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About this course…

Classroom:
Monday, 16-19 prof. Ivano Salvo – G50
Wednesday, 12-14 prof. Igor Melatti – Aula Alfa
On-line: Zoom meetings

Main Topic: Model Checking
This part (Monday): mainly theoretical aspects

Prof. Melatti (Wednesday) introduce the use of several model 
checkers (murphi, nuSMV, SPIN etc.)

Website (in progress):
http://twiki.di.uniroma1.it/twiki/view
/MFS/FormalMethodsInSoftwareDevelopment20202021

You can find course program, some additional material  (slides), 
summary of lesson content, previous exams…



E. M. Clarke, O. Grumberg, and D. A. Peled
Model Checking
MIT press

Course material
I will follow mainly the following books:

C. Baier, J.-P. Katoen
Principles of Model Checking
MIT press



Written test: short questions and small 
exercises

+

Project/presentation:
• model and verify some toy system
• short presentation of a research paper

Final Examination
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Course
Introduction



Reliance on ICT systems are growing quickly. We 
daily interact with hundreds of ICT systems. System 
errors may cause:
• Increase production costs

• Increase time-to-market

• Loss of money (mission critical)

• Threaten human life or environment (safety 
critical)

The reliability of ICT systems is a key issue in the 
system design process. 

The Need for Formal Methods



Naïve approach: write a program and test if it 
produces the expected results

A bit of ingenuity:
test corner cases
try to provide significant test-set of inputs
…

Testing is a science itself! Tons of books on 
generating (automatically) significant test sets! part 
of Software Engineering…

Problem: coverage of possible program executions

Program correctness: testing



Formal approaches: write a specification for a 
(sequential) program: ∀𝑥: 𝑃𝑟𝑒𝑐 𝑥 ∃𝑦. 𝑃𝑜𝑠𝑡𝐶(𝑥, 𝑦)

Prove formally that the program computes a 
function f such that: ∀𝑥: 𝑃𝑟𝑒𝑐 𝑥 . 𝑃𝑜𝑠𝑡𝐶(𝑥, 𝑓(𝑥))

Several techniques: development of correct
programs using program assertions (Dijkstra), 
Hoare Logic, …

Problems: hard and time-consuming, requires
deep skills, hard for large systems… even using 
software tools such proof assistant (Coq, Isabelle…)

Deductive Systems



ICT systems are much more than just programs

They consist of many interacting components 
(both hardware and software)

They interact with an environment (sensors, …)

The verification problem is quite hard and system
complexity increase continuously

Systems, not just Programs



Modeling: find a formal model M of a system 
(usually via some abstract formalism, e.g. Transition 
Systems)

Specification: give a formal specification 𝜑 (first 
order logic is ok for sequential programs, but some 
kind of Temporal Logic is more suitable for 
concurrent or hybrid systems)

Verification: run a formal verification that the 
system M satisfies 𝜑, M ⊨𝜑 by examining all states
in the computations of M (by means of efficient 
algorithms). 

Result: OK or a counterexample useful to refine 
the model (or the specification).

Model Checking



ü Quite general approach that is suitable for many 
applications.
ü It supports partial verification, i.e. properties that 
can be checked individually
ü It is not vulnerable to expectation on where an 
error can occur
ü It provides diagnostic information
(counterexamples) that helps debugging
ü At least in principle: completely automatic
ü It can be integrated in the development cycle and 
experimental studies support this.
ü It is based on a solid theory: logics, graph 
algorithms 

Model Checking: Strength



ü Adapt to control intensive applications (rather 
than data intensive). Example: protocols
ü Some decidability issues (in particular for 
infinite state systems)
ü It applies to models rather than systems
ü It suffers from state-explosion problem: many 
systems are huge with respect to their description 
via a program
ü Expertise on finding appropriate specifications 
and abstractions is required (not just push the 
botton!)
ü Does not allow generalizations. Example: 
systems with an arbitrary number of components

Model Checking: Weakness
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Modeling Systems 1: 
Transition Systems



A concurrent system is a set of components that 
execute together

They can evolve independently (asynchronous or 
interleaved executions) or evolve synchronously (all 
components evolve simultaneously)

Communication among components can take 
place via shared variables or by exchanging 
messages (handshaking)

Concurrent Systems



Let AP be a set of atomic proposition. A Labeled 
Transition System M over AP is a tuple 
(S, A, S0, →, L), where: 

• S is a set of states

• A is a set of actions

• S0⊆S is the set of initial states
• → ⊆ S × A × S is the transition relation
• L : S → 2AP is the labeling function

(Labeled) Transition Systems



We model concurrent systems by means of (Labeled) 
Transition Systems (LTS): directed graphs where nodes
model states and edges model transitions (state changes)

States record information about the system in a certain 
moment. Transitions (actions) specify evolution of the 
system

Question: Which are states and transitions of a traffic 
light? A program? A digital circuit? A chess game?

