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Lesson 2a

Defining Specifications



For verification purposes, we usually drop action labels: there 
are useful mainly for synchronizations purposes

Let AP be a set of atomic proposition. A Kripke structure M
over AP is a 4-tuple (S, S0, R, L), where: 
• S is a finite set of states;

• S0⊆S is the set of initial states;

• R⊆ S×S is the transition relation;

• L : S → 2AP is the labeling function.

R must be total, i.e. for each state s there exists always s’ such 
that R(s, s’)

A path (or execution) from s in M is a sequence 𝜋 = s0s1s2…
such that s0=s and R(si, si+1)

Kripke structures



Temporal Logic
First order logic is useful to describe properties of sequential 
programs. Reactive/concurrent systems interact with their 
environment, and hence their sequences of computation (and 
its properties) are of primary importance.

Temporal Logic focuses on sequence of transitions, or better on 
the tree of possible (usually infinite) executions of a system. 

Temporal operators: never, in the future, always, eventually.

Kripke
structure

Tree of
executions



CTL* formulas are built starting from atomic propositions and 
propositional connectives (⋀, ⋁, ￢, → etc.)

Path quantifiers: A (for all computation paths, aka∀) and E
(for some computation path, aka∃). They quantify over paths 
starting in a given state (state formulas)

Temporal operators (originates path formulas):
X f (“next time”, aka ○) f holds in the second state of a path
F f (“eventually” or ”in the future”, aka ◇) f will hold at some 

state on the path
G f (“globally”, aka ◻) f holds at every state on the path
f U g (“until”) combines two properties. f U g holds if g holds at 

some state on the path and f holds until that point.
F g ≡ true U g

R (“release”) is the dual of U. f R g holds if g holds up to a state 
where f holds (g may hold forever and f never!). 

Computational Tree Logic: CTL*



State formulas are formulas that depend on a state of a transition 
system

• If p ∊ AP, then p is a state formula
• If f, g are state formulas, then ￢ f,  f ⋀ g, f ⋁ g are state formulas
• If f is a path formula, the A f and E f are state formulas

Path formulas are formulas that depend on a computation path

• If p is a state formula, then p is also a path formula
• If f, g are path formulas, then ￢ f,  f ⋀ g, f ⋁ g, X f, F f, G f, f U g, 

and f R g are path formulas

CTL*: syntax



The semantics of CTL* 
formulas are relative to 
a computation tree.

Here some example of 
computation trees and 
CTL* formulas valid in 
such computation trees.

Examples



The truth of a CTL* state formula is given in terms of a state s
in a Kripke structure M, notation M, s ⊨ f

CTL* semantics: state formulas



The truth of a CTL* path formula is given in terms of a path 𝜋
in a Kripke structure M, notation M, 𝜋 ⊨ f 
Notation: 𝜋i (or 𝜋[i..]) denotes the suffix of 𝜋 starting in si

CTL* semantics: path formulas



It is easy to see that (for example) operators ⋁, ￢, X, U, and E
are enough to define formulas equivalent to any CTL* formulas 
via duality.

f ⋀ g ≡ ￢(￢ f ⋁ ￢ g)

f R g ≡ ￢(￢ f U￢ g)

F f   ≡ true U f

G f   ≡ false R f

G f  ≡ ￢F￢ f

A f  ≡ ￢E￢ f

In the following, we analyze two important sub-logic of CTL*:
- Linear Time Logic (LTL)
- Computational Tree Logic (CTL)

Minimal CTL* fragment



Example of neXt: modulo 4 counter

This system satisfies the property:
G ( y →(X ￢y ⋀ X X￢y ⋀ X X X￢y))

that means that y holds exactly every four steps (forever) 



Lesson 2b:

Linear Time Logic
LTL



Linear Time Logic (LTL)

LTL is a fragment of CTL* where formulas have the form A f 
with f a path formula. Differently from CTL* path formulas are 
just built from atomic propositions using temporal operators 
(no nested occurrences of A or E)

