Formal Methods
in Software Development

Computational Tree Logic (CTL)
CTL, LTL, and CTL* model Checking
Ivano Salvo

Computer Science Department

SAPIENZA

UNIVERSITA DI ROMA

Lesson 3, October 8" 2019

Lesson 2d:

Computation Tree Logic
CTL

Non Linear Time properties

Let us consider the property: “For every computation, it is
always possible to return to the initial state”

&)

This system intuitively satisfies our intended property, but not
the linear property A G F start (because of the path (—start)?)

A G F start does not properly work.
It is too strong.

start

The solution is a branching notion of time, allowing nesting of
path quantifiers A and E: in this case A G E F start.

CTL: syntax

State formulas are formulas that depend on a state of a
transition system

« Ifp € AP, thenp is a state formula
« Iff g are state formulas, thensoare —f, fAg, fVg
« If fis a path formula, then A fand E f are state formulas

Path formulas are formulas that depend on a computation path

« Iff garestate formulas, then —f, fAg, fV¢g XL Ff, Gf, fU
g, and f R g are path formulas

Similar to CTL*, but each temporal operator (X, F, G, U, R)
must be preceded by a path quantifier (E or A)

Examples: (il)legal CTL formulas

Let AP ={x =1, x <2, x 2 3} be the set of atomic propositions.

Legal CTL formulas are:
EX(x=1), AX(x=1),x=1Vx<2

Illegal CTL formulas are:
E(x=1NAXx23)
because AX x = 3 is not a path formula
EX (trueUx =1)
because EX nested with a path formula

By contrast, the following are legal CTL formulas:
EX(x=1ANAXx23) EX A (trueUx=1)

Common operators: EF ¢ = “¢ holds potentially”
AF ¢ = “¢ is inevitable”
EG ¢ = “¢ holds potentially always”
AG ¢ = “invariantly ¢”

Minimal Fragment of CTL

From a theoretical point of view, 3 operators only are really
needed: EX, EG, and EU (via duality):
AXf=-EX~f
EF f=-E (true U f)
AGf=-EF~f
AFf=-EG~f
A(fUg)="E(gUfA=g)A~EG~g
A(fRg)="E("fU~"yg)
E(fRg)="A(fU"g)
Attention! that propositional operators (A, V, =, etc.) cannot be

applied to path formula, so it is not true that EGf =E - F ~f
simply because the latter is not a CTL formula.

Non Linear Time (LT) examples

9
The semantics of CTL*
) g g g
formulas are relative
to a computation Tree.
M,sM:EFg M,S()':AFg

Here some example of
computation trees and
CTL* formulas valid in g
such computation

trees.

M,s0 =EEGg M,so = AG g

Other Examples

{a) d/(b} {a}
52 Black states are those
0y @) that satisfy the formula

. o%?/cﬁ() Oa Q__oe—e_)

a .i‘/?/‘*)Q vOa O\g?O*)Q
e -6 o "o)
30 (30 a) .v. Y(aUb) \./
oo -)

J(@VU(~a A Y(-aUb))) \./

A remark on negation

Definition. A transition system ‘M satisfies a CTL formula ¢,
notation M = ¢ if and only if M, s F ¢ for all s € S, where S, is
the set of initial states of ‘M.

Be careful! M, s ¥ ¢ implies ‘M, s ~¢, but it is not true that
M ¥ @ implies M F ¢ (The same holds for LTL!).

The problem is the universal quantification over initial states!

Example: Both a and —a does not hold here:

Equivalent CTL formulas

Besides duality, there are a lot of interesting logical equivalence,
useful, for example in Model Checking algorithms (in particular
in Symbolic Model Checking).

A CTL formula fis equivalent to g if and only if for all
transition systems ‘M, MFfiff Mk g

Expansion Laws for CTL:

A(fUg) =gV (fAAXA(fUYg))
AGf=fNAXAGf
AF f=fV AX AF f

E(fUg) =gV (fAEXE(fUg))
EG f=fAEXEG f
EFf=f VEXEFf

LTL versus CTL: eliminating A

Theorem. Let fbe a CTL formula and let f - be the LTL
formula obtained by eliminating all path quantifiers in f. Then:

f = fLL or there does not exist any LTL formula equivalent to f

Lemma. [PERSISTENCE]| The CTL formula A F A G a and the LTL
formula F G a are not equivalent.

