FORMAL METHODS IN SOFTWARE DEVELOPMENT

Written/Oral Test - Rome, July 14, 2020

Name Surname

1. Modelling

- **Q1:** Why does the parallel composition of n processes give rise to a Labeled Transition System (or a Kripke structure) with a number of states exponential in n?
- **Q2** Give the definition of a Kripke structure.
- Q3 Why Kripke structures are not suitable to model synchronisation of concurrent systems?
- Q4 Explain what does "interleaving semantics" mean in the parallel composition of concurrent systems.
- Q5 Why computations (or runs) in kripke structures consists always of an infinite number of steps?
- Q6 Could you sketch how a Kriepke structure can be modeled using boolean predicates?

Temporal Logic

- **Q1** Give a Kripke structure \mathcal{M} (as small as possible) and a state s such that $\mathcal{M}, s \models \mathbf{A} \mathbf{G} \mathbf{F} a$, where a is an atomic proposition.
- $\mathbf{Q2}$ Write a formula equivalent to $\mathbf{F}f$ containing the temporal operator \mathbf{U} only.
- **Q3** Write a formula equivalent to $\mathbf{F}f$ containing the temporal operator \mathbf{G} .
- **Q4** Write the expansion law for the temporal operator \mathbf{U} , that is a formula equivalent to f \mathbf{U} g in terms of operators \mathbf{X} and \mathbf{U} itself.

Linear Time Properties

- $\mathbf{Q1}$ Define a safety property.
- **Q2** Define a liveness property.
- Q3 Can you give an example of a property that is simultaneously a safety and a liveness property?
- Q4 Define an invariant and describe a model checking procedure for an invariant.

Fixed Points

- **Q1** Let S be a set and $T: 2^S \mapsto 2^S$. Give sufficient conditions on T so that T has a least fixpoint.
- **Q2** Let S be a set and $T: 2^S \mapsto 2^S$ defined by $T(X) = S \setminus X$. Has T a fixpoint? Motivate your answer.
- **Q3** Let G = (V, E) be a directed graph and $u \in V$. Let $T : 2^V \mapsto 2^V$ defined by $T(X) = \{u\} \cup \{v \mid y \to v \in E, \text{ for some } y \in X\}$. Has T a minimum fixed point? If yes, which is the fixpoint of T?
- **Q4** Let S be a *finite* set and let $a \in S$. Which are the least and the greatest fixed points of the operator $T: 2^S \mapsto 2^S$ defined by: $T(X) = X \cup \{a\}$?

Automata

- Q1 Which is the difference between a Büchi automata and Finite State automata?
- **Q2** Is the class of Deterministic Büchi automata equivalent to the class of Nondeterministic Büchi automata?
- **Q3** Let G = (V, E) be a directed graph and $u \in V$. Let $T : 2^V \mapsto 2^V$ defined by $T(X) = \{u\} \cup \{v \mid y \to v \in E, \text{ for some } y \in X\}$. Has T a minimum fixed point? If yes, which is the fixpoint of T?
- **Q4** Let S be a *finite* set and let $a \in S$. Which are the least and the greatest fixed points of the operator $T: 2^S \mapsto 2^S$ defined by: $T(X) = X \cup \{a\}$?

OBDDs

- Q1 Could you sketch how a Kriepke structure can be modeled as boolean predicates?
- **Q2** Could you provide an example of a n-ary boolan function f and two variable orders \leq_1 and \leq_2 such that the OBDD representing f is linear in n by considering the variable order \leq_1 and exponential in n by considering the variable order \leq_2 ?
- **Q2** If you have an OBDD representing the boolan function f, how you can compute the OBDD representing $\sim f$?

Algorithms:

- **Q1** Briefly describe the (idea of the) procedure checkEU(f,g) that labels all states satisfying $\mathbf{E}[f\ \mathbf{U}\ g]$, assuming that states satisfying f and g are correctly labeled.
- **Q2** Briefly describe the (idea of the) procedure checkEG(f) that labels all states satisfying $\mathbf{E}[\mathbf{G} f]$, assuming that states satisfying f are correctly labeled.

Equivalences

 $\square \ \mathrm{CTL}$

\mathbf{Q}	Among the	following	temporal	logics,	which	ones	are	always	invariant	with	$\operatorname{respect}$	to
stu	ttering equiv	alence?										
	$\mathrm{LTL}_{-\mathbf{X}}$											
	$\mathrm{CTL}_{-\mathbf{X}}$											

 $\square \; LTL$