• If p ∊ AP, then p is also a path formula
• If f, g are path formulas, then ￢ f,  f ⋀ g, f ⋁ g, X f, F f, G f, f U

g, and f R g are path formulas

To a LTL formula 𝜑, it is associated a LT property, defined by 
the set of paths 𝜋 such that 𝜋 ⊨ 𝜑 (see semantics of CTL* -- LTL 
is a sublogic of path formulas)

M ⊨ 𝜑⇔ for all s ∊ S0, M, s ⊨ 𝜑



LTL: Semantics



Expansion Laws:
f U g ≡ g ⋁ ( f ⋀ X ( f U g))
F f = f  ⋁ X F f
G f  = f ⋀ X G f

Idempotency Laws:
F F f    ≡ F f
G G f  ≡ G f
f U ( f U g) ≡ f U g
(f U g) U g ≡ f U g

Absorption Laws:
G F G f  ≡ F G f
F G F f   ≡ G F f

Some useful algebraic laws

These are crucial in LTL 
model checking algorithm:

recursive definition of 
words that satisfies such 

formulas.



Lesson 2c

Linear Properties



Linear time properties depend on traces (system executions)

Safety properties: something bad never happens
Deadlock
Invariants (state properties, eg. mutual exclusion)
Trace properties (e.g. beverage is delivered only after 

the coin has been inserted)

Liveness properties: something good will eventually happen
starvation freedom (the process will eventually enter 

in the critical section)
some event will happen infinitely often.

Liveness and safety properties are dual and both needed to 
specify a reasonable system.

Example: systems that do nothing are for sure safe! But 
probably useless!

Linear Time Properties



Traces and LT properties

Traces are infinite words of sets of atomic propositions. 
Atomic propositions is what we observe of a system state.

traces(M)=⋃ traces(M, 𝑠)�
/012 ⊆(245)6

Traces can be easily obtained by execution paths of a LTS, by 
dropping action names and substituting each state s with its 
labeling L(s) [the same for Kripke structures].

A Linear Time property P is just a subset of (245)6

M ⊨ P   if and only if    traces(M) ⊆P

Observation: For convenience, M is without terminal states, 
therefore we reason about infinite words.
Remember: execution paths start in initial states.



Example: traffic lights: properties

Two traffic lights and they parallel composition via 
handshaking.

PS = “The traffic lights are never both green simultaneously”
= (A) G ￢ ( green1 ⋀ green2 ) 

PL = “The first traffic light will be green infinitely often”
= (A) G F green1

Both PL and PS are satisfied by this system, since traces have the 
form {red1, green2} {red2, green1} {red1, green2} {red2, green1}…

𝛃 𝛃 𝛃

safety

liveness



Mutual Exclusion: handshaking

Does this system satisfy the mutual exclusion property?
G (￢ crit1 ⋁ ￢ crit2 ) ≡ G ￢( crit1 ⋀ crit2 ) ≡ ￢ F ( crit1 ⋀ crit2 )

Does it satisfy the following liveness properties? 
* each process enters in its critical section:

(F crit1 ) ⋀ (F crit2)

* each process enters infinitely often in the critical section)
(G F crit1 ) ⋀ (G F crit2)



Mutual Exclusion via semaphores

This system satisfies:
G (y = 0 ⟹ crit1 ⋁ crit2)

but again, no liveness, even in weaken forms, such as:
(G F wait1 ⟹ G F crit1) ⋀ (G F wait2 ⟹ G F crit2)

This is satisfied only if some form of fairness is assumed.



M’ is a refinement of M (or it is a realization) of M if traces(M’) 
⊆ traces(M). 

Theorem. traces(M’) ⊆ traces(M) if and only if for any LT 
property P, M ⊨ P implies M’ ⊨ P.

Example:
If we remove the transition from the Mutual Exclusion 
example:

we get a system that gives priority to P1 (if both are waiting, P2
cannot anymore enter its critical section).

This system has less behaviors.

