
Formal Methods
in Software Development

Lesson 2, October 12th, 2020

Introduction to Temporal Logic(s)
Linear Time Properties

Ivano Salvo

Computer Science Department

Lesson 2a

Defining Specifications

For verification purposes, we usually drop action labels: there
are useful mainly for synchronizations purposes

Let AP be a set of atomic proposition. A Kripke structure M
over AP is a 4-tuple (S, S0, R, L), where:
• S is a finite set of states;

• S0⊆S is the set of initial states;

• R⊆ S×S is the transition relation;

• L : S → 2AP is the labeling function.

R must be total, i.e. for each state s there exists always s’ such
that R(s, s’)

A path (or execution) from s in M is a sequence 𝜋 = s0s1s2…
such that s0=s and R(si, si+1)

Kripke structures

Temporal Logic
First order logic is useful to describe properties of sequential
programs. Reactive/concurrent systems interact with their
environment, and hence their sequences of computation (and
its properties) are of primary importance.

Temporal Logic focuses on sequence of transitions, or better on
the tree of possible (usually infinite) executions of a system.

Temporal operators: never, in the future, always, eventually.

Kripke
structure

Tree of
executions

CTL* formulas are built starting from atomic propositions and
propositional connectives (⋀, ⋁, ￢, → etc.)

Path quantifiers: A (for all computation paths, aka∀) and E
(for some computation path, aka∃). They quantify over paths
starting in a given state (state formulas)

Temporal operators (originates path formulas):
X f (“next time”, aka ○) f holds in the second state of a path
F f (“eventually” or ”in the future”, aka ◇) f will hold at some

state on the path
G f (“globally”, aka ◻) f holds at every state on the path
f U g (“until”) combines two properties. f U g holds if g holds at

some state on the path and f holds until that point.
F g ≡ true U g

R (“release”) is the dual of U. f R g holds if g holds up to a state
where f holds (g may hold forever and f never!).

Computational Tree Logic: CTL*

State formulas are formulas that depend on a state of a transition
system

• If p ∊ AP, then p is a state formula
• If f, g are state formulas, then ￢ f, f ⋀ g, f ⋁ g are state formulas
• If f is a path formula, the A f and E f are state formulas

Path formulas are formulas that depend on a computation path

• If p is a state formula, then p is also a path formula
• If f, g are path formulas, then ￢ f, f ⋀ g, f ⋁ g, X f, F f, G f, f U g,

and f R g are path formulas

CTL*: syntax

The semantics of CTL*
formulas are relative to
a computation tree.

Here some example of
computation trees and
CTL* formulas valid in
such computation trees.

Examples

The truth of a CTL* state formula is given in terms of a state s
in a Kripke structure M, notation M, s ⊨ f

CTL* semantics: state formulas

The truth of a CTL* path formula is given in terms of a path 𝜋
in a Kripke structure M, notation M, 𝜋 ⊨ f
Notation: 𝜋i (or 𝜋[i..]) denotes the suffix of 𝜋 starting in si

CTL* semantics: path formulas

It is easy to see that (for example) operators ⋁, ￢, X, U, and E
are enough to define formulas equivalent to any CTL* formulas
via duality.

f ⋀ g ≡ ￢(￢ f ⋁ ￢ g)

f R g ≡ ￢(￢ f U￢ g)

F f ≡ true U f

G f ≡ false R f

G f ≡ ￢F￢ f

A f ≡ ￢E￢ f

In the following, we analyze two important sub-logic of CTL*:
- Linear Time Logic (LTL)
- Computational Tree Logic (CTL)

Minimal CTL* fragment

Example of neXt: modulo 4 counter

This system satisfies the property:
G (y →(X ￢y ⋀ X X￢y ⋀ X X X￢y))

that means that y holds exactly every four steps (forever)

Lesson 2b:

Linear Time Logic
LTL

Linear Time Logic (LTL)