Action names are used mainly for communication
between components of a system

Atomic propositions formalize logical properties of 
states (what is really relevant of a state wrt our 
verification task)

Modeling Concurrent Systems



Ex.: Beverage Vending Machine

In this model, the machine non-deterministically
delivers a soda or a beer.

One can prove properties such as:“The vending 
machine only delivers a drink after inserting a coin”

∅

{paid}

{paid,drink}{paid,drink}

Initial state

Silent, internal 
actions 𝜏



A path (or execution fragment) from s in M is a 
sequence 𝜋 = s0a1s1a2s2 … ansn such that s0=s and 
si→𝒂𝒊si+1

A path is initial if s0 ∊ S0 (i.e. it starts in an initial 
state). It is maximal if it is either infinite or the last 
state sn has no outgoing transitions

An execution of M is an initial and maximal path

A state is reachable if it belongs to an execution of M

→ is total if for each state s there exists always a, s’ 
such that s→9s’ (shorthand for (s, a, s’) ∈	→)

LTS: Semantics



We define the set of immediate successors and 
predecessors of a state:
Post (s, a) = {s’ | s→9s’} and  Post (s) = ⋃ 𝑃𝑜𝑠𝑡(𝑠, 𝑎)�

9∈C
Pred (s, a) = {s’ | s’→9s} and  Pred (s) = ⋃ 𝑃𝑟𝑒𝑑(𝑠, 𝑎)�

9∈C

A state s is terminal state if Post (s)= ∅

A system is (action) deterministic if |Post (s, a)|≤ 1 
for all states s and for all actions a

Nondeterminism is a matter of abstraction!
• Unpredictable interleaving of concurrent processes
• Underspecified models
• Interaction with an uncontrollable environment
• …

Non-determinism



Examples from the Beverage
Vending Machine

→ is total: the machine is always ready for 
interactions (new input from the environment) only
infinite paths are maximal, in this case

Initial paths start in the state pay

In the state select there are two non-nodeterministic
silent transitions 𝜏: silent transitions model internal
(= non observable) evolutions of the system

All states are reachable



Observation: differently from sequential programs, 
we are not interested just in the input/output 
function defined by a system

We are rather interested in properties that rely on:
• Reachable states
• Sequence of actions in some execution
• Interactions offered to other systems and or 

environment
• Fairness
• Liveness 
…

Modeling: not just input/output
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Modeling Systems 2:
Data Dependent Systems



Usually, systems are described by kind of 
programs, that in turn depend on (potentially 
infinite) data

Transitions can depend on some conditions: this 
is not in the framework of Transition Systems

Conditional branching can be modeled by 
nondeterminism, but this can lead to very abstract 
(= not useful) models

In the following we see programs that generate a 
Labelled Transition System

For example, the SPIN model checker use the 
ProMeLa language to describe systems

Data Dependent Systems



Extended Beverage Vending Machine: the model 
includes the number of available beverages: it returns 
the inserted coin when it is empty

The machine has an action refill to insert bottles. One 
can get a bottle only if the machine is not empty

One can always refill or insert coin:

Bev. Vending Machine Reloaded

conditional
transitions

max is the 
maximum 
capacity



A program graph PG over a set Var of typed 
variables is a tuple  (Loc, Act, Effect, ⤻, Loc0, g0), 
where: 

• Loc is a set of locations

• Act is a set of actions

• Effect: Act × Eval(Var) → Eval(Var)

• ⤻ ⊆ Loc × Cond(Var) × Act × Loc is 
the conditional transition relation

• Loc0⊆Loc is the set of initial locations

• g0⊆ Cond(Var) is the initial condition

Generalising: Program Graphs

Eval(Var) is the set 
of variable 
evaluation

Cond(Var) is the set 
of conditional 

expressions over Var



Unfolding of a PG into a LTS

States are pairs of the form (l, η), where l ∊ Loc
and η is an evaluation

Initial states are initial locations that satisfy the 
initial condition g0.

Atomic propositions are defined in terms of 
locations and values of variables (states)

The transition relation l ⤻g:a l’ produces 
transitions of the form (l, η) →9(l’, η’), provided that 
g evaluates TRUE in η and η‘=Effect(a, η)



Bev. Vending Machine: unfolding
Here we show 
transitions with at most 
2 bottles for each 
beverage (max=2)

Conditions in actions
are evaluated in the current
state of the machine: unfolding
we get a Transition System



Vending Machine as PG

Var = {nsoda, nbeer}, whose domains are both {0,…, max}
Loc = {start, select} and Loc0 = {start}.
We denote by η evaluation of variables.
Act = {bget, sget, coin, ret_coin, refill} with:

Effect(coin, η) = η
Effect(ret_coin, η) = η
Effect(bget, η) = η[nbeer := nbeer - 1]
Effect(sget, η) = η[nsoda := nsoda - 1]
Effect(refill, η) = [nsoda := max, nbeer := max]

g0 ≡ nsoda = max ∧ nbeer = max



Formally

What you write inside a model 
checker is essentially a program.
This definition shows you how
to get a Transition System!