Refinement



Mutual Exclusion via semaphores

Question: does this system satisfies:

G F crit1
Or

G F wait1 ⟹ G F crit1

It safisfies more LT properties! (but not G F crit2 !!)

✕



Equivalent Systems

Two systems M and M’ are trace-equivalent if traces(M’) = 
traces(M) .

Theorem. M and M’ are trace equivalent if and only they 
satisfy the same set of LT properties.

If L(select) = L(select1) = L(select2), we have that these two 
systems are trace equivalent.



An invariant is a safety property that depends on a condition F
on states. 

Pinv = { A0 A1 A2… ∊ (245)6 | for all j. Aj ⊨ F }

Observe that:
M ⊨ Pinv iff traces(M)⊆ Pinv

iff L(s) ⊨ F for all s in a path of M
iff L(s) ⊨ F for all reachable states of M

F holds on initial states and it is preserved by system
transitions.

Invariants



Just a visit (DFS or a BFS) of the set of reachable states. During a 
DFS, the states on the stack is an execution (counterexample)

Invariant Checking

If the property fails, a 
counterexample is provided



In sequential programs termination is a desirable property.
Often, concurrent systems are non-terminating and termination 
means a deadlock: the system cannot evolve further.
[Observation: in concurrent system, there exists other notions 
of termination, e.g, “offer an interaction after a finite time”.]

Invariants: Deadlock

Starting from the 
states ⟨red, red⟩ and 
⟨green, green⟩, the 
system does not 
evolve (deadlock).

The two processes 
offer interactions that 
do not synchronize 
via handshaking.



Deadlock: Dining Philosophers

“Five philosophers are sitting at a round table with a bowl of 
rice in the middle. Their life consist in eating and thinking. To 
take rice, they need two chopsticks. In between two 
neighboring philosophers there is just one chopstick.”



Deadlock prone Dining Phil.

Philosopher i (modelled by the TS on the left of the picture) 
request the chopstick on his left (requesti-1,i) and the one on his 
right (requesti,i) [we count modulo 5]
These actions synchronize with corresponding actions of the 
process modelling the chopstick (right in the picture)

Philosopheri

Sticki



Deadlock prone Dining Phil.
The whole system is the parallel composition: 

Ph4 ‖ Stick3 ‖ Ph3 ‖ Stick2 ‖ Ph2 ‖ Stick1 ‖ Ph1 ‖ Stick0 ‖ Ph0 ‖ Stick4

Deadolock: All philosophers possess their left chopstick. Starting 
from the inital state (all philosopher are thinking and all stick 
are available):
⟨think4, avail3, think3, avail2, think2, avail1, think1, avail0, think0, avail4⟩
and executing the sequence of actions: 

request4; request3; request2; request1; request0

(or any permutation of them) we reach a deadlock state: 
⟨wait4,0, occ4,4, wait3,4, occ3,3, wait2,3, occ2,2, wait1,2, occ1,1, wait0,1, occ0,0⟩

Deadlock-free: At least one philosopher can eat and think 
infinitely often.

𝐆	¬( = 𝑤𝑎𝑖𝑡B

�

CDBEF

∧ = 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑B

�

CDBEF

)	



Deadlock free Dining Philosopher
Solution: Each stick is available for just one philosopher at time

Two different states
available. 



Definition: P is a safety property if for all traces 𝜎 in (245)6\P 
there exists a set B of finite bad prefixes such that:

P ∩ {𝜎’|𝜎bad∊ B is a prefix of 𝜎’} = ∅

Proposition. Invariants are safety properties. 
Proof (sketch): Just consider finite sequences s0 s1 s2… sn such
that for all i<n si ⊨ 𝛷 and sn⊭ 𝛷. ❏

Some safety properties are not invariants.

Example: in the Beverage Vending Machines, let us consider
the property: “The number of inserted coins is less or equal to 
the number of delivered drinks”. The set of bad prefixes are:

{drink}, {pay, drink, drink}, …
but this property does not depend on a specific state.