Proof: Just consider the following Kripke structure.

{a} %) {a}

We have s, 11, F G g, since all path starting in s, will remain
forever in s, or in s, (that satisty G a).

By contrast sy#-r. A F A G g, since s,® ¥ F A G a because of
the paths s, s; s, which passes the —a-state s; [d

LTL and CTL are not comparable

Theorem.

1. There exist LTL formulas for which no equivalent CTL
formula exist. For instance: F G a or F (a A X a)

2. There exist CTL formulas for which no equivalent LTL
formula exist. For instance: AF AG a or AF (a A AX a) or AG EF a

Proof (idea): exhibit suitable transition systems ‘M and M’ such
that M F ;. ¢ and ‘M’ ¥, 1 ¢ but such that cannot be distinguished
by any CTL formula, that is, for all CTL property g, M Fcr. g if and
only if f M’ Fqp g

Example: Let us consider AG EF a. This is satisfied by ‘M above, but

not by ‘M’. On the other hand since traces(M’) < traces(M), M’
satisfies all LTL formulas satisfied by M. u

% {a} %)

M5 e

L.esson 3a:

CTL Model Checking

CTL model checking: basics

As it is clear from CTL semantics the truth of a formula depends
on the truth of its subformula (maybe in some other state as EX

or EF shows).

CTL formulas are state formula: we can determine in each state
which are formulas that are satisfied.

Putting together these two facts, and following a common
pattern in graph algorithms (it is usually convenient explore the
whole graph (visits), even when we need for example just a
path between two nodes), we have:

Idea: Compute a set label(s) in such a way that for each sub-
formula g of f, g € label(s) whenever M, s F g holds.

Observation: the number of sub-formulas are linear in the size
| f| of a CTL formula f.

CTL model checking: basics

Start with the original labeling of states with atomic
propositions, i.e. label(s)= L(s).

f= g™ f€label(s) it and only if g € label(s)
f=gVh = fe€label(s) if and only if g € label(s) or h € label(s)
f=E X g = f€label(s) if and only if g € label(s") for some s’, s—s’

The interesting cases are f=EGhand f=E[gUh]

CTL model checking: EU f

When f= E [g U 1] the idea is: start from the set of states such
that & € label(s) and then proceed backwards on states such that
g € label(s). Label all these states with g.

def checkEU(g, h):
T={s | h€labels(s) }
forall s € T do label(s)=label(s) U { E [g U h] }
while T # 2 do

chooses€ T
T=T\{s)} prec(s) = {t | R(t, s)} >

forall ¢ € prec(s) do
if E[g U h] € label(t) and g € label(t)
then
label(s)=label(s) U {E [g U h] }

T=TU{t} ﬂ essentially a

backward visit of a
graph. The complexity
is O(|S| + |R])

CTL model checking: EG f (1)

When ¢ = E G i, we must find infinite paths labeled by 5.

In a finite directed graph, such paths must enter a strongly
connected component where all states are labeled by /.

Roughly speaking:
1. Compute the set of states S"={s€ S | h € label(s)}.
2. Decompose (S, R’) in strongly connected components.

3. Add all states s such that & € label(s) and from which one of
such strongly connected components is reachable.

CTL model checking: EG f (2)

Lemma. Let S'={s"€S | M,s"=h}. Then M, sk E G h if and only
if the following conditions are satisfied:

1.s€S’

2. There exists a path from s to a strongly connected
component C & S

Proof: (If) Let m be an infinite path starting at s satistying G h.
Clearly, s h. Since & is an infinite path, it has the shape m,m; and
in m; each state occurs infinitely often. Both states in myand m
belongs S’. Since each state appears infinitely often in m;, there is
a path between any pairs of states in m;, therefore states in m;
belong to some C thatis a SCCin (S, R’).

