_n})$ and g inductively as follows:

$$g(v_i) = v_i$$

 $g(v_{i_1}, ..., v_{i_n}) = v_{i_1} \land \mathbf{E} \mathbf{X} g(v_{i_2}, ..., v_{i_n}) \text{ if } n > 1$

It is easy to see that $g(v_{i_1}, ..., v_{i_n})$ holds if and only if $v_{i_1}, ..., v_{i_n}$ is a Hamiltonian path in G.

Therefore, $\mathcal{M} \models f$ if and only if G has a Hamiltonian path.

Obviously, this reduction is not polynomial!

Lesson 3c:

Summary of LTL Model Checking

LTL model checking: summary

The problem $\mathcal{M}, s \models \mathbf{A} f$ is transformed in the refutation of $\mathcal{M}, s \models \mathbf{E} \neg f$. To verify $\mathcal{M}, s \models \mathbf{E} f$ where $\mathcal{M} = (S, R, L)$:

- **1.** Build the set of formulas: CL(f).
- **2.** For each state $s \in S$, compute the set K of formulas in CL(f) consistent with $L(s) \Rightarrow$ atoms (s, K)
- **3.** Build the graph $G^{M,f}$ that contains an edge from (s, K) to (s', K') whenever (s, s') is in R, **X** g in K, and g in K'.
- **4.** Find an eventuality sequence by finding strongly connected components of $G^{M,f}$

[An **eventuality sequence** is an infinite path π in $G^{M,f}$ such that if $g_1 \cup g_2 \in K$ for some atom (s, K) then there exists an atom (s', K') reachable from (s, K) along π , such that $g_2 \in K'$].

Example: microwave oven

LTL model checking: example 1

Taking $f \equiv (\neg \text{Heat } \mathbf{U} \text{ Close})$

- Compute the closure of f, $CL(\neg f)$: $\{\neg f, f, X f, \neg X f, X \neg f, \text{ Heat, } \neg \text{Heat, Close, } \neg \text{Close} \}$
- Compute atoms:

Not just subformulas!

• {¬Heat,¬Close}
$$\subseteq$$
 $L(1)$, $L(2)$ $K_1' = \{\neg \text{Heat}, \neg \text{Close}, f, \mathbf{X}f\}$ $K_1'' = \{\neg \text{Heat}, \neg \text{Close}, \neg f, \neg \mathbf{X}f, \mathbf{X} \neg f\}$

• $\{\neg \text{Heat}, \text{Close}\} \subseteq L(3), L(5), L(6)$

Close is not consistent $K_2' = \{\neg \text{Heat}, \text{Close}, f, \mathbf{X} f\}$ with $\neg f$ $K_2'' = \{\neg \text{Heat}, \text{Close}, f, \neg \mathbf{X} f, \mathbf{X} \neg f\}$

> • {Heat , Close} \subseteq L(4), L(7) $K_3' = \{\text{Heat , Close}, f, \mathbf{X} f\}$ $K_3'' = \{\text{Heat , Close}, f, \neg \mathbf{X} f, \mathbf{X} \neg f\}$

Compute the graph G

Example of transitions:

$$(1, K_1'') \rightarrow (2, K_1'')$$
 because $\mathbf{X} f \in K_1', f \in K_1'$, and $(1, 2) \in R$
 $(1, K_1''') \rightarrow (2, K_1'')$ because $\mathbf{X} \neg f \in K_1', \neg f \in K_1''$, and $(1, 2) \in R$
There is no transition $(1, K_1') \rightarrow (2, K_1'')$ since $\mathbf{X} f \in K_1'$ but $f \notin K_1''$

Once the full graph is constructed, it is easy to see that there is no atom (s, K) from which there is a path into a self-fullfilling non trivial strong component of $G^{M, f}$.

Therefore, no state s is such that $\mathcal{M}, s \models \mathbf{E} \neg f$ and hence all states satisfy $\mathcal{M}, s \models \mathbf{A} g$.

Lesson 3d:

CTL* Model Checking

Idea of CTL* Model Checking

Idea: use CTL and LTL model checking procedures on subformulas.

Substitute any maximal state sub-formulas with fresh atomic propositions. Like CTL algorithm, the CTL* algorithm works in stages.

Level 0: atomic propositions

Level *i***+1**: all state sub-formulas *g* such that all state sub-formulas of *g* are of level *i* or less and *g* is not contained in any lower level.

Example: $AG((\neg Close \land Start) \rightarrow A (G \neg Heat \lor F \neg Error))$

Only **E** quantifier: \neg **EF**((\neg Close \land Start \land **E** (**F** Heat \land **G** Error))

Level 0: Close, Start, Heat, Error

Level 1: \neg Close, **E** (**F** Heat \land **G** Error)

Level 2: $EF((\neg Close \land Start \land E (F Heat \land G Error))$

Level 3: $\neg \mathbf{EF}((\neg \mathsf{Close} \land \mathsf{Start} \land \mathbf{E} (\mathsf{F} \mathsf{Heat} \land \mathbf{G} \mathsf{Error}))$

CTL* Model Checking: algorithm

Algorithm 27 CTL* model checking algorithm (basic idea)

```
Input: finite transition system TS with initial states I, and CTL^* formula \Phi Output: I \subseteq Sat(\Phi)
```

```
for all i \leq |\Phi| do
  for all \Psi \in Sub(\Phi) with |\Psi| = i do
     \mathbf{switch}(\Psi):
                 true : Sat(\Psi) := S;
                     : Sat(\Psi) := \{ s \in S \mid a \in L(s) \};
                 a_1 \wedge a_2 : Sat(\Psi) := Sat(a_1) \cap Sat(a_2);
                      : Sat(\Psi) := S \setminus Sat(a);
                 \neg a
                 \exists \varphi : determine Sat_{LTL}(\neg \varphi) by means of an LTL model-checker;
                             : Sat(\Psi) := S \setminus Sat_{LTL}(\neg \varphi)
     end switch
     AP := AP \cup \{a_{\Psi}\};
                                                                     (* introduce fresh atomic proposition *)
     replace \Psi with a_{\Psi}
     forall s \in Sat(\Psi) do L(s) := L(s) \cup \{a_{\Psi}\}; od
  od
od
return I \subseteq Sat(\Phi)
```

CTL*: example and complexity

Example: $\neg EF((\neg Close \land Start \land E (F Heat \land G Error))$ **Level 1**: The level 1 formula $\neg Close$ is added to L(1) and L(2)**E** (F Heat \land G Error) is pure LTL, but there is no state satisfying this formula.

Level 2: **E** (**F** Heat \land **G** Error) is replaced by a fresh atomic proposition *a*. LTL-model checking is then applied to the formula **EF**((\neg Close \land Start \land *a*), that is unsatisfiable, so all states are labeled with \neg **EF**((\neg Close \land Start \land **E** (**F** Heat \land **G** Error)).

Theorem: There exists a CTL* model checking algorithm with complexity $O(|\mathcal{M}|2^{|f|})$

Theorem: CTL* model checking is PSPACE-complete.

That's all Folks!

Thanks for your attention... Questions?