FORMAL METHODS IN SOFTWARE DEVELOPMENT

Written Test – Rome, January 22, 2020

Name		
Surname		

Q1 (Modelling): In a Kripke structure there is always at least an infinite path. Why?

Q2 (Temporal Logic): Let g be an atomic proposition. Exhibit two Kripke structures \mathcal{M}_1 and \mathcal{M}_2 such that: a) $\mathcal{M}_1 \models \mathbf{GF} g$ but $\mathcal{M}_1 \not\models \mathbf{FG} g$, and b) $\mathcal{M}_2 \models \mathbf{FG} g$. [HINT: \mathcal{M}_1 and \mathcal{M}_2 can have just two states.]

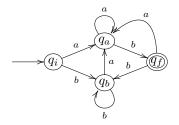
Q3 (Safety Properties): Let AP be a set of atomic propositions and let $P_1, P_2 \subseteq (2^{AP})^{\omega}$ be two safety properties. Is $P_1 \cap P_2$ a safety property? Motivate your answer shortly.

Q4 (Fixed Points): Let S be a *finite* set. Define an operator $T: 2^S \mapsto 2^S$ that does not have any fixed point.

Q5 (Equivalences): Among the following temporal logics, which ones are always invariant on equivalence classes induced by a bisimulation? □ LTL □ CTL* □ CTL □ None of them

Q6 (Algorithms): Let $T : 2^S \mapsto 2^S$ be monotone. Why does the sequence $T^n(\emptyset)$ converge to the minimum fixpoint in at most |S| steps?

Q7 (Automata): Which is the language recognised by the following Büchi automaton?



 $\Box \{w \in \{a, b\}^{\omega} \mid w \text{ contains infinitely many } a\}$ $\Box \{w \in \{a, b\}^{\omega} \mid w \text{ contains infinitely many } b\}$ $\Box \{w \in \{a, b\}^{\omega} \mid w \text{ contains infinitely many sequences } ab\}$ $\Box \{w \in \{a, b\}^{\omega} \mid w \text{ contains finitely many } a \text{ or finitely many } b\}$

Q8 (Probabilistic Model Checking and Fairness): Provide an example of a Markov chain such that, for some state *s* we have: *a*) in the corresponding Kripke structure, $s \not\models \mathbf{F} g$, *b*) $Pr(s \models \mathbf{F} g) = 1$, and *c*) $s \models_{\text{Fair}} \mathbf{F} g$, for suitable fairness constraints.