FORMAL METHODS IN SOFTWARE DEVELOPMENT

Written Test – Rome, February 12, 2020

Name Surname
Q1 (Modelling): Why does the parallel composition of n processes give rise to a Labeled Transition System (or a Kripke structure) with a number of states exponential in n ?
Q2 (Temporal Logic): Let f and g be two atomic propositions. Exhibit a Kripke structures \mathcal{M} such that $\mathcal{M} \models \mathbf{EG}(f \mathbf{U} g)$ and $\mathcal{M} \not\models \mathbf{AG}(f \mathbf{U} g)$.
Q3 (Liveness): Let AP be a set of atomic propositions and let $P_1, P_2 \subseteq (2^{AP})^{\omega}$ be two liveness properties. Is $P_1 \cup P_2$ a safety property? Motivate your answer shortly.
Q4 (Fixed Points): Let S be a <i>finite</i> set and let $a \in S$. Which are the least and the greatest fixed points of the operator $T: 2^S \mapsto 2^S$ defined by: $T(X) = X \cup \{a\}$?

Q5 (Equivalences): Among the following temporal logics, which ones are always invariant with respect to stuttering equivalence? $ \Box \ LTL_{-\mathbf{X}} $ $ \Box \ CTL_{-\mathbf{X}} $ $ \Box \ CTL $ $ \Box \ LTL $
Q6 (Algorithms): Briefly describe the (idea of the) procedure $checkEU(f,g)$ that labels all states satisfying $\mathbf{E}[f \ \mathbf{U} \ g]$, assuming that states satisfying f and g are correctly labeled.
Q7 (Automata): Let us consider the alphabet $\Sigma = \{a, b\}$. Give a Büchi automaton recognising the language $\mathcal{L} \subseteq \Sigma^{\omega}$ of words ending with an infinite sequence of a or an infinite sequence of b . Formally $\mathcal{L} = \Sigma^* \cdot a^{\omega} + \Sigma^* \cdot b^{\omega}$.
Q8 (μ -calculus): Write a μ -calculus expression that is the translation of the CTL formula EG E(f U g).