LTL is a fragment of CTL* where formulas have the form A f
with f a path formula. Differently from CTL* path formulas are
just built from atomic propositions using temporal operators
(no nested occurrences of A or E)

• If p ∊ AP, then p is also a path formula
• If f, g are path formulas, then ￢ f, f ⋀ g, f ⋁ g, X f, F f, G f, f U

g, and f R g are path formulas

To a LTL formula 𝜑, it is associated a LT property, defined by
the set of paths 𝜋 such that 𝜋 ⊨ 𝜑 (see semantics of CTL* -- LTL
is a sublogic of path formulas)

M ⊨ 𝜑⇔ for all s ∊ S0, M, s ⊨ 𝜑

LTL: Semantics

Expansion Laws:
f U g ≡ g ⋁ (f ⋀ X (f U g))
F f = f ⋁ X F f
G f = f ⋀ X G f

Idempotency Laws:
F F f ≡ F f
G G f ≡ G f
f U (f U g) ≡ f U g
(f U g) U g ≡ f U g

Absorption Laws:
G F G f ≡ F G f
F G F f ≡ G F f

Some useful algebraic laws

These are crucial in LTL
model checking algorithm:

recursive definition of
words that satisfies such

formulas.

Lesson 2c

Linear Properties

Linear time properties depend on traces (system executions)

Safety properties: something bad never happens
Deadlock
Invariants (state properties, eg. mutual exclusion)
Trace properties (e.g. beverage is delivered only after

the coin has been inserted)

Liveness properties: something good will eventually happen
starvation freedom (the process will eventually enter

in the critical section)
some event will happen infinitely often.

Liveness and safety properties are dual and both needed to
specify a reasonable system.

Example: systems that do nothing are for sure safe! But
probably useless!

Linear Time Properties

Traces and LT properties

Traces are infinite words of sets of atomic propositions.
Atomic propositions is what we observe of a system state.

traces(M)=⋃ traces(M, 𝑠)�
/012 ⊆(245)6

Traces can be easily obtained by execution paths of a LTS, by
dropping action names and substituting each state s with its
labeling L(s) [the same for Kripke structures].

A Linear Time property P is just a subset of (245)6

M ⊨ P if and only if traces(M) ⊆P

Observation: For convenience, M is without terminal states,
therefore we reason about infinite words.
Remember: execution paths start in initial states.

Example: traffic lights: properties

Two traffic lights and they parallel composition via
handshaking.

PS = “The traffic lights are never both green simultaneously”
= (A) G ￢ (green1 ⋀ green2)

PL = “The first traffic light will be green infinitely often”
= (A) G F green1

Both PL and PS are satisfied by this system, since traces have the
form {red1, green2} {red2, green1} {red1, green2} {red2, green1}…

𝛃 𝛃 𝛃

safety

liveness

Mutual Exclusion: handshaking

Does this system satisfy the mutual exclusion property?
G (￢ crit1 ⋁ ￢ crit2) ≡ G ￢(crit1 ⋀ crit2) ≡ ￢ F (crit1 ⋀ crit2)

Does it satisfy the following liveness properties?
* each process enters in its critical section:

(F crit1) ⋀ (F crit2)

* each process enters infinitely often in the critical section)
(G F crit1) ⋀ (G F crit2)

Mutual Exclusion via semaphores

This system satisfies:
G (y = 0 ⟹ crit1 ⋁ crit2)

but again, no liveness, even in weaken forms, such as:
(G F wait1 ⟹ G F crit1) ⋀ (G F wait2 ⟹ G F crit2)

This is satisfied only if some form of fairness is assumed.

M’ is a refinement of M (or it is a realization) of M if traces(M’)
⊆ traces(M).

Theorem. traces(M’) ⊆ traces(M) if and only if for any LT
property P, M ⊨ P implies M’ ⊨ P.

Example:
If we remove the transition from the Mutual Exclusion
example:

we get a system that gives priority to P1 (if both are waiting, P2
cannot anymore enter its critical section).