(Only If) Let r, be a finite path from s to ¢t € Cin S’. Then we can
find a finite path m; from ¢ to t. The path r, 7, satisfies G h. (A

CTL model checking: EG f/ 3
/_\/—\/v—\

def checkEG(g): Strongly connected
S"={s | g€ labels(s) } components of the
SCC={C | Cisanontrivial SCC of S”} subgraph (S, R’y of
T=Ucesccls | s€ECH states where h holds
forall s € T do label(s)=label(s) U { EG g }
while T # 2 do
chooses€ T
T=T\{s} /\/\/—v—\
forall ¢ € prec(s), t€ S" do Backward reachability
if EG g € label(t) from strong connected
then components.
label(s)=label(s) U { EG g } _/\/J
T=TU/{t}

Theorem. Given a Kripke structure M=(S, R, L) and a CTL formula
f, determining if ‘M =-r; ¢ can be decided in time

OC(IS[+IR]) - |f]

Example: microwave oven

AG(Start—AF Heat) —— SCC
= AG(—~Start V AF Heat) 1 ~Heat " Heat
= —EF(Start A EG ~Heat) ~Start
~Close
“Enor
start oven open door close open door
cook
2 3 4
Start E(t:.l:se E?ot:: done E?&Z'
-Heat\ &mor —Heqt o 2
open door close door reset oven start cooking
5 —
Start/ .,
“Heat| Sex
Error
Start A

EG “Hea All states satisfy EF(Start A EG ~Heat)

Lesson 3b:

LTL Model Checking

LTL Model Checking (1)

Several algorithms. Today, we see a tableaux construction.

It suffices (thanks to duality) to check properties of the form

Ef(Af = —E —f). Moreover (again thanks to duality), we
consider only operators X and U.

Definition [Closure of f] CL(f) is the smallest set containing f
and satistying:

— g e CL(f) itt g € CL(f)

If g1V g, € CL(f) theng, g, € CL(f)
If X g€ CL(f)then g€ CL(f)

If =X g€CL(f)then X— g€ CL(f)

Ifg; Ug, € CL(f)then gy, g, X (g, Ug,) € CL(f)

LTL Model Checking (2)

Definition An atom is a pair (s, K), where s is a state and K is a
maximal set of formulas in CL(f) consistent with L(s), that is
(we identify : g with — — g) :

for each atomic proposition p, p € K iff p € L(s)

for each g€ CL(f) theng€ Kiff m g€ K

foreach g; V¢, € CL(f), g; Vg €Kiff g€ Kor g, €K
foreach 7 X g€ CL(f), " Xg€eKiff X—g€K

foreach g; U g, € CL(f), g, Ug, €Kiff g, € Kor g; € Kand
X(g:1Ug)EK

Definition Given a LTL model checking problem M, s FE f, the
atom graph G™/is built with atoms as the set of vertices.

There is an edge from (s, K) to (s’, K') iff (s, s’) is transition in
M, and for each formula X g € CL(f), X g € Kiff g € K.

LTL Model Checking (3)

Definition An eventuality sequence is an infinite path 7in GM/
such that if g; U g, € K for some atom (s, K) then there exists an
atom (s’, K’) reachable from (s, K) along #, such that g, € K".

Theorem M , s = E f < there exists an eventuality sequence in
GM f starting at atom (s, K) such that f€ K.

Proof (sketch):
(If) Assume (s, Ky) (51, K7) (S5, K5)... is an eventuality sequence
with (s, K)=(sy, Ky). By def, 7 =sy5;55... is a path in ‘M.

To make induction hypothesis work, we prove that for every g €
CL(f)and foralli>0, 7' F g iff ¢ € K. The proof proceeds by
induction on sub-formulas of /.

Ifg=—h nirg& nirh & h¢ K (IND) © g€ K; (by maximality)

If g=Xhthenni= ¢ & 71 =h (IND) h € K,,;. Since (s;, K})— (5,41,
K.,;)thenh €K, ;< Xh€K.

LTL Model Checking (4)

Proof (cntd.): If g =11, U h, we have i, € K; for some j 27 and I,
X g € K for i <k <j. This implies h; € K, and h, € K; and hence
TEg.

Conversely, if 7 = g, there exists j 2 i such that 7/ = hy,and 7%+ Iy
Ky fori<k<j. (HH) h, € K; and h; € K. By absurd, ¢ ¢ K;and h; €
K;implies that X g ¢ K; (def. of atom) and hence (def. of atom) X —
g € K; (def of transition relation) — g € K;,;and ¢ € K;;; and so on
until ¢ & K; against the fact that 1, € K.