Exercise: Could you define a transition system “equivalent” to 
the Beverage Vending Machine where this property is indeed
an invariant?

Beyond Invariants: Safety



Lemma. If P is safety property, a system M satisfies P iff
tracesfin(M) ∩ B = ∅, where B is the set of bad prefixes.

Definition [Closure]. 
1. pref(𝜎) = {𝜎’ | 𝜎’ is a finite prefix of 𝜎}
2. pref(P)=⋃ pref(𝜎)�

R05
3. closure(P) = {𝜎 | pref(𝜎) ⊆ pref(P)}

Theorem. P is a safety property iff P = closure(P).
Proof: 
(⇒) Let us consider the set B of bad-prefixes of P. pref(P) ⋂ B = 
∅. This implies that all words having some prefix in pref(P) 
belongs to P. But this is exactly closure(P).
(⇐) It is enough to show that if P = closure(P) then (2AP)*∖pref(P) 
is the set of bad prefixes of P. ❏

Characterization of Safety



Liveness

Definition: P is a liveness property whenever:
pref(P) = (245)∗	

Intuitively: each finite word (=computation) can be always 
extended to an infinite word that satisfies P. 

Proposition. The only Linear Property that is both a safety and 
a liveness is (245)6.
Proof: If P is a liveness, pref(P) = (245)∗	 and clearly, closure
(245)∗	=(245)𝝎. If P is a safety, closure(P)=P. ❏

Lemma. For all linear time properties P and P’:
• closure(P ⋃ P’)=closure(P) ⋃ closure(P’)
• P⊆closure(P)



Liveness & Safety
Theorem [DECOMPOSITION THEOREM]
For any linear property P, there exists a safety property Psafe
and a liveness property Plive such that P = Psafe∩ Plive. 

Proof: Any linear property P can be written as:
P = closure(P) ∩ (P ⋃ ((245)6 \ closure(P))

Clearly closure(P) is a safety, and hence Psafe = closure(P). 
We show that Plive = (P ⋃ ((245)6 \ closure(P)) is a liveness.
closure (Plive) = closure (P ⋃ ((245)6 \ closure(P))

(Lemma)    = closure (P) ⋃ closure((245)6 \ closure(P))
⊇ closure(P) ⋃ ((245)6 \ closure(P))

(because always P⊆closure(P) )
= (245)6

This implies that closure(Plive) = (245)6 and hence pref(Plive)=
(245)∗ and therefore Plive is a liveness property. ❏



Liveness & Safety: summing up



Lesson 2d:

Computation Tree Logic
CTL



Non Linear Time properties
“For every computation, it is always possible to return to the 
initial state”

A G F start
does not properly work.
It is too strong.

This system intuitively satisfies our intended property, but not 
the linear property A G F start (because of the path (¬start)𝜔)

The solution is a branching notion of time, allowing nesting of 
path quantifiers A and E: in this case A G E F start.

start
¬
start



State formulas are formulas that depend on a state of a 
transition system

• If p ∊ AP, then p is a state formula
• If f, g are state formulas, then so are ￢ f,  f ⋀ g, f ⋁ g
• If f is a path formula, then A f and E f are state formulas

Path formulas are formulas that depend on a computation path

• If f, g are state formulas, then ￢ f,  f ⋀ g, f ⋁ g, X f, F f, G f, f U
g, and f R g are path formulas

CTL: syntax

Similar to CTL*, but each temporal operator (X, F, G, U, R) 
must be preceded by a path quantifier (E or A)



Let AP = {x = 1, x < 2, x ≥ 3} be the set of atomic propositions.
Legal CTL formulas are:

EX (x = 1), AX (x = 1), x = 1 ⋁ x < 2 

Illegal CTL formulas are:
E (x = 1 ⋀ AX x ≥ 3)

because AX x ≥ 3 is not a path formula
EX (true U x = 1)

because EX nested with a path formula

By contrast, the following are legal CTL formulas:
EX (x = 1 ⋀ AX x ≥ 3) EX A (true U x = 1)

