Formal Methods in Software Development Resume of the 14/10/2020 lesson

Igor Melatti and Ivano Salvo

- Summing up, the relations between Kriepke structures and Murphi models are as follows. We are given a Murphi model, let's call it \mathcal{M} and let's assume that:
 - $-V = \langle v_1, \ldots, v_n \rangle$ is the set of global variables of \mathcal{M} , with domains $\langle D_1, \ldots, D_n \rangle$
 - * note that each D_i may be a Cartesian product of other domains (if the corresponding type is an array or a record)
 - * question: which is the difference, in terms of the definition of the domain, between an array and a record?
 - * however, in the following we will take a different road: we will consider all variables *unfolded*
 - $\ast\,$ that is, if a variable is an array with q elements, then it is actually to be considered as q different variables
 - * the same for records
 - * for combination of arrays and records, all possible combinations must be considered
 - * simple types are ok
 - * as an example: var a : array [1..n] of record begin b
 : 1..m; c: 1..k; endrecord
 - * then there will be 2n variables as follows: $a1b, \ldots, anb, a1c, \ldots, anc$

- let $I = \{I_1, \ldots, I_k\}$ be the set of startstate sections in \mathcal{M}

- $\ast\,$ start states may be defined inside rulesets; here we suppose all rules ets are unfolded
- * thus, if a startstate I is inside m nested rulesets $\mathcal{R}_1, \ldots, \mathcal{R}_m$, and each ruleset \mathcal{R}_i is defined on an index j_i spanning on a domain \mathcal{D}_i (note that \mathcal{D}_i must be a simple type), then there actually are $\prod_{i=1}^m |\mathcal{D}_i|$ startstates to be considered, instead of just one
- * of course, in each of these startstates definitions, the tuple j_1, \ldots, j_m takes all possible values of $\mathcal{R}_1 \times \ldots \times \mathcal{R}_m$
- let $T = \{T_1, \ldots, T_p\}$ be the set of rule sections

 $\ast\,$ same as above: must be unfolded if in rules ets

- Then, the Kriepke structure $M = (S, S_0, R, L)$ described by \mathcal{M} is such that:
 - $-S = D_1 \times \ldots \times D_n$
 - $-\ s \in S_0$ iff s may be obtained by applying the body of a start state in I
 - $-~(s,t)\in R$ iff there is a rule $T_i\in T$ s.t. T_i guard is true in s and T_i body changes s to t
 - * that is: in the body of T_i , variables starting values are those of s
 - * note that there may be two or more rules defining the same transition from s to t; no problem with this
 - $\ast\,$ note that there is no assurance that R is total: Murphi can check this at run-time
 - · "total" means that every state has at least a successor
 - \cdot if this is not true, i.e., if a state s does not have successors, Murphi calls s a deadlock state
 - $\cdot\,$ note that there may exist deadlock states that are not reachable from the initial states: Murphi cannot find them
 - \cdot a state s is a deadlock state for two possible reasons:
 - 1. $(s,t) \notin R$ for all $t \in S$, i.e., the values for the variables in s do not satisfy any ruleset guard
 - 2. $(s,t) \in R \to t = s$, i.e., there is some ruleset guard which is satisfied by s, but its body do not change any of the global variables (e.g., the body is empty)
 - $-AP = \{(v = d) \mid v = v_i \in V \land d \in D_i\}$
 - $(v = d) \in L(s)$ iff variable v has value d in s