This system has less behaviors.

Refinement

Mutual Exclusion via semaphores

Question: does this system satisfies:

G F crit1
Or

G F wait1 ⟹ G F crit1

It safisfies more LT properties! (but not G F crit2 !!)

✕

Equivalent Systems

Two systems M and M’ are trace-equivalent if traces(M’) =
traces(M) .

Theorem. M and M’ are trace equivalent if and only they
satisfy the same set of LT properties.

If L(select) = L(select1) = L(select2), we have that these two
systems are trace equivalent.

An invariant is a safety property that depends on a condition F
on states.

Pinv = { A0 A1 A2… ∊ (245)6 | for all j. Aj ⊨ F }

Observe that:
M ⊨ Pinv iff traces(M)⊆ Pinv

iff L(s) ⊨ F for all s in a path of M
iff L(s) ⊨ F for all reachable states of M

F holds on initial states and it is preserved by system
transitions.

Invariants

Just a visit (DFS or a BFS) of the set of reachable states. During a
DFS, the states on the stack is an execution (counterexample)

Invariant Checking

If the property fails, a
counterexample is provided

In sequential programs termination is a desirable property.
Often, concurrent systems are non-terminating and termination
means a deadlock: the system cannot evolve further.
[Observation: in concurrent system, there exists other notions
of termination, e.g, “offer an interaction after a finite time”.]

Invariants: Deadlock

Starting from the
states ⟨red, red⟩ and
⟨green, green⟩, the
system does not
evolve (deadlock).

The two processes
offer interactions that
do not synchronize
via handshaking.

Deadlock: Dining Philosophers

“Five philosophers are sitting at a round table with a bowl of
rice in the middle. Their life consist in eating and thinking. To
take rice, they need two chopsticks. In between two
neighboring philosophers there is just one chopstick.”

Deadlock prone Dining Phil.

Philosopher i (modelled by the TS on the left of the picture)
request the chopstick on his left (requesti-1,i) and the one on his
right (requesti,i) [we count modulo 5]
These actions synchronize with corresponding actions of the
process modelling the chopstick (right in the picture)

Philosopheri

Sticki

Deadlock prone Dining Phil.
The whole system is the parallel composition:

Ph4 ‖ Stick3 ‖ Ph3 ‖ Stick2 ‖ Ph2 ‖ Stick1 ‖ Ph1 ‖ Stick0 ‖ Ph0 ‖ Stick4

Deadolock: All philosophers possess their left chopstick. Starting
from the inital state (all philosopher are thinking and all stick
are available):
⟨think4, avail3, think3, avail2, think2, avail1, think1, avail0, think0, avail4⟩
and executing the sequence of actions:

request4; request3; request2; request1; request0

(or any permutation of them) we reach a deadlock state:
⟨wait4,0, occ4,4, wait3,4, occ3,3, wait2,3, occ2,2, wait1,2, occ1,1, wait0,1, occ0,0⟩

Deadlock-free: At least one philosopher can eat and think
infinitely often.

𝐆	¬(= 𝑤𝑎𝑖𝑡B

�

CDBEF

∧ = 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑B

�

CDBEF

)	

Deadlock free Dining Philosopher
Solution: Each stick is available for just one philosopher at time

Two different states
available.

Definition: P is a safety property if for all traces 𝜎 in (245)6\P
there exists a set B of finite bad prefixes such that:

P ∩ {𝜎’|𝜎bad∊ B is a prefix of 𝜎’} = ∅

Proposition. Invariants are safety properties.
Proof (sketch): Just consider finite sequences s0 s1 s2… sn such
that for all i<n si ⊨ 𝛷 and sn⊭ 𝛷. ❏

Some safety properties are not invariants.

Example: in the Beverage Vending Machines, let us consider
the property: “The number of inserted coins is less or equal to
the number of delivered drinks”. The set of bad prefixes are:

{drink}, {pay, drink, drink}, …
but this property does not depend on a specific state.