Common operators: EF 𝜑 ≡ “𝜑 holds potentially”
AF 𝜑 ≡ “𝜑 is inevitable”
EG 𝜑 ≡ “𝜑 holds potentially always”
AG 𝜑 ≡ “invariantly 𝜑”

Examples: (il)legal CTL formulas



From a theoretical point of view, only 3 operators are really 
needed: EX, EG, and EU:

AX f ≡ ¬ EX ¬ f
EF f ≡ ¬ E (true U f )
AG f ≡ ¬ EF ¬ f
AF f ≡ ¬ EG ¬ f
A(f U g ) ≡ ¬ E (¬ g U ¬ f ⋀ ¬ g) ⋀ ¬ EG ¬ g
A( f R g ) ≡ ¬ E (¬ f U ¬ g)
E ( f R g ) ≡ ¬ A (¬ f U ¬ g)

Attention! that propositional operators (⋀, ⋁ , ¬, etc.) cannot be 
applied to path formula, so it is not true that EG f ≡ E ¬ F ¬f
simply because the latter is not a CTL formula.

Minimal Fragment of CTL



The semantics of CTL* 
formulas are relative 
to a computation Tree.

Here some example of 
computation trees and 
CTL* formulas valid in 
such computation 
trees.

Non Linear Time (LT) examples



Other Examples

Black states are those 
that satisfy the formula



A remark on negation

A transition system M satisfies a CTL formula 𝜑, notation M ⊨ 𝜑
if and only if M, s ⊨ 𝜑 for all s ∊ S0, where S0 is the set of initial 
states of M. 

Be careful that M, s ⊭ 𝜑 implies M, s ⊨ ¬𝜑, but it is not true that 
M ⊭ 𝜑 implies M ⊨ ¬𝜑 (The same holds for LTL!).

The problem is the universal quantification over initial states!

Example: Both a and ¬a does not hold here:



Equivalent CTL formulas

A CTL formula f is equivalent to g if and only if for all transition 
system M, M ⊨ f iff M ⊨ g

Expansion Laws for CTL: 

A (f U g) ≡ g ⋁ (f ⋀ AX A(f U g))
AG f ≡ f ⋀ AX AG f
AF f ≡ f ⋁ AX AF f

E (f U g) ≡ g ⋁ (f ⋀ EX E(f U g))
EG f ≡ f ⋀ EX EG f
EF f ≡ f ⋁ EX EF f



LTL versus CTL: eliminating A

Theorem. Let f be a CTL formula and let f LTL be the LTL 
formula obtained by eliminating all path quantifiers in f. Then:
f ≡ f LTL  or there does not exist any LTL formula equivalent to f

Lemma. [PERSISTENCE] The CTL formula A F A G a and the LTL 
formula F G a are not equivalent.
Proof: Just consider the following Kripke structure.

We have s0 ⊨LTL F G a, since all path starting in s0 will remain 
forever in s0 or in s2 (that satisfy G a).  
By contrast s0 ⊭CTL A F A G a, since s0

𝝎 ⊭CTL F A G a because of 
the paths s0

* s1 s2
𝝎 which passes the ¬a-state s1 .❏



Theorem. 
1. There exist LTL formulas for which no equivalent CTL 
formula exist. For instance: F G a or F (a ⋀ X a)
2. There exist CTL formulas for which no equivalent LTL 
formula exist. For instance: AF AG a or AF (a ⋀ AX a) or AG EF a

Proof (idea): exhibit suitable transition systems M and M’ such 
that M ⊨LTL g and M’ ⊭LTL g but such that cannot be distinguished 
by any CTL formula, that is, for all CTL property g, M ⊨CTL g if and 
only if f M’ ⊨CTL g. 
Example: Let us consider AG EF a. This is satisfied by M above, but 
not by M’. On the other hand since traces(M’)⊆traces(M), M’ 
satisfies all LTL formulas satisfied by M. ❏

LTL and CTL are not comparable

M M’



That’s all Folks!

Thanks for your attention…
…Questions?