As it is clear from this example, the number of states 
of the LTS is huge with respect to the size of the 
program graph

The number of states of a program graph is:

𝐿𝑜𝑐 I J 𝑑𝑜𝑚(𝑥)
�

L∈M9N
provided that dom(x) is finite

The number of states is exponential in the number 
of variables

Counteracting the state explosion problem is one of 
the main research topic in Model Checking (for 
example, implicit representation of states, etc.)

State Explosion Problem
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Modeling Systems 3:
Composing Systems



Composition of Parallel Systems

Hard- and software systems are parallel in nature.

They are typically defined as the parallel 
composition of components that execute 
simultaneously:

M = M1 ‖ M2 ‖ … ‖ Mn

Parallel composition can be used to model 
systems hierarchically: Mi can be in turn the parallel 
composition Mi,1 ‖ Mi,2 ‖ … ‖ Mi,k

In the following, we briefly show different 
semantics of the operator ‖ and how different 
systems can communicate (shared variables, 
handshaking etc.) 



Interleaving Semantics
In interleaving semantics, concurrent components

evolve independently, as they run on a single-
processor machine with unpredictable scheduling

The composition contains all possible interleaving
sequences of actions (abstracting from scheduling)
policy)

No assumptions about order of execution (except
for some synchronization mechanism, discussed
later)

(where ; is sequential composition and + is
nondeterministic choice)



Example: 
Independent Traffic Lights

Two LTSs

Their parallel 
composition



Example: Independent variables

Two processes modify two independent variables:

All possible executions lead to the same result:



Interleaving of TS: definition



Also parallel composition of systems is a source
of state explosion problem.

The state space of the composed system is the 
cartesian product of state space of its components.

If M = M1 ‖ M2 ‖ … ‖ Mn, then we have that:

𝑀 =	 J 𝑀Q

�

QRS,…,U

Therefore, the number of states is exponential in 
the number of components!

State Explosion Problem



Communication: shared variables

Two processes modify the same shared variable:

Interleaving is too simplicistic in this case!!!

Inconsistent states!



Interleaving, shared variables: def

The solution is to define the operator ‖ at the program 
graph level, rather than transition systems.

Effect changes simultaneously values of shared variables



Example: 
shared variables reloaded

Nondeterministic
choice

+

Parallel
Composition

Unfolding



A model is always an abstraction of a real system.

Modeling is a critical issue.

Transitions must be atomic: no observable state 
must be ignored by the transition system.

if x<10 then x=x+1 ‖ x=2*x

Are x=x+1 or if x<10 then x=x+1 atomic? In a 
program they correspond to several operations!

Granularity:

• too coarse: some errors can be ignored
• too fine: model checking discover spurious errors

Modeling: Granularity



Let M1 be the model described by two integer variables x
and y, with two transitions:

a:  x := x + y and   b:  y := x + y
that can be executed concurrently.

from x=1∧y=2, the execution ab leads to x=3∧y=5 and 
the execution ba leads to x=4∧y=3. 

Consider M2 be the model of an assembly-like 
implementation of the ``same’’ system (Ri are registers):

a0: load R1 x b0: load R2 y
a1: add R1 y b1: add R2 x
a2: store R1 x b2: store R2 y

In M2, we have more execution orders, for example a0 b0
a1 b1 a2 b2 that leads to the state x=3 ∧ y=3. 

Granularity: Example



Mutual Exclusion via Semaphores

The shared variable y implements a semaphore, 
preventing both processes to enter the critical section 
simultaneously

Observation: y := y-1 cannot be executed in parallel 
(critical actions involving shared variables)



Mutual Exclusion via Semaphores

Interleaving of program graphs of the 
mutual exclusion protocol.



Mutual Exclusion via Semaphores

Unfolding of the program graph PG1 ⫴ PG2 : some 
states, e.g.<c1, c2, y=0> are not reachable.

Which process enter the critical section?

+



Another typical form of communication is via 
exchanging messages. Here, we see a 
synchronization mechanism where processes
synchronize on some actions

H is a set of synchronization actions

Communication: Handshaking

processes evolve simultaneously provided 
they are executing the same action.



For each pair of processes Pi, Pj there exists a set Hi,j
of actions on which they can synchronize

Generalising to n processes



Mutual Exclusion: handshaking
Simplified version: process just have two states: 
noncrit, crit. They synchronize with an arbiter on 
actions {request, release}:

It works! 
<crit1, crit2> 

is not reachable



That’s all Folks!

Thanks for your attention…
…Questions?