Exercise: Could you define a transition system “equivalent” to
the Beverage Vending Machine where this property is indeed
an invariant?

Beyond Invariants: Safety

Lemma. If P is safety property, a system M satisfies P iff
tracesfin(M) ∩ B = ∅, where B is the set of bad prefixes.

Definition [Closure].
1. pref(𝜎) = {𝜎’ | 𝜎’ is a finite prefix of 𝜎}
2. pref(P)=⋃ pref(𝜎)�

R05
3. closure(P) = {𝜎 | pref(𝜎) ⊆ pref(P)}

Theorem. P is a safety property iff P = closure(P).
Proof:
(⇒) Let us consider the set B of bad-prefixes of P. pref(P) ⋂ B =
∅. This implies that all words having some prefix in pref(P)
belongs to P. But this is exactly closure(P).
(⇐) It is enough to show that if P = closure(P) then (2AP)*∖pref(P)
is the set of bad prefixes of P. ❏

Characterization of Safety

Liveness

Definition: P is a liveness property whenever:
pref(P) = (245)∗	

Intuitively: each finite word (=computation) can be always
extended to an infinite word that satisfies P.

Proposition. The only Linear Property that is both a safety and
a liveness is (245)6.
Proof: If P is a liveness, pref(P) = (245)∗	 and clearly, closure
(245)∗	=(245)𝝎. If P is a safety, closure(P)=P. ❏

Lemma. For all linear time properties P and P’:
• closure(P ⋃ P’)=closure(P) ⋃ closure(P’)
• P⊆closure(P)

Liveness & Safety
Theorem [DECOMPOSITION THEOREM]
For any linear property P, there exists a safety property Psafe
and a liveness property Plive such that P = Psafe∩ Plive.

Proof: Any linear property P can be written as:
P = closure(P) ∩ (P ⋃ ((245)6 \ closure(P))

Clearly closure(P) is a safety, and hence Psafe = closure(P).
We show that Plive = (P ⋃ ((245)6 \ closure(P)) is a liveness.
closure (Plive) = closure (P ⋃ ((245)6 \ closure(P))

(Lemma) = closure (P) ⋃ closure((245)6 \ closure(P))
⊇ closure(P) ⋃ ((245)6 \ closure(P))

(because always P⊆closure(P))
= (245)6

This implies that closure(Plive) = (245)6 and hence pref(Plive)=
(245)∗ and therefore Plive is a liveness property. ❏

Liveness & Safety: summing up

Lesson 2d:

Computation Tree Logic
CTL

Non Linear Time properties
“For every computation, it is always possible to return to the
initial state”

A G F start
does not properly work.
It is too strong.

This system intuitively satisfies our intended property, but not
the linear property A G F start (because of the path (¬start)𝜔)

The solution is a branching notion of time, allowing nesting of
path quantifiers A and E: in this case A G E F start.

start
¬
start

State formulas are formulas that depend on a state of a
transition system

• If p ∊ AP, then p is a state formula
• If f, g are state formulas, then so are ￢ f, f ⋀ g, f ⋁ g
• If f is a path formula, then A f and E f are state formulas

Path formulas are formulas that depend on a computation path

• If f, g are state formulas, then ￢ f, f ⋀ g, f ⋁ g, X f, F f, G f, f U
g, and f R g are path formulas

CTL: syntax

Similar to CTL*, but each temporal operator (X, F, G, U, R)
must be preceded by a path quantifier (E or A)

Let AP = {x = 1, x < 2, x ≥ 3} be the set of atomic propositions.
Legal CTL formulas are:

EX (x = 1), AX (x = 1), x = 1 ⋁ x < 2

Illegal CTL formulas are:
E (x = 1 ⋀ AX x ≥ 3)

because AX x ≥ 3 is not a path formula
EX (true U x = 1)

because EX nested with a path formula

By contrast, the following are legal CTL formulas:
EX (x = 1 ⋀ AX x ≥ 3) EX A (true U x = 1)