(only if) Assuming that ‘M, s = E f there exists a path 7 =555, ...

in ‘M such that 7+ f. Define K;={ g€ CL(f) | n'F g}.

One can show that:

1. (s; K;)is an atom;

2. (s; K;) —(s;41, Kjy;) is a transition in G.

3. The sequence (s Kj) (51, K;) (s K;)... is an eventuality
sequence.

LTL Model Checking (5)

Definition: A non trivial strongly connected component C in GM /
is self-fullfilling if for every atom (s, K) and for every h; U h, € K
there exists an atom (s’, K’) in C such that h, € K’.

Theorem. There exists an eventuality sequence in GM f starting at
an atom (s, K) iff there exists a self-fulfilling strongly connected
component in GM f reachable from (s, K) .

Proof (sketch): (If) Take an eventuality sequence and consider the
set of atoms C’ that appear infinitely often in it. C’< C, C strongly
connected component. Take (s, K) in Cand g =h; U h, € K. There
must be a path from (s, K) to C". If h, appear in the path, ok.
Otherwise, g is in every atom on the path and in an atom of C".
Since C’ comes from an eventuality sequence, /1,1is in some atom
of C" & C, thus C is self-fullfilling.

(Only if) Take a path from (s, K) to C. Clearly in C any
subformula of the form /; U h, is followed by an atom containing
h, . The only problem is along the path, but we can reason as in

the (If) part.

LTL Model Checking: Algorithm

Theorem M, s = E fif and only if there exists an atom (s, K) such
that f € K and a path from (s, K) to a self-fullfilling SCC.

The size of the graph Gis (|S|+|R|) 2!/,

Using Tarjan algorithm for SCC, this is also the complexity of this
algorithm for LTL model checking.

Bad News: It is exponential in the size of the formula f.

Good News: Usually the transition system is huge, but the
formula is small.

Is there any polynomial algorithm for LTL model checking?
Probably, no (unless P=NP).

LTL Model Checking: Complexity

The LTL model checking problem is PSPACE-complete.
Here we prove just that LTL model checking is NP-hard.

We reduce the Hamiltonian path problem for a graph G=(V, E)
to the LTL model checking problem ‘M, s = E f where:

* ‘M is the Kripke structure (S, R, L) where:
*SisV U {s t}
*RisE U{(s,0)|veEV} U |{(v, t)|veEV}
*L(v)={p;} and L(s) = L(t) = 2.
* sis the initial state in ‘M, and
* fistheformula: There exists a path that contains all nodes
EFEp,AN...NEp, A
NG (1= XGp) A AG(p, > XGp,)

Each node occurs just once

‘M, s £ E fholds if and only if there exists an Hamiltonian path
in G (observe that f has size polynomial in |G|).

Detour: Hamiltonian path in CTL

Taken a graph G=(V, E), we define a Kripke structure
M =(S, R, L) where:

« S=VU{b} b is needed to make R total

« R=EU{v—b | v€E}

* L=}

We deﬁnef= V(il,...,in) permutation of (1,...,n) g(vi1; e vin)
and g inductively as follows:

8(v) =0, ’

gi, v)=, NEX gy, ..., v;) if n>1

It is easy to see that g(v; , ..., v;) holdsif and only if v; , ..., v;
is a Hamiltonian path in G.

Therefore, M F f if and only if G has a Hamiltonian path.

Obviously, this reduction is not polynomial!

Lesson 3c:

Summary
of LTL
Model Checking

LTL model checking: summary

The problem ‘M, s = A f is transformed in the refutation of ‘M, s
=E —f. To verify M, s E f where M =(5, R, L):

1. Build the set of formulas: CL(f).

2. For each state s € S, compute the set K of formulas in CL(f)
consistent with L(s) = atoms (s, K)

3. Build the graph G™f that contains an edge from (s, K) to (s’,
K’) whenever (s, s") isin R, X gin K, and g in K".

4. Find an eventuality sequence by finding strongly connected
components of GM

[An eventuality sequence is an infinite path 7 in GM/such that
if ¢; U g, € K for some atom (s, K) then there exists an atom (s’,
K’) reachable from (s, K) along 7, such that g, € K'].