Common operators: EF 𝜑 ≡ “𝜑 holds potentially”
AF 𝜑 ≡ “𝜑 is inevitable”
EG 𝜑 ≡ “𝜑 holds potentially always”
AG 𝜑 ≡ “invariantly 𝜑”

Examples: (il)legal CTL formulas

From a theoretical point of view, only 3 operators are really
needed: EX, EG, and EU:

AX f ≡ ¬ EX ¬ f
EF f ≡ ¬ E (true U f)
AG f ≡ ¬ EF ¬ f
AF f ≡ ¬ EG ¬ f
A(f U g) ≡ ¬ E (¬ g U ¬ f ⋀ ¬ g) ⋀ ¬ EG ¬ g
A(f R g) ≡ ¬ E (¬ f U ¬ g)
E (f R g) ≡ ¬ A (¬ f U ¬ g)

Attention! that propositional operators (⋀, ⋁ , ¬, etc.) cannot be
applied to path formula, so it is not true that EG f ≡ E ¬ F ¬f
simply because the latter is not a CTL formula.

Minimal Fragment of CTL

The semantics of CTL*
formulas are relative
to a computation Tree.

Here some example of
computation trees and
CTL* formulas valid in
such computation
trees.

Non Linear Time (LT) examples

Other Examples

Black states are those
that satisfy the formula

A remark on negation

A transition system M satisfies a CTL formula 𝜑, notation M ⊨ 𝜑
if and only if M, s ⊨ 𝜑 for all s ∊ S0, where S0 is the set of initial
states of M.

Be careful that M, s ⊭ 𝜑 implies M, s ⊨ ¬𝜑, but it is not true that
M ⊭ 𝜑 implies M ⊨ ¬𝜑 (The same holds for LTL!).

The problem is the universal quantification over initial states!

Example: Both a and ¬a does not hold here:

Equivalent CTL formulas

A CTL formula f is equivalent to g if and only if for all transition
system M, M ⊨ f iff M ⊨ g

Expansion Laws for CTL:

A (f U g) ≡ g ⋁ (f ⋀ AX A(f U g))
AG f ≡ f ⋀ AX AG f
AF f ≡ f ⋁ AX AF f

E (f U g) ≡ g ⋁ (f ⋀ EX E(f U g))
EG f ≡ f ⋀ EX EG f
EF f ≡ f ⋁ EX EF f

LTL versus CTL: eliminating A

Theorem. Let f be a CTL formula and let f LTL be the LTL
formula obtained by eliminating all path quantifiers in f. Then:
f ≡ f LTL or there does not exist any LTL formula equivalent to f

Lemma. [PERSISTENCE] The CTL formula A F A G a and the LTL
formula F G a are not equivalent.
Proof: Just consider the following Kripke structure.

We have s0 ⊨LTL F G a, since all path starting in s0 will remain
forever in s0 or in s2 (that satisfy G a).
By contrast s0 ⊭CTL A F A G a, since s0

𝝎 ⊭CTL F A G a because of
the paths s0

* s1 s2
𝝎 which passes the ¬a-state s1 .❏

Theorem.
1. There exist LTL formulas for which no equivalent CTL
formula exist. For instance: F G a or F (a ⋀ X a)
2. There exist CTL formulas for which no equivalent LTL
formula exist. For instance: AF AG a or AF (a ⋀ AX a) or AG EF a

Proof (idea): exhibit suitable transition systems M and M’ such
that M ⊨LTL g and M’ ⊭LTL g but such that cannot be distinguished
by any CTL formula, that is, for all CTL property g, M ⊨CTL g if and
only if f M’ ⊨CTL g.
Example: Let us consider AG EF a. This is satisfied by M above, but
not by M’. On the other hand since traces(M’)⊆traces(M), M’
satisfies all LTL formulas satisfied by M. ❏

LTL and CTL are not comparable

M M’

That’s all Folks!

Thanks for your attention…
…Questions?