Example: microwave oven

A(—Heat U Close)
= —~E —~ (~Heat U Close) 1 aHeat

~Start

~Heat
~Error

start oven open door close door open door

~Start ~Start lose
Close done Close

“1Heat :'E‘re:otr fEe:rtor

-“1Heat

start cooking

open door close door reset start oven

Close
“Heat Close

LTL model checking: example 1

Taking f = (—Heat U Close)
* Compute the closure of f, CL(— f):
=1 f Xf, = Xf, X~} Heat, "Heat, Close, =Close }
* Compute atoms: Not just subformulas!
* {~Heat, ~Close} & L(1), L(2)
K,'={~Heat, ~Close, f, X f }
K,”"={~Heat, ~Close, ~f, "X f, X = f}
* {~Heat, Close} SL(3), L(5), L(6)
Close is not consistent K,’={-Heat , Close, f, X f}
with =f K,”’={~Heat, Close, f, "X f, X = f}
* {Heat, Close} &L(4), L(7)
K;y'={Heat, Close, f, X f}
K;”"={Heat, Close, f, "X f, X~ f}

Compute the graph G

Example of transitions:
(1, K{)—(2, K;") because X fe K", fe K", and (1,2) € R
(1, K{)—(2, K;”) because X—fe K, ,~f€ K;”, and (1,2) € R
There is no transition (1, K;")—(2, K,”) since X f € K;" but f¢ K,”

Once the full graph is constructed, it is easy to see that there is
no atom (s, K) from which there is a path into a self-fullfilling
non trivial strong component of GM/,

Therefore, no state s is such that ‘M, s = E — f and hence all
states satisfy M, s = A g.

Lesson 3d:

CTL*
Model Checking

Idea of CTL* Model Checking

Idea: use CTL and LTL model checking procedures on sub-
formulas.

Substitute any maximal state sub-formulas with fresh atomic
propositions. Like CTL algorithm, the CTL* algorithm works in
stages.

Level 0: atomic propositions

Level i+1: all state sub-formulas g such that all state sub-
formulas of ¢ are of level i or less and ¢ is not contained in any
lower level.

Example: AG((—Close A Start) — A (G ~Heat V F —Error))
Only E quantifier: ~EF((—Close A Start A E (F Heat A G Error))

Level O0: Close, Start, Heat, Error

Level 1: —Close, E (F Heat A G Error)

Level 2: EF((—Close A Start A E (F Heat A G Error))
Level 3: "EF((—Close A Start A E (F Heat A G Error))

CTL* Model Checking: algorithm

Algorithm 27 CTL* model checking algorithm (basic idea)

Input: finite transition system TS with initial states I, and CTL"* formula ®
Output: I C Sat(P)

for alli < |®| do
for all ¥ € Sub(®) with |¥| =1 do

switch(¥):
true : Sat(V¥) := S,
a . Sat(V):={seS|aec L(s)};
ay Naz : Sat(¥):= Sat(a;) N Sat(asz);
—a : Sat(¥) := S\ Sat(a);
dop : determine Satjpr(—¢) by means of an LTL model-checker;

Sat(V) := S\ Satpr(—)
end switch
AP := AP U {av }; (* introduce fresh atomic proposition *)
replace ¥ with ay
forall s € Sat(V) do L(s) := L(s) U {ay }; od
od
od
return [C Sat(®P)

CTL*: example and complexity

Example: ~EF((—Close A Start A E (F Heat A G Error))

Level 1: The level 1 formula —Close is added to L(1) and L(2)

E (F Heat A G Error) is pure LTL, but there is no state satistying
this formula.

Level 2: E (F Heat A G Error) is replaced by a fresh atomic
proposition a. LTL-model checking is then applied to the
formula EF((~Close A Start A a), that is unsatisfiable, so all states

are labeled with =EF((—Close A Start A E (F Heat A G Error)).

Theorem: There exists a CTL* model checking algorithm with
complexity O(| M |2!/1)

Theorem: CTL* model checking is PSPACE-complete.

That’s all Folks!

Thanks for your attention...
... Questions?

